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Abstract

The topic of centering in multilevel modeling (MLM) has received substantial attention from methodol-
ogists, as different centering choices for lower-level predictors present important ramifications for the
estimation and interpretation of model parameters. However, the centering literature has focused almost
exclusively on continuous predictors, with little attention paid to whether and how categorical predictors
should be centered, despite their ubiquity across applied fields. Alongside this gap in the methodological
literature, a review of applied articles showed that researchers center categorical predictors infrequently
and inconsistently. Algebraically and statistically, continuous and categorical predictors behave the
same, but researchers using them do not, and for many, interpreting the effects of categorical predictors
is not intuitive. Thus, the goals of this tutorial article are twofold: to clarify why and how categorical
predictors should be centered in MLM, and to explain how multilevel regression coefficients resulting
from centered categorical predictors should be interpreted. We first provide algebraic support showing
that uncentered coding variables result in a conflated blend of the within- and between-cluster effects of
a multicategorical predictor, whereas appropriate centering techniques yield level-specific effects. Next,
we provide algebraic derivations to illuminate precisely how the within- and between-cluster effects of
a multicategorical predictor should be interpreted under dummy, contrast, and effect coding schemes.
Finally, we provide a detailed demonstration of our conclusions with an empirical example.
Implications for practice, including relevance of our findings to categorical control variables (i.e., cova-
riates), interaction terms with categorical focal predictors, and multilevel latent variable models, are
discussed.

Translational Abstract

Multilevel modeling (MLM) is frequently used in the social sciences when data are nested or clustered
(e.g., students nested within classrooms; clients nested within therapists). Centering is an important topic
in MLM because it can be conducted in different ways, each of which yields slightly different parameter
estimates that also must be interpreted differently. However, work regarding centering has focused almost
exclusively on continuous predictors. Little attention has been paid to categorical predictors, whether and
how they should be centered, and how their resulting coefficients should be interpreted. This is problem-
atic, because categorical predictors and covariates are ubiquitous across all fields wherein MLM is used.
Thus, the goals of this report are to clarify why and how categorical predictors should be centered in
MLM, and to explain how multilevel regression coefficients resulting from centered categorical predictors
should be interpreted. We present an overview of popular centering options and provide best-practice rec-
ommendations for centering and interpretation of binary and multicategorical predictors. We provide a
detailed demonstration of our conclusions with an empirical example from the education literature. In
addition, we discuss the practical implications of our work at length; topics include multicategorical cova-
riates, interaction terms with categorical focal predictors, and multilevel latent variable models.
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In the multilevel modeling (MLM) literature, the topic of centering
has been discussed and debated at great length, as different centering
choices for lower-level predictors present important ramifications for
the estimation and interpretation of parameter estimates (Hofmann &
Gavin, 1998; Kreft et al., 1995). However, such work has focused
almost exclusively on continuous predictors, with little attention paid
to whether and how categorical predictors should be centered. This is
problematic given the ubiquity of categorical predictors in multilevel
data across the applied fields of psychology, education, organiza-
tional research, and more. Thus, the goals of this tutorial article are
twofold: to clarify why and how categorical predictors should be cen-
tered in MLM, and to explain how multilevel regression coefficients
resulting from centered categorical predictors should be interpreted.

Notation and Equivalence

We use the following notation common in MLM literature and
textbooks (e.g., Raudenbush & Bryk, 2002; Snijders & Bosker,
2012): The subscript i refers to a Level-1 unit within a cluster,
whereas j is a cluster indicator. Thus, we observe individual i
nested within cluster j. In MLM, Level-1 predictors are often cen-
tered in one of three ways. First, the predictor may be uncentered
(UN; denoted x;). Second, centering at the grand mean (CGM;
denoted x; — x..) involves subtracting the overall sample’s “grand”
mean (¥..) from each observation. Third, centering at the cluster
mean,' also known as centering within context (CWC; denoted
X;j — X ), involves subtracting the cluster-specific mean (x;) from
each observation. The centering technique chosen for the Level-1 pre-
dictor(s) influences the interpretation of parameter estimates, and of-
ten, the estimated values themselves, yielded by the multilevel model.

As a preliminary note, models containing UN and CGM predic-
tors are equivalent, meaning that all the parameter estimates of
one model are either the same as, or a simple linear transformation
of, those from the other model. Both models will fit the data identi-
cally. The primary difference between UN and CGM predictors
pertains to interpretation of the intercept. For UN predictors, the
intercept is the predicted value of the outcome when all predictors
are zero. For CGM predictors, the intercept is the predicted value
of the outcome when all predictors are equal to the grand mean of
the sample; this interpretation is often more useful, as continuous
psychological scales typically do not contain meaningful zero-
points. Nevertheless, UN predictors are used most frequently in
practice, and therefore will be a focus of this report for practical
relevance. We will not address CGM predictors in detail, though
conclusions drawn for UN predictors will apply to CGM predic-
tors as well. Finally, models with CWC predictors are not equiva-
lent to those with either UN or CGM predictors, for reasons
described in detail below.

Running Empirical Example

Throughout this tutorial, we will draw from a data set originally
reported on by Paterson (1991) to investigate relationships between
students’ socioeconomic status (SES) and academic achievement in
Scotland. The data set was obtained from the Centre for Multilevel
Modeling at the University of Bristol (http://www.bristol.ac.uk/
cmm/learning/mmsoftware/data-rev.html#lev-xc). The sample con-
sists of 3,435 children nested within 148 primary schools; cluster
size ranged from 1 to 72, with a mean cluster size of 23.21 (SD =
16.78). The Level-1 outcome variable, ATTAINy;, is students” academic

achievement score at age 16, measured on a scale from 1 to 10 (M =
5.69, SD = 3.06). We constructed a four-category predictor of aca-
demic achievement, PED;;, based on two indicators of parental educa-
tion: Group 1 = neither parent has a high level of education; Group
2 = mother is educated, father is not; Group 3 = father is educated,
mother is not; Group 4 = both parents are educated. These categories
allow us to distinguish between mothers’ and fathers’ education, two
unique markers of SES, and how they may differentially and jointly
influence children’s academic outcomes. Throughout the tutorial we
use “educated” to describe parents who attended school until they
were at least 16 years of age, and “not educated” to describe parents
who left school at age 15 or younger. In total, 58.54% of students
were in Group 1; 13.92% were in Group 2; 7.25% were in Group 3;
and 20.29% were in Group 4.

Coding Schemes

An important precursor to the examination of nominal categori-
cal predictors is the discussion of coding schemes. Categorical in-
dependent variables may be represented by a variety of coding
systems (for a thorough overview of the most common systems,
including those used here, see Cohen et al., 2003; Chapter 8). In
all cases, a k-category predictor is represented by k& — 1 coding
variables. Regardless of the coding system chosen, equivalent
results will be obtained for the omnibus effect of the predictor; the
researcher’s choice of coding system does not fundamentally alter
the model or the information carried within the coding variables.
However, each coding system will produce different sets of regres-
sion coefficients, each of which must be interpreted differently and
answers different central questions. In this tutorial we will focus
on dummy codes, contrast codes, and effect codes, as these are
most frequently used in practice. We will refer to “coding varia-
bles” as the general case, as the conclusions and recommendations
presented here will apply equivalently to any coding system.

All coding schemes require the researcher to choose a reference
group. This choice is statistically arbitrary, but substantively im-
portant—the reference group should allow for useful comparisons.
Each coding variable makes a specific comparison between the
reference group and what we refer to as the focal group, or Group
f. How this comparison is interpreted will vary according to the
coding scheme. All coding schemes used in our example are
shown in Table 1.

In our example data set, we first created three dummy codes,
denoted dy;j, dyjj, d3;. In typical multiple regression (i.e., not a
multilevel setting), each dummy code’s slope is interpreted as the
mean difference on y between the focal group and the reference
group. We chose children with no educated parents as the refer-
ence group because it would yield logical interpretations, allowing
us to identify academic achievement gains for children with one or
two educated parents over those with none. The first dummy code,
d;j, was coded 1 for children with only an educated mother and 0
for all other children. The others, dy;; and d3;, were coded 1 for

! Throughout this report we use cluster to refer to the Level-2 unit of
nesting, and group to refer to a given category of a categorical variable. For
clarity and simplicity, we restrict our focus to two-level models, although
we expect that our conclusions will generalize intuitively to three-level
models, as has been shown for continuous predictors (Brincks et al., 2017).
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Table 1
Coding Schemes Used in Empirical Example

Dummy coding

Educated? dlU dZij d3ij
Mom no, dad no 0 0 0
Mom yes, dad no 1 0 0
Mom no, dad yes 0 1 0
Mom yes, dad yes 0 0 1
Contrast coding
Educated? Crij C2ij C3j
Mom no, dad no —3/4 0 0
Mom yes, dad no 1/4 —1/3 —1/2
Mom no, dad yes 1/4 —1/3 172
Mom yes, dad yes 1/4 2/3 0
Effect coding
Educated? eij €2jj €3ij
Mom no, dad no -1 -1 —1
Mom yes, dad no 1 0 0
Mom no, dad yes 0 1 0
Mom yes, dad yes 0 0 1

children with only an educated father and 1 for children with two
educated parents, respectively.

Next, we created three contrast codes, denoted cyj, ¢, €35
Each contrast code can be constructed in a variety of ways in order
to compare a particular focal group (or set of groups) against a par-
ticular reference group (or set of groups). As long as there are
k — 1 contrast codes in total, a nearly infinite set of codes can be
created to test various hypotheses. For each contrast code, any
groups not involved in the contrast are coded 0, whereas the focal
and reference groups receive codes that are weighted according to
how many groups are involved in the contrast (see Table 1). First,
cy;; probes the effect of having any educated parents by comparing
the mean of Group 1 to the overall mean of Groups 2—4. Second,
¢2;; probes the effect of having one versus two educated parents by
comparing the mean of Group 4 with the overall mean of Groups
2 and 3 (Group 1 is not involved in this contrast). Finally, c3;
probes the effect of having an educated mother versus an educated
father by comparing the mean of Group 2 to that of Group 3
(Groups 1 and 4 are not involved in this contrast). These contrasts
were chosen for their substantive utility and to demonstrate inter-
pretations for codes involving varying subsets of groups.

