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Glossary of Notation

Operators:

EJ. [] is the expectation over randomly sampled clusters.

E

T [] is the expectation over randomly sampled cases within cluster ;.

A[] is either the unweighted or weighted average (defined in appendices).

Variables:

Here, we use the focal descriptor to denote the coding variable that is the focus of the derivation.
We use non-focal to describe all other coding variables that may be present in the model but are
not responsible for isolating group f.

d ;; is a focal dummy code and d 1.; 18 its cluster mean.
d

¢ ;; is a focal contrast code and ¢/  is its cluster mean.

»i; 18 @ generic non-focal dummy code and d,, ; is its cluster mean.

Chii

; 1s a generic non-focal contrast code and ¢, ; is its cluster mean.

e ; is a focal effect code (unweighted or weighted) and e, is its cluster mean.

e,,;1s a generic non-focal effect code (unweighted or weighted) and e, s its cluster mean.

Error terms:

. iid.
u, ,;is the level-2 error term, where 4, ~ N(0,7,,)

. iid.
1; is the level-1 error term, where , ~ N(0,07)



Online Appendix A: Dummy Codes
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With dummy codes our focus is on group mean differences for each group 2 =1 ... (k— 1) relative to
reference group k, so we need expected values of group means for group & and a generic focal group
fwhen ICC of all dummy codes = 0 and when ICC of all dummy codes = 1.

First, when ICC of all dummy codes = 1, start with the focal group (group f):

j\ilj

k=1 k=1 _
E(.yij-)‘g:f‘mc:l €5700+hz_1:70hdh.j+hz_1:7h0(dhq'_dh.j) +E(.E.(u0j+rij))

0 0

k-1
=EE 700+270hdh.jjj
Jl ot
—700"'270;1 (U(dh.j))-'_j/ofE]'(ﬁ]'(df.j))
hif 0 1
=Yoo T 70f

Then move on to the reference group (group k):
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Therefore:
Yoo + 7o, 18 the model-implied mean of generic focal group f.

70018 the model-implied mean of reference group £.



Yo, 18 the model-implied mean difference between groups & and f.

This derivation did not require committing to balanced clusters or equal group sizes.

Second, when ICC of all dummy codes = 0, start with the focal group (group f):
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Then move on to the reference group (group k):
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Therefore:
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Yoo — tho P, +7 o 1s the model-implied expected within-group mean of generic focal group f.
h=1
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7 ro 1s the model-implied within-group mean difference between groups & and f.

This derivation did not require committing to balanced clusters or equal group sizes.



Online Appendix B: Contrast Codes
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With contrast codes our focus is on differences between the unweighted mean of the focal group(s)
and the unweighted mean of the base group(s). We need to derive these quantities when ICC of all
contrast codes = 0 and when ICC of all contrast codes = 1.

In the following, let fo denote a generic set of groups not involved in a comparison. Let fi and f>
denote the focal group(s) and reference group(s), respectively.

There are three types of contrast codes to consider. First is the contrast code of interest, which
compares the group(s) in fi to the group(s) in f; this code is denoted c;. Second are the other contrast
codes that take on non-zero values for the group(s) in fi and/or f>; these are denoted as ¢, where ¢, #
0. Third are the other contrast codes that take on zero values for the group(s) in fi and/or f>; these are
denoted as ¢, where ¢ = 0, and can be disregarded.

First, when ICC of all contrast codes = 1, start with all the groups involved in the contrast.
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Because ICC of all contrast codes = 1, the cluster mean for any contrast code will simply be equal to
the value of the contrast code. Thus, we can treat all instances of ¢, ;as ¢ ;.. Next, we plug in the

value of the contrast code for the group(s) in fi and f>.
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Where G.fi ,G 1, are the total number of groups involved in fi and /2, respectively.
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Yo, 1s the model-implied mean difference between focal groups(s) in fi and reference group(s) in f>.

This derivation did not require committing to balanced clusters or equal group sizes, and the contrast
can compare any number of groups.



Second, when ICC of all contrast codes = 0, start with all the groups involved in the contrast.
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Therefore:
The fi — f> mean difference is
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¥ o 1s the model-implied mean difference between focal groups(s) in fi and reference group(s) in f>.