Finally, we created unweighted effect codes® denoted ey, ejj,
e3;;. The slope of an unweighted effect code reflects the difference
between the mean of the focal group and the unweighted mean of
all group means in the sample. The reference group is coded —1,
the focal group is coded 1, and all other groups are coded 0. Mean
differences are no longer estimated with respect to the reference
group, but the model will not yield a specific estimate for this
group. We again chose children with no educated parents as the
reference group so we could identify the effects of either/both
parents’ education relative to the overall sample. Thus, children
with no educated parents received —1 on all effect codes. Children
with only an educated mother were coded 1 on ey, children with
only an educated father were coded 1 on ey;, and children with
two educated parents were coded 1 on e3;. We will return to each

of these coding schemes, and their associated interpretations in a
multilevel setting, in the Empirical Example section.

Prior Work on Centering Categorical Predictors

In general, methodologists have advocated the use of centering
techniques that partition the effects of a predictor in a manner that is
consistent with the research question at hand, emphasizing that pa-
rameter estimates must be interpreted differently depending upon
the centering method chosen (Enders & Tofighi, 2007; Grilli &
Rampichini, 2018; Hofmann & Gavin, 1998; Kreft et al., 1995; Van
Landeghem et al., 1999). Methodologists also encourage researchers
to exercise transparency in describing their centering choices and
the motivation preceding them (Enders & Tofighi, 2007).

However, previous work regarding centering has focused almost
entirely on continuous predictors. Little work has been dedicated to
categorical coding variables, whether they, too, should be centered,
and if centered, how their resulting coefficients may be interpreted.
Raudenbush and Bryk (2002) and Enders and Tofighi (2007) have
briefly addressed centering binary predictors, showing algebraically
that regardless of whether binary dummy coding or binary effect
coding is used, intercepts can be interpreted similarly to how they
are interpreted for continuous predictors. Under CGM, a random
intercept [ can be interpreted as the predicted value of the out-
come for cluster j when the predictor equals the grand mean, which
in the context of binary predictors may be best understood as an
“adjusted” cluster mean (adjusted for the proportion of comparison-
group cases across the entire sample; in other words, f is the clus-
ter mean that would result if the proportion of comparison-group
cases were equal across all clusters). Under CWC, the intercept
should be interpreted as the unadjusted cluster mean.

This supporting algebra by Enders and Tofighi (2007) has been
cited elsewhere in the methodological literature, typically inform-
ing most discussion of centering categorical predictors (Enders,
2013; Nezlek, 2012b; Peugh, 2010), but has not led to a consensus
in the recommendations provided by methodologists (Nezlek,
2012a). Additionally, existing treatments have three important
limitations: first, they are restricted to the discussion of binary pre-
dictors; second, they are restricted to the interpretation of inter-
cepts; and third, they do not address UN binary or categorical
predictors, which are frequently used in practice. To our knowl-
edge, no methodological work has addressed centering multicate-
gorical predictors (i.e., those reflecting more than two groups) or
addressed the interpretation of resulting slope coefficients at both
the within- and between-cluster levels for such predictors.

Literature Review

The lack of attention to centering categorical predictors is con-
cerning, given that categorical predictors are used ubiquitously in
MLM across many fields. As a precursor to the current tutorial, we

2We could have instead constructed weighted effect codes, which are
often recommended over unweighted effect codes in nonexperimental
contexts where group proportions are assumed to be representative of the
population from which the sample was drawn. However, because
unweighted effect codes are used far more frequently in practice, we will
focus on them throughout the tutorial. Weighted effect codes will be
addressed briefly. For more detail on weighted versus unweighted effect
codes, see Cohen et al. (2003, Chapter 8).
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briefly surveyed the applied literature to explore how categorical
predictors are most often treated in practice. We assessed whether
and how authors typically conducted centering and, if conducted,
whether logical rationales and interpretations were provided. To
identify relevant articles, we used two approaches. First, we for-
ward-searched Enders and Tofighi (2007), a highly-cited resource
on centering in MLM. Second, we simply searched “multilevel
model” and “hierarchical linear model” in applied databases. In all
cases we selected the highest-cited articles yielded by the search
and that included at least one categorical predictor, in order to
assess whether important substantive conclusions being drawn
across applied fields may be helped or hindered by current centering
practices. Identified articles came from important outlets including the
Journal of Educational Psychology, Journal of Applied Psychology,
and Journal of Personality & Social Psychology.

In line with expectation, we found that centering is applied to
categorical predictors infrequently and inconsistently. Some authors
appropriately centered continuous predictors, but explicitly left cate-
gorical predictors uncentered, arguing that this would facilitate inter-
pretation of results (Murayama & Elliot, 2009; Reyes et al., 2012).
Many articles included categorical predictors for precisely the same
purpose (e.g., as a covariate), but conducted centering differently
(Galindo & Sheldon, 2012; Kérné et al., 2010; Littell & Tajima,
2000; Lidtke et al., 2009; Merritt et al., 2012), and many were
vague about how centering was conducted, making it unclear as to
whether the appropriate conclusions were drawn from their results
(Charbonnier-Voirin et al., 2010; Hofmann et al., 2012; Morrison et
al., 2011; Trautwein & Liidtke, 2009). However, the majority simply
did not discuss whether categorical predictors were centered, sug-
gesting that centering was not conducted at all (Aryee et al., 2012;
Bowers & Urick, 2011; Dettmers et al., 2011; Gong et al., 2013;
Kuo et al., 2000; Liu et al., 2010; Major et al., 2008; McCoach et
al., 2006; Powell et al., 2010; Sacco & Schmitt, 2005). When center-
ing was conducted, corresponding rationales and interpretations
were consistently lacking. Only two articles were found wherein the
centering of categorical predictors was accompanied by thorough
and coherent reasoning and interpretation of results (Kérnd et al.,
2013; Montague et al., 2011). Taken together, the literature suggests
that applied researchers are unfamiliar with whether and how cate-
gorical predictors should be centered and interpreted, and are left to
rely on intuition or avoid centering altogether. A comprehensive
treatment of the subject is clearly warranted.

Current Aims

Identified gaps in the methodological literature, alongside prob-
lematic practices by applied researchers, illuminate the need for
the current tutorial paper. First, we aim to clarify why and how
categorical predictors should be centered in multilevel models.
Second, we aim to explicate how multilevel regression coefficients
resulting from centered categorical predictors should be inter-
preted. We focus on slope coefficients, especially for multicategor-
ical predictors, as to our knowledge these have never been
addressed. To maximize applicability for applied researchers, we
demonstrate our conclusions with an empirical example. We focus
on the interpretation of coefficients from three models that are
commonly used in practice: the UN Model, the CWC(M) Model,
and the UN(M) Model (defined in the next section).

Logic and Algebra of Centering

We begin with logic and algebra to demonstrate the importance
of centering, and discuss how this applies analogously to both con-
tinuous and categorical predictors. Generally, a Level-1 predictor,
x;j, will contain two parts: a between-cluster component, which is
the cluster mean, X;, and a within-cluster component, x; — X ;.
Between-cluster variance arises when cluster means fluctuate around
the grand mean, and within-cluster variance arises when Level-1
units fluctuate around their respective cluster means.

Because Level-1 predictors contain level-specific components
that can be separated, the same is true for their effects on the out-
come variable y. These level-specific effects can differ drastically
(Curran & Bauer, 2011; Robinson, 1950). As an example, consider
Figure 1, which provides a visual aid from a random-intercept,
fixed-slope scenario concerning the relation between a binary
dummy-coded predictor dj; and a continuous outcome. Here, the
within-cluster effect is negative and denoted with a separate regres-
sion line for each cluster. In contrast, the between-cluster effect is
positive and denoted with a black arrow that cuts through all clus-
ters. Such divergent within- and between-cluster effects are not
uncommon. Failure to separately estimate these effects can often
result in erroneous conclusions (e.g., the ecological fallacy; see Diez
Roux, 2002, for more detail). A well-established body of work has
shown that centering is needed to effectively separate and estimate
these level-specific effects.

Importantly, the algebra underlying centering does not require
us to distinguish between continuous versus categorical predictors,
and in univariate MLM, there are no distributional assumptions
placed on the predictors. All this suggests that the guidelines in
place for continuous predictors will carry over to categorical pre-
dictors; however, this has never been demonstrated. To do so, we
will use a k-group categorical predictor, expressed with k — 1 cod-
ing variables, as the basis for our models. The algebra underlying

Figure 1
Hllustration of Within- and Between-Cluster Effects of a Binary
Predictor

Yij

|
I |
0 dl" ]

Note. Line with positive slope represents the between-cluster effect.
Lines with negative slopes represent within-cluster effects.
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centering also does not require us to define the coding scheme (e.
g., dummy vs. contrast codes). Different coding schemes, how-
ever, introduce different interpretational and conceptual considera-
tions, which we address in later sections.

As with continuous predictors, each coding variable for a cate-
gorical predictor can be partitioned into its within-cluster part and
its between-cluster part by the typical method of subtracting, and
then reintroducing, each cluster mean (Raudenbush & Bryk, 2002).
In this section we use d;; to denote each coding variable; we reiter-
ate that the following logic and algebra applies to any coding vari-
able regardless of coding scheme.

dij = (dij —di;) +dy
dyij = (dajj — daj) + da

die-1yij = a1y — dg-1);) +dry,

Partitioning categorical predictors in this way introduces a few
notable departures from the continuous predictor setting. First,
cluster means are now related to the proportions of people in clus-
ter j that belong to each group of the multigroup predictor. Con-
sider the first dummy code in our empirical example, keeping in
mind that dy; = 0 for children with no educated parents and d,;; =
1 for children with only an educated mother. In School 1, d; Jj=
.0926, indicating that 9.26% of the children in this school have an
educated mother. Similarly, in School 5, d, j = 0755, indicating
that 7.55% of children in this school have an educated mother. For
each dummy code, the cluster mean equals the proportion of cases
in cluster j that belong to the focal group. This arises because units
in the focal group are coded 1 whereas all other units are coded 0.
However, relationships between cluster means and proportions
become a bit more complicated under other coding schemes. Con-
sider the cluster means of the first effect code, where e; = —1 for
children with no educated parents, ej; = 1 for children with an
educated mother, and e;;; = 0 for all other children. In School 1,
¢ j=—.611. This arises from the fact that 9.26% of children in this
school are coded 1 on ey;;, whereas 70.37% of children in this
school are coded —1 (i.e., have no educated parents and thus
belong to the reference group). The average is therefore: .0926(1) +
7037(=1) = —.6111 in School 1. Similarly, in School 5, e;; =
—.6604, which follows from the fact that 7.55% of children in this
school have an educated mother and 73.58% have no educated
parents. To summarize, cluster means of coding variables are related
to the proportion of units that belong to each group, but the exact
relationships between these proportions and the cluster means will
vary depending on the coding scheme.

Second, both the original coding variable and the CWC coding
variable can take on just two possible values in a given cluster.
For example, suppose d j = 0.3. Because the uncentered dummy
code takes on the values (0, 1), it follows that the CWC dummy
code, dy;; — Elj, will take on the value of either —.3 or .7. Simi-
larly, when the uncentered effect code takes on the values (—1, 1)
the CWC effect code will take on the value of either —1.3 or .7.
This can also be seen in our empirical data example. In School 1,
d, j = 0926, and therefore dy; — d, ;j 1s equal to either —.0926 or
.9074 in this cluster. The same pattern follows for all the CWC
coding variables, which take on unique pairs of values in each

cluster. Although it may seem unintuitive that each CWC coding
variable is still dichotomous, Raudenbush and Bryk (2002) note
that this centering is indeed appropriate and still functions to parti-
tion the variable into level-specific parts.

Between-cluster variability of the categorical predictor is
reflected in the variation of cluster means, and variation of CWC
coding variables around their respective cluster means represents
within-cluster variability. In our empirical data set, the value of d ;
varies because in each school, a different proportion of students
have only an educated mother. Similarly, the value of d» j varies
because in each school, a different proportion of students have only
an educated father. A similar pattern follows for all the coding vari-
ables; for example, ¢ ; fluctuates as a function of the proportion of
students with an educated mother and the proportion of students
with no educated parents in each school. These fluctuations reflect
between-school variability in student SES. Within each school, the
values of the CWC coding variable fluctuate around their respective
cluster mean; this reflects within-school variability in student SES.

To summarize, variables representing a Level-1 predictor will con-
tain a within-cluster and a between-cluster component regardless of
whether the predictor is continuous or categorical. It follows that cen-
tering decisions for categorical coding variables will yield effects that
are similar to those found for continuous predictors. To demonstrate,
we present the UN Model, the CWC(M) Model, and the UN(M)
Model, altered to contain our categorical predictor represented by k — 1
coding variables. Again, d;; is used to denote each coding variable, but
the conclusions drawn here will apply to any coding scheme.

The UN Model
The UN Model:

Yii = Boj + By + Bydaij + -+ + By di-yis + €
Boj = Yoo + Uoj

BL‘ ="
sz = Y20

Ble-1i = Yie-no

Reduced form:

Yii = Yoo + Yiodus + Yaodaij + - -+ Vo pyodu—1yi + o + €
(2)

Here, B(’;j denotes the intercept for cluster j, [3]} denotes the con-
flated slope of d,;; in cluster j, sz denotes the conflated slope of
djj in cluster j, and so on. In the reduced-form equation, v, is the
intercept, vy, is the conflated slope of dy;, 75, is the conflated
slope of dy;, and so on. We also estimate the variance of u;
(denoted t;5,) which quantifies between-cluster variance in inter-
cepts, and the Level-1 residual variance (Gg*). The asterisk (¥) is
used to differentiate conflated estimates in this model from the
unconflated estimates described in later models. Here and through-
out the tutorial, we restrict our focus to random-intercept models,
so none of the slope parameters has a corresponding random error
term.
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The use of UN Level-1 predictors in isolation is perhaps the
most common approach in practice, though this model possesses
important drawbacks. Crucially, in the UN Model, effects are not
partitioned into Level-1 and Level-2 components, and only one
slope is estimated for each predictor. Thus, a slope in the UN
Model is an uninterpretable, conflated blend of the within- and
between-cluster effects of the predictor (Cronbach, 1976; Cron-
bach & Webb, 1975; Grice, 1966; Hirnqvist, 1978; Kenny & La
Voie, 1985; Sirotnik, 1980). Failing to partition the level-specific
effects of a predictor can often have serious consequences and
lead to erroneous conclusions.

The same logic applies to coding variables: although each cod-
ing variable can be decomposed into level-specific parts, the UN
Model is constrained to estimate only one parameter for each,
rather than separate estimates for each within-cluster and between-
cluster effect. Equation 2 can be re-expressed as:

Yii = Yoo - -
+ Yio(dij — d1j) + viod 1,
+ Y30(dajj — d2j) + V30d2,
+... B _

+ Yszfl)o(d(kfl)ij - d(kfl)».f) + Y?kq)od(kfl)-j

+ ug; + ej;

This reveals the implicit equality constraint placed on the coeffi-
cients associated with each coding variable.

As a result of this constraint, Raudenbush and Bryk (2002) have
shown in the context of a single predictor that the conflated slope
estimate will be an uninterpretable mix of within-cluster and
between-cluster effects. Assuming a balanced design, they show
that:

. Wi, + WaB,,

= 3
Y10 Wi+ W, 3)

where ﬁb is the between-cluster effect and ﬁw is the within-cluster
effect of the predictor. Wi and W, are weights that reflect the pre-

cision of the estimates of Bb and [ASW, respectively:

1
i Wo=—uorr. “

Applying this logic to coding variables, past work suggests that
Yios Vags - o ?(*k—l)o will be precision-weighted averages of the
within-cluster and between-cluster effects of each of their respec-
tive codes (Raudenbush & Bryk, 2002; Raudenbush & Willms,
1995). Stated differently, holding the predictor’s total variance
constant, a conflated slope estimate should be pulled closer to 3,
as the intraclass correlation of the predictor (ICCy) increases, and
closer to B,, as ICCy decreases, all else being equal.’

In unbalanced designs the derivations become more complex,
but the same principle applies in that an uncentered predictor
yields a conflated blend of within-cluster and between-cluster
effects. Even more problematically, other extraneous characteris-
tics of the data, including average cluster size and ICCy, also
influence the nature of conflation observed (Raudenbush & Bryk,

2002; Raudenbush & Willms, 1995; Van de Pol & Wright,
2009).

Methodological investigation into conflation has focused on sin-
gle variables in isolation. However, when employing multicategor-
ical predictors, at least two coding variables must be used
simultaneously. These UN Level-1 coding variables will necessarily
be correlated, and the covariance of the within-cluster components,
for example, cov((dy;; — d\), (da — da;)), and the between-cluster
components, cov(d J,EZ:,), may differ. In extending Equations 3
and 4 to two or more predictors, it may be necessary to consider
covariances at both the within- and between-cluster levels, rather

than only the variances of Bb and BW. Therefore, we may expect
more complex patterns of conflation to arise for multicategorical
predictors. Though some researchers have investigated the effects
of multicollinearity in multilevel models (Clark, 2013; Shieh &
Fouladi, 2003; Yu et al., 2015), none have done so in the context
of categorical predictors or conflated estimates. In summary, the
inclusion of multiple coding variables may influence conflation in
yet-unknown ways, supplying yet another reason to avoid the UN
Model.

Finally, we note that there are some special cases wherein the
UN Model may be acceptable; however, these special cases are
rarely realized in practice. First, if ICCx = 0, then the predictor has
no Level-2 variance and has no ability to exert a Level-2 effect.
Therefore, conflation cannot occur and UN Level-1 predictors
yield accurate estimates of Level-1 effects (Asparouhov &
Muthén, 2019). For a categorical predictor, it is possible for ICCy
to be zero only if each cluster has an identical composition of
groups (e.g., all clusters have 10% Group a, 30% Group b, and
60% Group c). Second, if the within- and between-cluster effects
of the predictor are exactly the same, then the “conflated” estimate
is equal to both the within- and between-cluster effect (Rights et
al., 2019) and is therefore interpretable. Outside of simulated data,
it is impossible to know the true level-specific effects of a predic-
tor, and identical level-specific effects are virtually nonexistent.
Therefore, in the vast majority of cases, the UN Model is not
recommended.

The CWC(M) Model
The CWC(M) Model:

i = Bo + Byj(diy — El,j)_+ Baj(daj — day) oA B (du-ni — du-1y)) +ej
Boj = Yoo + Yord 1 + Yoadzj + -+ You-1)d(k-1)j + oy

[31/ ="Yio0
sz = Y20
B(k—l)j = Yk=1)0

(5)

Reduced form:

3 In two-level models, ICCy is defined as the proportion of a predictor’s
total variance that is attributable to between-cluster variance. The definition
of ICCy is analogous for the outcome variable. In the null model with no
predictors, ICCy = 190/ (00 + cg), where Tqp is the Level-2 variance of y;;
and 03 is the Level-1 variance of y;;.
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¥i = Yoo + Yorduj + Yio(diy — d1j) + Yoadaj + Vao(day — daj) + - ..
F You-1ydk-1)5 T Y10 (@i—1)ij — dx-1),) + uoj + ¢

(©)

Here, B, is the intercept for cluster j, B; is the slope of
(dlij — El-j) in cluster j, sz is the slope of (dz,j - EZJ) in cluster j,
and so on. In the reduced-form equation, 7y, is the intercept, y, is
the slope of (dl,'j — EIJ), Yo is the slope of (d2l'j — 321/-), and so
on. Next, Y, is the slope of d j, Y, is the slope of d>, and so on.
We again estimate the variance of ug; (to9) and the Level-1 resid-
ual variance (cﬁ). In this model, we obtain separate within- and
between-cluster slope estimates and these estimates are no longer
denoted with asterisks.

The CWC approach, x;; — x.;, is often recommended by meth-
odologists. This approach removes all Level-2 variance from the
variable because the cluster mean of a CWC predictor is always
zero. Thus, CWC predictors (e.g., x; — X ;) are “pure” Level-1 var-
iables, and are necessarily orthogonal to all Level-2 predictors,
including their own cluster means. As a result, the Level-1 slope
of a CWC predictor is an estimate of its within-cluster effect, inde-
pendent of any Level-2 influence the uncentered predictor may
exert. Methodologists have thus encouraged the use of CWC when
a Level-1 effect is of primary interest (Enders & Tofighi, 2007;
Raudenbush, 2009).

It may also be of interest to include cluster means of Level-1
predictors, X, as Level-2 predictors themselves. Here, methodolo-
gists argue for including CWC Level-1 predictors alongside their
corresponding cluster means, yielding the CWC(M) Model (Kreft
& de Leeuw, 1998). Because x;; — X ; and X ; are necessarily uncor-
related, the CWC(M) Model yields within- and between-cluster
effects that are mutually independent, and is therefore frequently
advocated (Asparouhov & Muthen, 2006; Hedeker & Gibbons,
2006; Kreft et al., 1995; Liidtke et al., 2008; Neuhaus & Kalb-
fleisch, 1998; Neuhaus & McCulloch, 2006; Preacher et al., 2010,
2016). In summary, the CWC(M) Model allows the researcher to
separately estimate the within- and between-cluster effects of the
predictor, and each estimate is unaffected by the other. The inde-
pendence of these estimates means the problems encountered in
the UN Model (i.e., bias, conflation, lack of interpretability) can
largely be avoided with the CWC(M) Model.