This derivation did not require committing to balanced clusters or equal group sizes, and the contrast
can compare any number of groups.



Online Appendix C: Unweighted Effect Codes
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With unweighted effect codes our focus is on mean differences for each group2=1 ... (k— 1)
relative to the unweighted mean of all £ group means, so we need expected values of group means
for group =1 ... (k— 1) and for the unweighted mean of all group means. Note that the mean of
group k (the reference group) is never compared to anything in effect coding, so we do not need to
consider the case when g = k.

First, when ICC of all effect codes = 1, start with the focal (group f):
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Then, move on to the unweighted mean of the group means (here, AH is the unweighted mean operator):
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Therefore:
Yoo + 7o, 18 the model-implied mean of generic focal group f.

Yoo 18 the model-implied unweighted mean of the group means.

10

Yo 18 the model-implied difference between the mean of group f'and the unweighted mean of the

group means.

This derivation did not require committing to balanced clusters or equal group sizes.

Second, when ICC of all effect codes = 0, start with the focal group (group f):
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Then move on to the unweighted mean of the group means (here, A[] is the unweighted mean operator):
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Therefore:

k-1
Yoo+ ¥ r0— 27}.0 ( p,— pk) is the model-implied mean of generic focal group f.
h=1

k-1
Yoo — Z Yho ( p,— pk) is the model-implied unweighted mean of the group means.
h=1
¥ o 1s the model-implied difference between the mean of group fand the unweighted mean of the

group means.
This derivation did not require committing to balanced clusters or equal group sizes.
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Online Appendix D: Weighted Effect Codes
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With weighted effect codes our focus is on mean differences for each group 2= 1 ... (k— 1) relative
to the grand mean of all observations, which is also the weighted average of the group means. So,
we need expected values of group means for groups 2 =1 ... (k— 1) and for the grand mean of all
observations. Note that the mean of group & (reference group) is never compared to anything in
effect coding, so we do not need to consider the case when g = k.

First, when ICC of all effect codes = 1, start with the focal group (group f):
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Then, move on to the grand mean of all observations, which is also the weighted mean of the group
means (here, A[.]is the weighted mean operator):
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Therefore:
Yoo + 7oy 18 the model-implied mean of generic focal group f.

Voo 1s the model-implied grand mean (weighted mean of the group means).
Yo, 1s the model-implied difference between the mean of group fand the grand mean (weighted

mean of the group means).
This derivation did not require committing to balanced clusters or equal group sizes.

Second, when ICC of all effect codes = 0, start with the focal group (group f):
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Then move on to the unweighted mean of the group means (here, A[] is the weighted mean operator):
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=1 Py
¥ o 1s the model-implied difference between the mean of group fand the grand mean (weighted

mean of the group means).
This derivation did not require committing to balanced clusters or equal group sizes.
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Online Appendix E: Demonstrating the Relationship Between ICCx and Group Mean
Differences

Here, we specify hypothetical population-level within- and between-cluster effects of a three-

category predictor. These effects are held constant, and we choose five values of ICCy that range
between 0 and 1. Under each of the five conditions, we derive group mean differences on y. This
example was conducted with dummy codes, though our conclusions apply to any coding scheme.

To alter ICCy while maintaining simplicity in our demonstration, we assume that each dataset is
comprised of 300 clusters each of size 100. We split the dataset into thirds (100 clusters in each
third) and alter the composition of those 100 clusters such that cluster compositions deviate from
population compositions by a specified margin.