The algebra also implies that the CWC(M) Model will yield
estimates of the independent within- and between-cluster effects
of a categorical predictor. CWC coding variables contain no
between-cluster variance because their cluster means will be zero,
and therefore they will be orthogonal to all Level-2 cluster means.
Additionally, their values will still reflect individual differences
relative to other cases in the same cluster, as is true for CWC con-
tinuous predictors (Enders & Tofighi, 2007). The CWC(M) Model
partitions the categorical predictor into its uncorrelated within-
and between-cluster parts. Thus, the CWC(M) Model will effec-
tively separate a categorial predictor’s level-specific effects, just
as it does for continuous predictors.

The UN(M) Model
The UN(M) Model:

Vi = Boj + Bujdij + Bydaij + - A Breorydu-yg + €y
Boj = Yoo + Yord1s + Yoodas + - - + Yo nd-1)y + o)

Blj ="Yi0 D
sz =720
B(k—l)j = Y(k-1)0

Reduced form:

Yii = Yoo + Y61d1; + Viodii + Yopda,j + Vaodai + - -

8
T Vo= + Yo—yodu-1)j + toj + € ®

Here, P is the intercept for cluster j, B; is the slope of
(dij — d;) in cluster j, B, is the slope of (daj — da;) in cluster j,
and so on. In the reduced-form equation, vy, is the intercept, y, is
the slope of (di; — d\;), Y4 is the slope of (dy; — d»;), and so
on. Next, 7§, is the slope of d1, Y5, is the slope of d»;, and so on.
We again estimate the variance of ug; (to) and the Level-1 resid-
ual variance (c2). In this model, the Level-2 slope parameters
include a ¢ superscript to denote the contextual effect (to be
defined shortly).

The UN(M) Model contains UN Level-1 predictors alongside
their corresponding cluster means. UN predictors still contain both
Level-1 and Level-2 variance, and thus are not orthogonal to their
Level-2 cluster means. Thus, regression coefficients associated
with x;; and X ; become partial regression coefficients, representing
the effect of each predictor after partialing out the effect of the
other. The Level-1 slope still represents the within-cluster effect of
the predictor (for an algebraic proof, see Kreft et al., 1995, p. 12).
However, the slope of X ; reflects the between-cluster effect of the
predictor that is above and beyond its within-cluster effect. This is
often referred to as the contextual effect. The contextual effect has
been defined in a variety of ways, but most simply, it is equal to
the difference between a predictor’s between- and within-cluster
effects (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012).
The contextual effect can be conceptualized as the between-cluster
effect of a Level-2 variable that remains after controlling for its
Level-1 counterpart. For some research questions, this interpreta-
tion at Level 2 is better-suited and more useful than the “pure”
Level-2 effect supplied by the CWC(M) Model (Begg & Parides,
2003). More detail on interpretational considerations is provided
in later sections.

The UN(M) Model is equivalent to the CWC(M) Model, with
the change in centering of Level-1 predictors resulting in a slight
reparameterization and new interpretation of Level-2 coefficients
(Enders & Tofighi, 2007; Kreft et al., 1995; Raudenbush & Bryk,
2002). Again, this equivalence holds only in random-intercept
models that do not include random slopes.

The above logic will follow for the UN(M) Model with categor-
ical predictors. UN coding variables contain both Level-1 and
Level-2 variance, and therefore will not be orthogonal to their
Level-2 cluster means. Thus, the UN(M) Model yields contextual
effects at level 2. ¥, ¥5p. - - V() are estimates of the contex-

tual effect for each group, denoted B.i, Bes -- - » Beeor)- Due to
the equivalency of the CWC(M) and UN(M) Models, each
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contextual effect will equal the between-cluster effect minus the
within-cluster effect (Kreft et al., 1995).

Summary

In this section we have demonstrated that centering guidelines
for continuous predictors should be applied analogously to cate-
gorical predictors. Importantly, a conflated slope estimate, result-
ing from an uncentered coding variable used in isolation, will
equal neither the within-cluster effect nor the between-cluster
effect. The estimate carries little interpretational value and is heav-
ily influenced by extraneous characteristics of the data and study
design, including ICCy and cluster size. This logic extends analo-
gously to multigroup categorical predictors, regardless of coding
scheme. Algebraically and statistically, multilevel models and cen-
tering principles behave the same whether predictors are continu-
ous or categorical. However, for many researchers, interpretation
of a categorical predictor’s effects in MLM will not be intuitive.
Thus, we provide an in-depth discussion of parameter interpreta-
tions in the following sections.

Parameter Interpretations

Derivations

The second goal of this report is to clarify how parameter esti-
mates should be interpreted in multilevel models with categorical
predictors, with a particular focus on slope coefficients, as prior
work has focused on intercept interpretation (Enders, 2013; Enders
& Tofighi, 2007; Nezlek, 2012b). To accomplish this, we con-
ducted expected-value derivations. When categorical predictors
are used in the single-level regression setting, group mean differ-
ences in terms of the outcome variable y are most often of interest
(e.g., the mean difference on y between the focal group and the
reference group). Therefore, our goal was to derive the expected
value (i.e., mean) of y separately for each group of interest, in
order to clarify relationships between multilevel slope coefficients
and group mean differences. Derivations were conducted for
dummy codes, contrast codes, and both unweighted and weighted
effect codes. All derivations were conducted such that they apply
to any number of groups (i.e., any k), and do not require the
assumption of equal cluster sizes or group balance (i.e., equal
group proportions).

We focused our derivations on the CWC(M) Model. First, this
model effectively separates within- and between-cluster effects,
and interpretations of these effects will be of particular utility in
practice. Second, interpretations of the UN(M) Model are a
straightforward extension of those from the CWC(M) Model.
Under each coding scheme, we derived expected values of y as a
function of expected values of the coding variables and their asso-
ciated cluster means. See Appendices A—D in online supplemen-
tal materials for full derivations. For a reminder of what each
coding scheme looks like in real data, see Table 1.

Dummy Codes

Our derivations clarify precisely how within- and between-cluster
effects should be interpreted for dummy-coded multicategorical
predictors. For details, see Appendix A in online supplemental

materials. We first show that when there is no between-cluster var-
iability with respect to the categorical predictor (i.e., each cluster
has identical composition, yielding ICC = 0 for all dummy codes),
the within-cluster slope v, is equal to the mean difference on y
between the reference group (Group k) and the focal group (Group
f. The g = f notation indicates that we are conditioning on the
focal group, whereas the g = k notation indicates that we are con-
ditioning on the reference group. We show that when ICC of all
dummy codes is zero, E(y;)|,; — E(Yij)| 4 = Yyo- Based on this
correspondence between the coefficient and within-cluster mean
difference, we conclude that in the CWC(M) Model, for any
Group f, the within-cluster slope vy, is interpreted as the mean dif-
ference on y between Group f and the reference group, within clus-
ters, on average.

Second, we show that when the categorical predictor has no
within-cluster variability (i.e., each cluster is composed entirely of
a single group, yielding ICC = 1 for all dummy codes), the
between-cluster slope v, is equal to the mean difference on y
between the reference group and Group f. When ICC = 1 for all
dummy codes, E(y;)|,; — E(j)|q—x = Yos- Thus, for any Group
/. the between-cluster effect vy, is interpreted as the mean differ-
ence on y when moving from a cluster composed entirely of the
reference group to a cluster composed entirely of Group f.

Contrast Codes

Derivations for contrast codes were conducted for the general
case, such that they apply to any total number of groups, and to
any number of groups in the reference group versus the focal
group for the contrast. Here, we denote fI as the focal group(s)
and f2 as the reference group(s). The g € fI notation indicates that
we are conditioning on a group that is either the sole focal group
or part of the set of focal groups. Similarly, the g € f2 notation
indicates that we are conditioning on a group that is either the sole
reference group or part of the set of reference groups. We show
that when ICC = 0O for all contrast codes, the within-cluster slope
Yso is equal to the mean difference on y between the focal group(s)
and the reference group(s). When ICC = 0 for all contrast codes,
E(ij)lger1 — E(Gij)lgera = Yro- Thus, for any contrast code, the
within-cluster slope vy, is interpreted as the mean difference on y
between the focal group(s) and the reference group(s), within clus-
ters, on average. If more than one group is involved in the refer-
ence and/or focal group, this interpretation involves unweighted
means of those groups (Cohen et al., 2003). Examples are pro-
vided in the following section.

Between-cluster effects extend similarly. We show that when
ICC =1 for all contrast codes, the between-cluster slope v is
equal to the mean difference on y between the focal group(s)
and the reference groups(s). When ICC = 1 for all codes,
E(ij)lgert — E(ij)lger2 = Yor- Thus, for any contrast code, the
between-cluster slope vy is interpreted as the mean difference on
y upon moving from a cluster composed entirely of reference
group(s) to a cluster composed entirely of focal group(s). See
Appendix B in online supplemental materials for details.

Effect Codes

Appendix C in online supplemental materials contains deriva-
tions for unweighted effect codes. Assuming ICC = 0 for all effect
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codes, we derive the expected value of y for a generic focal Group
f, then we derive the unweighted mean of all group means in the
sample. We show that the within-cluster slope v, is equal to the
difference between these two quantities. Thus, the within-cluster
slope vy is interpreted as the mean difference on y between Group
fand the unweighted mean of all group means in the sample.

Next, assuming ICC = 1 for all effect codes, we derive the
expected value of y for a generic focal Group f and the unweighted
mean of all group means in the sample. We then show that the
between-cluster slope v, is equal to the difference between these
two quantities. Thus, the between-cluster slope v is interpreted
as the difference on y as we go from the unweighted mean of all
group means to the mean in a cluster composed entirely of Group
f- Our derivations did not require us to commit to balance with
respect to group proportions or cluster sizes.

Appendix D in online supplemental materials contains similar
derivations for weighted effect codes. Using a similar approach,
we show that when ICC = 0 for all codes, the within-cluster slope
Yso is equal to the difference between the expected value of y for
Group f and the weighted mean of all group means (which is the
grand mean of the sample). Similarly, when ICC = 1 for all codes,
the between-cluster slope vy, is equal to the difference on y as we
go from the weighted mean of all group means, to the mean in a
cluster composed entirely of Group f.

Implications for Practice

Our derivations indicate direct correspondence of within-cluster
slopes and mean differences when ICC = 0 for all coding varia-
bles, and direct correspondence of between-cluster slopes and
mean differences when ICC = 1 for all coding variables. Though
these equivalencies are useful for illuminating how each coeffi-
cient should be interpreted, it is important to note that ICC will
rarely be equal to O or 1 in practice. ICC = 0 will occur only if
each cluster has an identical composition of the categorical predic-
tor (e.g., all clusters have 10% Group a, 30% Group b, and 60%
Group c). Such a pattern is unlikely to arise in real data, especially
with naturally occurring categories, though could arise in an ex-
perimental context. In contrast, ICC = 1 if each cluster contains
entirely one category. Here, the categorical predictor is by defini-
tion a Level-2 predictor. In all other situations, ICC will lie
between O and 1, and parameter estimates will no longer corre-
spond to raw group mean differences (i.e., those that could be
identified from descriptive statistics of the raw data).

For a more technical demonstration of the relationship between
ICC of the coding variables and group mean differences, see
Appendix E in online supplemental materials.

Summary

In this section, we have derived how slopes of categorical pre-
dictors should be interpreted in multilevel models, and demon-
strated how those slopes relate to group mean differences on y. It
is important to understand that coefficients reflecting within- and
between-cluster effects are equal to actual group mean differences
on y (i.e., those that can be calculated from group means in the
raw data) only under very particular data conditions, when the
ICC of the coding variables is either O or 1. However, the direct

correspondence between the coefficients and group mean differen-
ces under these conditions illuminates what the coefficients repre-
sent, and therefore how these level-specific effects should be
correctly interpreted. These level-specific effects can be obtained
directly through use of the CWC(M) Model.

Interpretation of coefficients in the UN(M) Model is a straight-
forward extension of those from the CWC(M) Model, so their der-
ivation is not necessary. Interpretational considerations for the
CWC(M) Model versus the UN(M) Model will be discussed at
length in the following section.

Importantly, the interpretations that we have shown to be cor-
rect stand in contrast to the interpretations that are often employed
in practice. Our literature review revealed that researchers often
employ UN coding variables, which yield uninterpretable coeffi-
cients, but subsequently interpret those coefficients as though they
represent within-cluster effects. In reality, the categorical predictor
and its corresponding effects must be appropriately partitioned
into level-specific parts before such interpretation is warranted.
Next, we return to our empirical example to anchor these derived
interpretations with real-world context.

Ilustration With Empirical Data

We return to our running empirical example of 3,435 children
nested within 148 primary schools. As a reminder, the goal of these
analyses was to assess the relationship between student SES, as
indexed by parental education (PED;), and student academic
achievement (ATTAIN;). PED;; was a four-group categorical pre-
dictor: Group 1 = neither parent has a high level of education;
Group 2 = mother is educated, father is not; Group 3 = father is
educated, mother is not; Group 4 = both parents are educated. As
described above, PED;; was coded in multiple ways (dummy codes,
contrast codes, effect codes) to demonstrate that our conclusions
about centering will apply to any categorical predictor regardless of
coding scheme. Coding schemes are displayed in Table 1. All anal-
yses were conducted in R, Version 3.6.2 (R Core Team, 2019) using
the Ime4 package (Bates et al., 2015). R code is provided in
Appendix F in online supplemental materials.

Analyses and Interpretations

We fit the UN Model, the CWC(M) Model, and the UN(M)
Model under each coding scheme; all parameter estimates are
reported in Table 2. Next, we detail how these estimates should be
interpreted. Due to space constraints, we present interpretations
for dummy codes and contrast codes, as these are particularly
common for multicategorical predictors (i.e., those with more than
two categories). Interpretations associated with unweighted effect
codes are in Appendix G in online supplemental materials; inter-
pretations for weighted effect codes are a very similar extension of
those for unweighted effect codes, and thus we do not address
them in detail here.

The UN Model

The UN Model yields parameter estimates that are uninterpretable.
Notice that for all three coding variables and all three coding
schemes, the single slope estimate in the UN Model lies between the
within-cluster slope and the between-cluster slope that are obtained
in the CWC(M) Model. For example, consider the first dummy code.
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Table 2

Parameter Estimates

UN Model

Coding scheme Yoo 1o Y30 Y30 oo 2 logL
Dummy 5.284(0.12)  0.638 (0.15)  0.880 (0.19)  0.865 (0.13) 1.118 8.080 —8,554.4
Contrast 5.879 (0.11)  0.598 (0.08)  0.070 (0.10)  0.121 (0.11) 1.118 8.080 —8,554.4
Effect 5.879 (0.11)  0.042 (0.11)  0.285(0.14)  0.269 (0.10) 1.118 8.080 —8,554.4

CWC(M) Model
Level 1 Level 2

Coding scheme Yoo Y10 Y20 Y30 You Yoo Yos T0o o2 logL
Dummy 3.991 (0.30)  0.605 (0.15)  0.801 (0.20)  0.799 (0.13) 2.419 (0.99) 6.240 (1.51)  4.071 (0.83) 0.864  8.092 —8,543.1
Contrast 7.174 (0.33)  0.551 (0.08)  0.064 (0.11)  0.098 (0.11) 3.183 (0.56) —0.172 (0.73) 1.911 (0.86) 0.864  8.092 —8,543.1
Effect 7.174(0.33)  0.053(0.11)  0.249 (0.15)  0.248 (0.10) —0.764 (0.80) 3.057 (1.13)  0.889 (0.69) 0.864 8.092 —8,543.1

UN(M) Model
Level 1 Level 2

Coding scheme Yoo Y10 Y20 Y30 You Yoo Y03 Too Gf logL
Dummy 3.991(0.30)  0.605 (0.15)  0.801 (0.20)  0.799 (0.13) 1.814 (1.01) 5439 (1.52)  3.272(0.84) 0.864  8.092  —8,543.1
Contrast 7.174 (0.33)  0.551 (0.08)  0.064 (0.11)  0.098 (0.11) 2.631 (0.57) —0.237 (0.74) 1.812 (0.87) 0.864  8.092 —8,543.1
Effect 7.174 (0.33)  0.053 (0.11)  0.249 (0.15)  0.248 (0.10) —0.817 (0.81) 2.808 (1.14)  0.641 (0.69) 0.864  8.092  —8,543.1

Note. See Table 1 for details on each coding scheme. Numbers in parentheses are standard errors.

* = estimates from the UN Model; ¢ = contextual effect.

In the UN Model, we obtain a conflated slope estimate, ¥}, = .638.
In the CWC(M) Model, we obtain its within-cluster slope estimate,
Y10 = 605, and its between-cluster slope estimate, ¥,, = 2.419. The
conflated slope in the UN Model lies between its within- and
between-cluster effect, but is equal to neither. The conflated estimate
is therefore meaningless and cannot be interpreted. In this case, the
UN Model results in an overestimation of the within-cluster effect,
but the reverse may also occur, depending on the magnitude of
within- and between-cluster effects (e.g., notice the estimates associ-
ated with the first effect code). Finally, estimates from the UN Model
are influenced by arbitrary, irrelevant design factors such as cluster
size and ICCy. Upon fitting the UN Model to a slightly different data
set, we would obtain different estimates.

In some situations, a conflated effect as estimated in the UN
Model may be nearly identical to either the level-specific “within”
or “between” effect. For example, notice the estimates associated
with the second contrast code. In the UN Model, the conflated esti-
mate is i’;o =.070, and in the CWC(M) Model, the within-cluster
estimate is ¥,, = .064. The similarity of these coefficients may
suggest that estimating a conflated slope is not problematic
because it is such a close approximation to the within-cluster
effect. However, even in these situations, estimates associated
with UN coding variables are still flawed. The model is misspeci-
fied at both levels, and even if conflated and unconflated estimates
are nearly identical, their interpretations differ.

In our literature review, we found that UN coding variables
were used most frequently by applied researchers. As this example
makes clear, UN coding variables used in isolation are not appro-
priate for use under any coding scheme, and their parameter esti-
mates are not substantively meaningful.

The CWC(M) Model

Dummy Codes. The within-cluster effect of a dummy code is
interpreted as the mean difference on y between Group f and the
reference group, within clusters, on average. As a reminder, our

reference group is children with no educated parents. dy;; is coded
1 for children whose mother is educated, and its within-cluster
slope is Vo = .605. Thus, within a given school, on average, chil-
dren with an educated mother score .605 points higher on aca-
demic achievement than children with no educated parents. The
within-cluster slope of the second dummy code, ¥,, = .801, shows
that within schools, on average, children with an educated father
score .801 points higher than children with no educated parents.
Finally, the third within-cluster slope, Y3, = .799, indicates that
children with two educated parents score .799 points higher than
children with no educated parents, within schools, on average.

These coefficients are particularly useful because they are
“pure” Level-1 slopes; they reflect mean differences between stu-
dents in the same school. Thus, any school-level factors that may
also influence achievement scores, such as funding, resources, or
teacher quality, are not confounding factors in these slopes, and
we can isolate key effects of interest.

Level-2 slopes correspond to the mean difference on y when
moving from a cluster composed entirely of the reference group to
a cluster composed entirely of Group f. Thus, the first between-
cluster slope, ¥, = 2.419, indicates that a school where all chil-
dren have an educated mother will have a mean academic achieve-
ment score that is 2.419 points higher than a school where all
children have no educated parents. Similarly, ¥,, shows that a
school where all children have an educated father will have a
mean achievement score that is 6.240 points higher than a school
where all children have no educated parents. Finally, ¥,; indicates
that a school where all children have two educated parents will
have a mean achievement score that is 4.071 points higher than a
school where all children have no educated parents.

These Level-2 slopes are school-level effects. Rather than address-
ing the effect of one’s own parents’ education, they shed light on the
effect of attending a school where many children have educated
parents. At both levels, we observe the greatest difference between
children with no educated parents and children with only an educated
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father. It appears that, at the individual level, the unique influence of
an educated father results in the greatest academic achievement gains
over children who have no educated parents. Additionally, at the
school level, children surrounded by peers whose fathers are edu-
cated have greater achievement scores on average.

Initial interpretations of Level-2 effects may seem strange. We
are required to compare homogeneous clusters (e.g., clusters con-
taining only the reference group, or only Group f). However, such
clusters are usually hypothetical, as heterogeneity within clusters
is typically expected. The fact that Level-2 interpretations revolve
around hypothetical clusters is not ideal. Instead, we may wish to
divide these coefficients by 10 to facilitate more useful interpreta-
tion.* Consider the between-cluster slope of the third dummy
code, which is 43 = 4.071. Instead of using the raw coefficient to
compare two hypothetical schools, we could instead say that as the
percentage of students with two educated parents increases by
10% (and the percentage of students with no educated parents
decreases by 10%), we expect the mean school achievement score
to increase by .4071 points.