Suppose we have a three-group categorical predictor, expressed with two dummy codes, and that
in the population, 30% of individuals belong to the reference group, 30% of individuals belong
to group 1, and 40% of individuals belong to group 2. Also suppose that, at the population level,
the following parameters are true:

Yoo =20 Yo =2 V=0 Vo =-1 Yo="3

Condition 1: ICC,4; = ICCy2= 0. Each cluster composition is equal to the population
composition; all clusters have a 0.30/0.30/0.40 composition, meaning there are 30 members of
group zero, 30 members of group one, and 40 members of group two, in each cluster.
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g _J= _ J=l =l
Bt = N, 9000 N, 9000
300 _ 300 30 300 300 40
— - - = j 1
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N 9000 /7l N 9000

1 1

300 300 30
_ =
™" N 12000 =030 E(d,)],= N 12000

2 2

Sn )@, S ] »
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Plugging these values in to solve for E( yl.].) for each group, we obtain:
E(y;)|,0=20+(=1) [0.30]+(=3)[0.40]+2[0—-0.30]+6[0—0.40]
E(,)l,0=15.5
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E(3,) |,=20+(~1)[0.30]+(~3)[0.40] +2[1-0.30] + 6[0—0.40]
E(y)|y=175

E(y,)|,,=20+(~1)[0.30] +(-3)[0.40] +2[0-0.30] + 6[1 - 0.40]
E()’,,) |g2= 215

EG) |y —E(y)|,0=17.5-15.5=2
E(yy) |g2 _E(yy) |g0= 21.5-155=6

Note that group mean differences are exactly equal to the within-effects of the predictor.

Condition 2: ICCy4; = 0.022, ICCq42 = 0.018. Each cluster composition deviates up to +/- 0.1 from
the population composition. More specifically, cluster compositions are as follows: 100 clusters
have a 0.20/0.30/0.50 composition, 100 clusters have a 0.40/0.20/0.40 composition, and 100
clusters have a 0.30/0.40/0.30 composition. Even though all clusters do not have the same
composition, overall population proportions still work out to 0.30, 0.30, and 0.40.

f(zo)(f()(z)}%(m)(f&} > (30)(;‘0(:)] —0.289

E(d,))],,= o0
100 50 100 40 100 30
5 20){ 50 )+ 20 a0} 300 1)
7 _ Jj=l Jj=1 J=1 —
E(d,)|,= 5000 =0.389

%(30)(1300]+§(20)(120(:)]+§(40)(f“j =0.322

Ed,)],=* o0
100 50 100 40 100 30
) z(so)(m}z(zo)[ﬁ}z(m)(mj
E(d,)|,=+ 1 1 =0.389
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§(50)(130()j+§(40)[12(ﬁ)]+§(30)[140(:)) =0.292

-5 _ J=1 Jj=1 J=1
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100 50 100 40 100 30
50) = |+ ) (40) — |+ (30) =—
277 g2 12000 '

Plugging these values in to solve for E( yl.j) for each group, we obtain:
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E(3;)|40= 20+ (~1)[0.289]+(~3)[0.389]+2[0—0.289]+6[0—0.389]
E(3;)],0=15.632

E(y;)],=20+(=1)[0.322]+(-3)[0.389]+2[1-0.322]+6[0—0.389]
E(y,)|,=17.533

E(3;)|y,=20+(=1)[0.292]+(-3)[0.417]+2[0-0.292]+ 6[1-0.417 ]
E(y,)l,,=21.371

EW)) |y —E(;)|,0=17.533-15.632=1.901
E(y) |y —E(,;)|,0=21.371-15.632=5.74

Condition 3: ICC,4; =0.119, ICC42 = 0.103. Cluster proportions deviate up to +/- 0.20 from
overall population proportions. Specific cluster compositions are as follows: 100 clusters have a
0.10/0.30/0.60 composition, 100 clusters have a 0.50/0.10/0.40 composition, and 100 clusters

have a 0.30/0.50/0.20 composition.
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360 150 )+ 20 100 )+ 29) 50
E(d, )| =+ = / =0.356
i7e 9000
100 30 100 10 100 50
S (60 a0 )+ S000) s+ 20
E(d )| = J J =0.267
/e 12000

100 60 100 40 100 20
2_}(60)[m)+;(40)[m]+§(20)(1()0
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Plugging these values in to solve for E( yl.j) for each group, we obtain:
E(y;) |,0=20+(-1)[0.256]+(-3)[0.356]+2[0-0.256]+ 6[0 - 0.356]

E(y,)],,=16.028

E(3,)],=20+(~1)[0.389]+(~3)[0.356]+2[1-0.389]+6[0—0.356]