Contrast Codes. Interpretations of each contrast code will
change depending on how the code was constructed. The contrasts
presented here are not an exhaustive set of all that could have been
created, but instead provide examples that readers may carry for-
ward to their own work. First, c¢1;; involves all four groups by com-
paring the mean of Group 1 (no parents educated) with Groups
2—4 (one or two parents educated). Its within-cluster slope is ¥, =
.551. We interpret this as the difference between the unweighted
mean of y across Groups 2, 3, and 4, and the mean of y in Group 1.
Thus, children with one or two educated parents are expected to
score .551 points higher than children with no educated parents,
within schools, on average.

Next, ¢p;; involves three groups in the contrast. Its within-cluster
slope, V9, is interpreted as the difference between the mean of y
in Group 4 and the unweighted mean of y across Groups 2 and 3,
within clusters, on average. Within a given school, the mean
achievement score among children with two educated parents will
be .064 points higher than the mean achievement score across stu-
dents with one educated parent. This slope suggests there is little
influence of having two educated parents versus just one. Taken
together with ¥, it appears that within schools, having any edu-
cated parent is the most influential for students’ academic achieve-
ment, and it matters less whether one or both of the student’s
parents are educated.

Finally, c3; involves just two groups in the contrast. Its within-
cluster slope, 75, is simply interpreted as the within-cluster differ-
ence between the mean of y in Group 3 and the mean of y in Group
2. Within schools, students with only an educated father will score
about .098 points higher than students with only an educated
mother, on average. This suggests that among children with one
educated parent, which parent is educated is minimally influential
over academic achievement.

The between-cluster slope of the first contrast code is ¥y, =
3.183. This reflects the difference on y as we go from clusters
composed entirely of Group 1 to the unweighted mean across clus-
ters composed entirely of Groups 2, 3, or 4. Thus, the mean
achievement score across schools where all children have one or
two educated parents is 3.183 points higher than the mean achieve-
ment score in schools where all children have no educated parents.

Attending a school where many students have any educated
parents yields notable gains in academic achievement.

The between-cluster slope of the second contrast code is Yo, =
—.172. This is the difference on y as we go from the unweighted
mean across clusters composed entirely of Groups 2 or 3 to clus-
ters composed entirely of Group 4. Thus, the mean achievement
score in schools where all children have two educated parents is
.172 points lower than the mean achievement score across schools
where all children have one educated parent. Attending a school
where many children have two educated parents does not yield
academic achievement gains over attending a school where many
children have just one educated parent. Taken together with ¥, it
appears that attending a school where children have any educated
parents leads to academic achievement gains, and whether fellow
students have one or two educated parents is not influential.

The between-cluster slope of the third contrast code is Vo3 =
1.911. This reflects the mean difference on y as we go from a clus-
ter composed entirely of Group 2 to a cluster composed entirely of
Group 3. Thus, as we go from a school where all children have an
educated mother to a school where all children have an educated
father, the mean academic achievement score increases by 1.911
points. This contrast points to a unique benefit of attending a
school where many children have educated fathers. The within-
school slope of this contrast code was near zero (.098). It appears
that, although having only an educated father does not yield aca-
demic gains over having only an educated mother for individual
students within schools, students across schools perform better
when more of their classmates have educated fathers rather than
educated mothers. Many educated fathers may be linked to
increased SES and financial resources of a school, and/or to
greater value placed on education in the broader community.

Interpreting Level-2 slopes involves comparing means of hypo-
thetical, homogeneous schools. Again, we divide these slopes by
10. The between-cluster slope of the first contrast code, Vo, =
3.183, shows that as the percentage of students with one or two
educated parents increases by 10% (and the percentage of students
with no educated parents decreases by 10%), mean school
achievement increases by .3183 points. The between-cluster slope
of the second contrast code, ¥4, = —.237, indicates that as the per-
centage of students with two educated parents increases by 10%
(and the percentage of students with one educated parent decreases
by 10%), mean school achievement decreases by .0237 points.
Finally, the between-cluster slope of the third contrast code, Y3 =
1.911, suggests that as the percentage of students with educated
fathers increases by 10% (and the percentage of students with edu-
cated mothers decreases by 10%), the mean school achievement
increases by .1911 points.

The UN(M) Model vs. the CWC(M) Model. As shown in
Table 2, the UN(M) Model and the CWC(M) Model yield precisely
the same estimates at Level 1. In both cases, these slopes reflect
“pure” within-cluster effects and are interpreted identically. Addi-
tionally, the two models are equivalent; each yields identical esti-
mates of variance components, as well as identical log-likelihood
values, thus yielding the same fit statistics. The sole difference
between these models pertains to Level-2 slopes, which are differ-
ent in both magnitude and interpretation. The UN(M) Model is a

4 We thank an anonymous reviewer for this useful suggestion.
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simple reparameterization of the CWC(M) Model, but importantly,
this is only true when random slopes are not included. When includ-
ing random slopes and/or interaction terms, the CWC(M) Model is
recommended over the UN(M) Model (Kreft et al., 1995).

At Level 2, the UN(M) Model yields contextual effects whereas
the CWC(M) Model yields between-cluster effects. For any pre-
dictor, the contextual effect is equal to the between effect minus
the within effect: B, = B, — B,,. In Table 2, this is evident for all
three coding schemes. For example, consider the first contrast
code. In the CWC(M) Model, its within slope is ¥, = .551 and its
between slope is Yo, = 3.183. In the UN(M) Model, its within
slope is again ¥, = .551, whereas its contextual effect is g, =
2.631. Indeed, 3.183 — .551 = 2.631, within rounding error. The
key difference between these coefficients is their interpretation.
The contextual effect is the Level-2 effect that is above and
beyond the within-cluster effect. This can also be thought of as the
Level-2 effect that remains after partialing out the overall effect of
the Level-1 predictor. Indeed, the statistical significance of the
contextual effect reveals whether the between-cluster effect is sig-
nificant over and above the within-cluster effect.

Why might the UN(M) Model be chosen over the CWC(M)
Model, and vice versa? This depends largely on the researcher’s
questions and goals. In our example, the between effect may be
most useful to the researcher who aims to inform theory about
macro-level influences of the school environment on academic
achievement. Between-cluster effects answer questions concerning
Level-2 effects in isolation, irrespective of any Level-1 effects that
may also be present.

In contrast, the contextual effect isolates the unique effect of
macro-level factors, ruling out any potential confounding or contra-
dictory effects that may be present at the micro-level. In our exam-
ple, the contextual effect of the second dummy code describes the
effect of attending a school where many children have educated
fathers, above and beyond the individual effect of having an edu-
cated father (vs. no educated parents). This coefficient can be inter-
preted as the expected difference in achievement scores between
two hypothetical students: both have an educated father, but one
attends a school where no children have educated fathers and the
other attends a school where all children have educated fathers. The
contextual effect answers: Beyond the individual-level effect, what
is the additional effect of attending a school where all students have
an educated father, compared with a school where no students do?
Even though the CWC(M) and UN(M) Models are equivalent,
some methodologists (e.g., Begg & Parides, 2003) argue that the
parameterization offered by the UN(M) Model is the desirable choice in
most situations because it allows the researcher to isolate unique
Level-2 effects. However, extra care must be taken in the interpre-
tation stage.

The UN(M) Model

Dummy Codes. The first dummy code has a contextual effect
of 75, = 1.814. Beyond the individual effect of having an educated
mother, there is an additional positive effect of attending a school
where many children have educated mothers. If we chose two hy-
pothetical students who both had an educated mother, but one
attended a school where all children had no educated parents and
the other attended a school where all children had educated moth-
ers, the latter child would score about 1.814 points higher on

achievement. An even stronger contextual effect is present for
educated fathers, g, = 5.439 points. The contextual effect of two
educated parents is ¥, = 3.272 points.

Again, it is undesirable that interpreting contextual effects
involves comparing students from hypothetical schools. Let us
again divide these coefficients by 10. Now, using the contextual
effect of the second dummy code, 7g,, as an example, we can say
that holding an individual’s parental education constant, as the
percentage of students with educated fathers increases by 10% in a
given school (and the percentage of students with no educated
parents decreases by 10%), we expect a student’s achievement
score to increase by about .54 points.

Contrast Codes. The contextual effect of the first contrast
code is 75, = 2.631. Beyond the individual-level effect of having
any educated parents, there is an additional effect of attending a
school where many children have any educated parents. Holding a
student’s parental education constant, we expect that attending
a school where all students have one or two educated parents will
lead to an academic achievement score that is 2.631 points higher,
compared with attending a school where all students have no edu-
cated parents. Next, the contextual effect of the second contrast
code is ¥g, = —.237. Holding a student’s parental education con-
stant, attending a school where all students have two educated
parents will result in an academic achievement score that is .237
points lower, compared with attending a school where all students
have just one educated parent. Finally, the contextual effect of the
third contrast code is ¥o; = 1.812. Holding a student’s parental
education constant, attending a school where all students have
only an educated father predicts an academic achievement score
that is 1.812 points higher, compared with attending a school
where all students have only an educated mother.

We can again divide these coefficients by 10. Beginning with
the first contextual effect ¥g,;, holding a student’s parental educa-
tion constant, as the percentage of students with one or two edu-
cated parents increases by 10% (and the percentage of students
with no educated parents decreases by 10%), academic achieve-
ment scores increase by .2631 points. Second, ¥, indicates that
holding a student’s parental education constant, as the percentage
of students with two educated parents increases by 10% (and the
percentage of students with just one educated parent decreases by
10%), academic achievement scores decrease by .237 points.
Finally, 9, shows that holding a student’s parental education con-
stant, as the percentage of students with only an educated father
increases by 10% (and the percentage of students with only an
educated mother decreases by 10%), academic achievement scores
increase by .1812 points. Note that these interpretations are nearly
identical to those obtained from the CWC(M) Model, with the
added caveat that we are holding the original predictor constant.
Because the UN(M) Model isolates the unique macro-level effects
of parental education on academic achievement, above and beyond
any individual effects, one may argue that the parameterization of
the UN(M) Model is preferable to that of the CWC(M) Model in
this example.

Special Considerations for Interpretation

The use of categorical predictors in MLM presents many inter-
pretational nuances that must be approached with care. To our
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knowledge, these nuances have not been previously addressed in
methodological work. First, we discuss cluster homogeneity. As
described above, a major interpretational oddity of categorical pre-
dictors involves Level-2 slopes; we are required to compare two
(often hypothetical) clusters, each of which is homogeneous. To
improve upon this interpretation, we suggest dividing the coeffi-
cient by 10, which permits one to interpret the coefficient in terms
of linear increase. However, the reader may wonder whether this
approach is sufficient for gaining a full understanding of macro-
level effects. In our example, suppose we are first interested in the
effects of a linear increase in the percentage of students with two
educated parents. However, suppose we also suspect that there is a
distinct qualitative effect of attending a school where all students
have two educated parents (or, vice versa, a school where all stu-
dents have no educated parents). In certain cases, we can explicitly
model this in MLM. In addition to interpreting our Level-2 slope
as described above, we may also create a Level-2 indicator of clus-
ter homogeneity with respect to parent education (e.g., we can
code this indicator 1 if the cluster is homogeneous, 0 otherwise,
assuming there is a sufficient number of homogeneous clusters).
Then, we can obtain the Level-2 effect of the cluster proportion as
usual, and also introduce this indicator as an additional Level-2
predictor of achievement, thus obtaining two separate effects. We
can then answer: Beyond the effect of increasing proportions of
educated parents in a school, is there a distinct qualitative effect of
attending a homogeneous school wherein all children have two
educated parents? MLM permits the investigation of such nuanced
questions with categorical predictors.

We next discuss the interpretation of intercepts, which may be nota-
bly different from intercept interpretation with continuous predictors.
In a model with Level-2 predictors (for example, the CWC(M)
Model), the intercept term ¥, must be interpreted as the expected
value of y in a cluster where all the Level-2 predictors are zero. Note
that this interpretation rests on the Level-2 (not Level-1) predictors
equaling zero, and depending on the coding scheme employed, this
will take on various meanings. For dummy codes, the intercept is the
expected value of y for a cluster that is composed entirely of the refer-
ence group. In some situations, this intercept interpretation may be
substantively meaningful (e.g., in our example, it may be useful to
describe the predicted achievement score in a school where all chil-
dren have no educated parents). For contrast and effect codes, interpre-
tation of the intercept is less straightforward. According to our
derivations, the intercept maps neatly onto a substantively useful quan-
tity only under particular data conditions (e.g., when ICCy = 1). In all
other conditions, the unweighted mean of all group means is equal to
the intercept term plus an “adjustment” term that may vary in com-
plexity from sample to sample. Thus, if the unweighted (or weighted)
grand mean is desired, we recommend relying on descriptive statistics
rather than attempting to interpret the intercept estimate.

General Discussion

Our goals in this tutorial article were to clarify why and how cate-
gorical predictors should be centered in multilevel models, to explain
how their corresponding coefficients should be interpreted, and to
demonstrate these conclusions with a real-world example. First, we
have shown that centering guidelines for continuous predictors do
indeed apply to categorical predictors. Perhaps most importantly, we
demonstrate that slope coefficients associated with uncentered coding

variables yield conflated, uninterpretable blends of within- and
between-cluster effects. Second, we have demonstrated via algebraic
derivations precisely how multilevel slope coefficients associated with
dummy codes, contrast codes, and effect codes should be interpreted
at both levels, and demonstrated these interpretations with an empiri-
cal example. Next, we address special considerations and issues that
applied researchers may face when including categorical predictors in
multilevel models. Throughout, we draw on core conclusions made in
previous sections and use the empirical example to demonstrate our
recommendations.

Working With Categorical Covariates

Our literature review showed that categorical predictors are of-
ten included in multilevel models as covariates (e.g., to explore
the effects of focal predictors after controlling for gender, race,
etc.). Here, we explain how our findings apply to categorical pre-
dictors whose sole function is that of a covariate. Regardless of
whether the focal predictor(s) are at Level 1, Level 2, or involve
cross-level interactions, the Level-1 categorical covariate should
be centered in such a way that isolates its relevant level-specific
effects. Further, the researcher should consider what is most sub-
stantively relevant to control for: within-cluster differences in the
categorical predictor (e.g., individual differences in race within
classrooms), across-cluster differences in the categorical predictor
(e.g., differences in racial makeup across classrooms), or both.

First, we consider the scenario where a Level-1 predictor is of
primary interest; the goal is to estimate the within-cluster effect of
the focal predictor, after controlling for a categorical covariate.
Here it is necessary to control for the within-cluster component of
the covariate, whether it be continuous or categorical. However,
UN (and by extension, CGM) coding variables capture a conflated
mix of within- and between-cluster effects. Thus, inclusion of a UN
or CGM coding variable as a covariate will not effectively isolate
and control for its within-cluster component. Therefore, we argue
that CWC is most appropriate for a categorical covariate in this
scenario.

Second, we consider the scenario where a Level-2 predictor is
of focal interest; the goal is to estimate the between-cluster effect
of the focal predictor while controlling for individual differences
in the Level-1 covariate. In the past, methodologists have recom-
mended using CGM—and, by extension, UN—covariates in this
scenario (Enders & Tofighi, 2007). However, Rights et al. (2019)
show that including a UN or CGM covariate is not sufficient to
control for it in this situation, and that it often yields a biased esti-
mate of the Level-2 effect of interest. Sole inclusion of the UN or
CGM covariate is a misspecification which lets unwanted bias
propagate throughout the model (Rights et al., 2019). The authors
then show that inclusion of the cluster mean of the covariate will
yield an unbiased estimate of the Level-2 effect of focal interest;
inclusion of the covariate at Level 1, whether CWC, CGM, or UN,
is not necessary. The algebraic support for this conclusion does
not require distinguishing between continuous and categorical pre-
dictors, so it immediately follows that the same guidelines apply
for categorical covariates.

In some applications, it may be necessary to control for a cova-
riate at multiple levels. Rights et al. (2019) show that inclusion of
a UN or CGM covariate does not successfully control for a covari-
ate across multiple levels. Ultimately, inclusion of the covariate
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without effectively partitioning its level-specific effects is a model
misspecification and is therefore inappropriate. If it is necessary to
control for a categorical covariate at multiple levels, we recom-
mend inclusion of CWC alongside cluster means of the covariate,
as in the CWC(M) Model.

Estimating and Interpreting Interactions

In practice, it may also be of interest to include a categorical
predictor in a cross-level or same-level interaction. We consider
scenarios where the within-cluster effect of a categorical Level-1
predictor is moderated by a Level-2 variable (i.e., cross-level inter-
action) or another Level-1 variable (i.e., same-level interaction), as
this has not been previously addressed. Inclusion of a Level-2 cat-
egorical moderator is a straightforward extension of single-level
regression and has been addressed elsewhere (e.g., Preacher et al.,
2006), so we do not address it here.

When including a Level-1 categorical predictor in a cross-level
interaction, centering the categorical predictor will again be appro-
priate. With interactions, it is important to obtain an unbiased esti-
mate of the within-cluster effect of the predictor, because this is
the effect that is hypothesized to be moderated. Just as is the case
for slopes, interaction effects involving UN predictors will be a
conflated mix of separate interactions occurring at the within- and
between-cluster levels (Cronbach & Webb, 1975; Preacher et al.,
2016). Thus, it is necessary to isolate the within-cluster effect of a
coding variable via CWC before introducing a cross-level interac-
tion, and this is also true for same-level interactions. For details,
see Enders and Tofighi (2007, pp. 132—134), keeping in mind that
their algebraic demonstrations do not require distinguishing
between continuous and categorical focal predictors.

Testing the Overall Significance of a Categorical
Predictor’s Effects

It is also possible to test the significance of the between-cluster,
within-cluster, and overall effects of a multicategorical predictor.
Because CWC coding variables are uncorrelated with their cluster
means, nested model comparisons using deviance tests can be
undertaken (for details, see Snijders & Bosker, 2012, Chapter 6).
For instance, the deviance test can assess the omnibus within-clus-
ter effect of the categorical predictor by comparing the null model
to the model with all CWC coding variables. Similarly, the omni-
bus between-cluster effect of the predictor can be assessed by
introducing cluster means of all coding variables and conducting a
deviance test. Finally, by the same procedure, we can test the om-
nibus significance of the predictor at both levels by adding within-
and between-cluster components simultaneously.

We conducted each of these deviance tests on our empirical data
example; R code is provided in Appendix F in online supplemental
materials. The omnibus test of within-cluster effects yields a %> sta-
tistic with 3 degrees of freedom (df), because compared to the null
model, we introduced three CWC coding variables. This test showed
that inclusion of the CWC coding variables significantly improved
model fit, 12(3) = 53.23, p < .001, indicating that, overall, parental
education status is significantly predictive of students’ academic
achievement within schools. Next, the omnibus test of between-clus-
ter effects also yielded a ¥ statistic with 3 df; compared to the null
model, we introduced three cluster means. This test indicated that,

overall, parental education status is also significantly predictive of
mean academic achievement outcomes across schools, 2(3) =
32.61, p < .001. Last, we conducted an omnibus test of the categori-
cal predictor at both levels; this test yielded a y? statistic with 6 df,
because the null model was compared to a model with three CWC
coding variables and three cluster means. Parental education was sig-
nificantly predictive of student academic achievement outcomes,
x%(6) = 85.76, p < .001, though with this test alone, we cannot con-
clude which effects were significant. Separate level-specific tests of
the coding variables are therefore more useful. Of note, these tests
yielded the same results regardless of coding scheme, reiterating that
precisely the same information is carried within any set of coding
variables.

However, deviance tests for fixed effects are valid only when
full information maximum likelihood (FIML) estimation is used.
FIML estimation is sometimes appropriate, such as when sample
size is large, but restricted maximum likelihood (REML) is the
preferred estimation method under many conditions, especially
when sample size is smaller. Indeed, REML is the default estima-
tion method in many popular software programs, including the
Ime4 package in R. Deviance tests for fixed effects are no longer
valid under REML estimation. Instead, we can use multivariate
Wald-style F-tests. These are available through the contest func-
tion in the /merTest package (Kuznetsova et al., 2017); example R
code is provided in Appendix F in online supplemental materials.
Here, we test the same hypotheses as above (omnibus significance
of all coding variable effects at Level 1, Level 2, and both levels),
but rather than obtaining a x2 statistic, we obtain an F statistic and
corresponding p-value. The same multivariate tests are available
in most software packages (e.g., CONTRAST in SAS MIXED;
TEST in STATA MIXED, and TEST in SPSS MIXED).

Finally, to obtain effect sizes associated with these omnibus
level-specific effects, various R? measures exist for quantifying
variance explained at Level 1, Level 2, or both levels (Rights &
Sterba, 2019)—these measures can be applied analogously to cate-
gorical predictors.

Latent Variables and MSEM

When working with categorical predictors in practice, one must
consider whether multilevel structural equation modeling (MSEM)
is appropriate based on the variable(s) under study. It is important
to acknowledge whether latent constructs should be considered
with respect to the Level-1 categorical variable itself. In this tuto-
rial article, for simplicity, we assumed that our categorical predic-
tor represents a variable that is fruly categorical in nature.
However, categorical predictors may not always take this form in
practice; in other situations, a categorical predictor may be better
conceptualized as an inaccurate, error-prone representation of a
latent continuous construct. In fact, our empirical example may be
better suited for this conceptualization. Although we used a four-
category indicator of parental education, underlying this indicator
is likely a continuous range of both mothers’ and fathers’ educa-
tion level. For example, a given student may have a mother who
was educated until age 14 and a father who was educated until age
16, whereas another student’s mother was educated until age 17
and father was educated until age 13. Many of these fine-grained
differences in parental education were likely washed out by our
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categorical indicator. Conceptualizing the categorical predictor as
a rough indicator of a truly continuous construct may lead to dif-
ferent results with respect to estimation bias, and different meth-
odological steps that should be taken in practice.

Indeed, Asparouhov and Muthén (2019) simulated multilevel
data with a binary predictor that was created to be a crude repre-
sentation of a latent continuous construct, and subsequently
observed biased Level-2 estimates. The authors concluded that in
such scenarios, it is necessary to use MSEM and group-mean-cen-
ter the binary predictor around its latent cluster mean rather than
its observed cluster mean. In summary, categorical predictors that
are error-prone representations of latent continuous constructs
(e.g., illness status, SES), and largely error-free categorical predic-
tors that represent a truly categorical construct (e.g., experimental
group, school grade year, blood type) may need to be treated dif-
ferently in practice.

Randomly Assigned Versus Naturally-Occurring
Categories

In addition to distinguishing whether the categorical variable
should be treated as manifest or latent, it is also useful to consider
whether the categorical predictor arises from random assignment
or naturally-occurring groups. This distinction may have implica-
tions for how the effects of the categorical predictor will be inter-
preted and generalized. When naturally-occurring categories are
under study (e.g., in our empirical example), the researcher will
likely not be able to manipulate within-cluster proportions of the
predictor; rather, the natural variation of group proportions across
clusters will bolster the representativeness of the sample, and in
turn, the generalizability of conclusions. In these situations, as
demonstrated above, the researcher is in a position to study the
effects of linear change of group proportions on the outcome vari-
able, as well as distinct qualitative effects of cluster homogeneity
versus heterogeneity.

In contrast, random assignment to experimental groups at Level
1 allows the researcher to intentionally manipulate group propor-
tions within and across clusters. Indeed, MLM approaches are
increasingly used to study social and psychological phenomena in
experimental contexts (e.g., Judd et al., 2012). In these situations,
we argue that there are two opposing approaches that present dif-
ferent benefits. First, consider a situation in which the Level-2
effect of group proportion is of substantive interest. For example,
in assigning students within classrooms to a reading intervention,
the researcher is interested in the individual-level effect of the
intervention as well as classroom-level effects: Does the propor-
tion of students who receive the intervention influence mean read-
ing outcomes? In this case, it is advantageous to manipulate
cluster proportions such that they are highly variable across clus-
ters (i.e., the proportion of students who receive the intervention is
very different from classroom to classroom). Thus, estimates of
Level-2 effects can be obtained with reasonable precision.

Second, when the Level-2 effect of group proportions is not of
substantive interest, the researcher may instead allocate subjects to
groups in order to achieve an optimal design. One class of optimal
design minimizes the standard error (SE) of the effect(s) of interest
(e.g., a within-cluster treatment effect), thereby maximizing the
precision of the estimate. In single-level settings with two experi-
mental groups, the SE of the treatment effect is minimized when

the proportion of subjects in each group is .5 (McClelland, 1997),
and this principle extends to multilevel designs (Moerbeek et al.,
2008). Thus, in this case, it is advantageous to manipulate cluster
proportions such that they are identical (i.e., minimally variable)
across clusters. When multiple experimental groups are involved
and there is no single contrast that is of greatest substantive inter-
est, more complex approaches are available to determine optimal
allocation into groups (Aufenanger, 2017). However, to our
knowledge, these approaches have been developed only for single-
level settings. In summary, in experimental contexts, the substan-
tive relevance of Level-2 cluster proportions should be considered
in the study design.

Categorical Predictors and Multilevel Model
Assumptions

In past work, some methodologists have posited that the inclu-
sion of binary predictors results in violations of many of MLM’s
fundamental assumptions. It is important to understand these model
assumptions, and how the properties of categorical variables are in
line them with. Indeed, we argue that the inclusion of centered cate-
gorical (including binary) predictors is warranted. First, Asparou-
hov and Muthén (2019) note that the variance of a CWC binary
predictor is not constant across clusters, as it is directly determined
by the value of the cluster mean; namely, its variance will be
p;(1 — p;) where p; is the proportion of Group 1 members in cluster
Jj. However, multilevel models do not invoke assumptions about the
variances of predictors, as assumptions pertain only to error varian-
ces (Davidian & Giltinan, 1995; Dedrick et al., 2009; Pinheiro &
Bates, 2000; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012).
Moreover, a predictor is considered fixed for a given observation at
Level-1 or Level-2, not random. Fixed predictors (considered case-
wise) do not vary. All this suggests that nonconstant variance of the
within parts of coding variables is inconsequential.

Second, Asparouhov and Muthén (2019) argue that the within-
and between-cluster components of a binary predictor are not inde-
pendent, in that the value of the cluster mean directly determines
the variance, range, and values that the CWC binary predictor can
take on. They further argue that this lack of independence under-
mines the idea of a between-cluster or contextual effect, and that
separate level-specific effects can never be estimated because of
this violation. However, MLM assumptions do not pertain to the in-
dependence of the within- and between-cluster parts of the predic-
tor, but rather to the independence of errors across levels (Dedrick
et al., 2009; Pinheiro & Bates, 2000; Raudenbush & Bryk, 2002).
This assumption is still supported when the predictor is categorical.
Additionally, whereas d; does determine the values of (d;j —d )
that can exist for cluster j, crucially, d j does not determine whether
a particular observation is equal to (0 — EJ) or (1 — EJ); that is
determined stochastically. Thus, we argue that this potential lack of
independence across levels is also inconsequential.

Third, Asparouhov and Muthén (2019) note that the assumption
of normality of the within- and between-cluster components of a
predictor is violated, because the distribution of a binary Level-1
variable may be skewed. Here, we note that distributional assump-
tions need not be applied to predictors in MLM, provided the pre-
dictors are on an interval scale (Hoffman, 2015; Snijders & Bosker,
2012). This suggests that no assumption violation is present.
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Finally, Asparouhov and Muthén (2019) argue that the most sig-
nificant problem posed by binary predictors is that they are, neces-
sarily, imperfect and error-filled representations of latent underlying
constructs that are continuous. However, as discussed previously,
this is not always true of a binary predictor, and especially of a mul-
ticategorical predictor. Indeed, such variables often do represent
constructs that are truly categorical in nature, either because they
are manipulated (e.g., experimental condition) or observed natural
categories (e.g., blood type). As noted above, we agree that addi-
tional methodological steps should be taken when there is substan-
tive reason to believe that the categorical predictor is a crude
representation of a latent continuous construct. However, such steps
are not always necessary.

Limitations and Future Directions

In terms of limitations of this report, first, we restricted our focus
to random intercept, fixed slope models, though in practice it is of-
ten of interest to include categorical predictors with random slopes.
A deeper exploration of the behavior of random slope models with
categorical predictors is warranted. Second, in our empirical exam-
ple we do not address the treatment of cluster means associated
with categorical predictors as latent variables (i.e., MSEM). Third,
our focus was restricted to continuous outcomes. Future work could
examine the issues discussed here in the context of outcome varia-
bles that are binary, count, ordinal, and so on. Finally, the use of
categorical predictors in scenarios with partial nesting, three-level
structures, or cross-classification remains unexplored. All of these
topics will be important directions for future work.

Central Takeaways

In this tutorial article, we have shown that the algebra and prin-
ciples underlying centering remain the same whether a predictor is
continuous or categorical. However, there are important differen-
ces between continuous and categorical predictors when it comes
to the interpretation of their effects. When including multicategori-
cal predictors in multilevel models, researchers must be intentional
throughout each stage of model specification and interpretation.

First, the coding scheme that best fits the researcher’s theory
and hypotheses should be used. In our empirical example, we
demonstrate the coefficients that can be obtained through use of
dummy, contrast, and unweighted effect codes, and how the inter-
pretations of those coefficients map onto various substantive ques-
tions, though there are even more potential coding schemes not
addressed here. Second, the model that isolates the most useful
level-specific effects should be chosen, such as the CWC(M)
Model for within- and between-cluster effects, or the UN(M)
Model for within-cluster and contextual effects. We provide con-
siderations and examples from which researchers may draw while
deciding on a model specification. Third, and perhaps most impor-
tantly, the resulting slope estimates must be interpreted such that
they match the chosen coding scheme and model specification. To
accomplish this, the algebraic support and empirical examples pro-
vided here may be carried forward to new contexts. Finally, other
important conceptual considerations may require attention (e.g.,
interpreting intercepts; whether the use of latent variable modeling
[MSEM] is warranted). Guidelines for approaching these consider-
ations are outlined throughout the tutorial.

Centering a coding variable may initially seem counterintuitive
because its new values are unfamiliar (e.g., no longer 0 and 1), and
could be seen as further compromising the interpretability of
results rather than enhancing it. Such criticisms have been raised
in regard to continuous predictors (e.g., Kelley et al., 2017; Plewis,
1989) but have been widely refuted (e.g., Kenny & La Voie, 1985;
Neuhaus & McCulloch, 2006). Here, we have demonstrated that
these conclusions carry over to categorical predictors. In practice,
the flawed interpretation of conflated estimates has likely led to
many spurious conclusions, and will continue to do so unless
appropriate treatment of categorical predictors is employed. We
seek to aid future researchers in more accurately estimating and
interpreting important effects in multilevel models across the fields
of psychology, education, and more.
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