E(3,)],=17.629

E(y;)|,,=20+(-1)[0.267]+(-3)[0.467]+2[0-0.267]+6[1-0.467 |

E(y,)],,=20.996

EWy) |y —E(;)],0=17.629-16.028 =1.601
E) |y —E(Wy) 0= 20.996 ~16.028 = 4.968

Condition 4: ICCy; = 0.408, ICCq2 = 0.580. Cluster proportions deviate up to +/- 0.50 from
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overall population proportions. Specific cluster compositions are as follows: 100 clusters have a

0/0.70/0.30 composition, 100 clusters have a 0.80/0.20/0 composition, and 100 clusters have a

0.10/0/0.90 composition.

100 70 100 20 100 O
500500 i )+ S0 )

E(d,))| = 9000 =0.178
100 30 100 0 100 90

o Sl Sl Sen)

(@)1= 9000 7
100 70 100 20 100 O
500 )+ 209 i} 210

Ed)|,= 5000 : =0.589
100 30 100 0 100 90
00 209 5101 )

E(d,)|,= 9000 / 0.233
100 70 100 20 100 0

I 0 R )
EWd,)|,=" 5000 L 0.175
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) %30)(13000}f(o)(lg()}f(%)(l%%) s

J=1 J=1
9000

Plugging these values in to solve for £ (y,.j) for each group, we obtain:
E(y;)|g0= 20+ (-1)[0.178]+(-3)[0.1] +2[0-0.178]+ 6[0—0.1]
E(y;)|,=18.566

E(y,) ;=20 +(~1)[0.589]+(~3)[0.233] + 2[1-0.589]+ 6[0-0.233]
E(y,),=18.136

E(y;)|,,=20+(=1)[0.175]+(=3)[0.75]+2[0-0.175]+ 6[1-0.75]
E(y,)l,,=18.725

Ey) |y ~E(7;)],0=18.136-18.566 = ~0.43
EW;)| ~E(;)],0=18.725-18.566 = 0.159

Condition 5: ICCy; = ICCq2 = 1. All variability is at the between-cluster level, meaning that all
clusters are either composed entirely of reference group, entirely of group 1, or entirely of group
2. Specifically, there are 100 clusters with a 1.00/0/0 composition, 100 clusters with 0/1.00/0
composition, and 100 clusters with 0/0/1.00 composition.

f(loo)(1&)}%(0)@&?}%@)(&] »

E(J]/) |g0: J=1 J=1 J=1

10000
100 0 100 O 100 100
) 2(100)(100}2(0)(100]+2(0)(100j
E(d, )| =~ £ = -
i 10000
100 0 100 100 100 O
) z(o)(100]@(100)(1()0}2(0)(100]
E(dl ) | = J=1 J=1 J=1 =1
J7e 10000
100 0 100 O 100 100
) 2(0)[m)+2(100)[m)+2(0)(100]
E(dzj) |g1: J=1 Jj=1 Jj=1 — O

10000
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10000
100 O 100 100 100
510 130+ 200 )+ 2090 i
E(d,)],,= 0000 =1

Plugging these values in to solve for £ (y,.j) for each group, we obtain:
E(¥,) |30=20+(=D[0]+(=3)[0]+2[0-0]+6[0-0]

E(y;) ;1= 20+ (-D[1]+(-3)[0]+2[1-1]+6[0-0]
E(J’U) |gl: 19

E(y;)|,2=20+(=D[0]+(-3)[1]+2[0-0]+6[1-1]
E(yy) |g2:17

E(yll) |g1 _E(yy)|g0:19_20 =-1

E(yll) |g2 _E(ygj) |g0: 17-20=-3
Note that group mean differences are exactly equal to the between-effects of the predictor.

This exercise demonstrates that the expected value of y across groups is largely dependent upon
the expected values of cluster means across those groups; further, the expected values of cluster
means across groups differ as a function of the ICC of each coding variable. As ICC of the
coding variables increases, expected values of cluster means across groups diverge further from
their population values. Said differently, as more variability is introduced into the cluster
compositions, the expected value of a given cluster mean — having conditioned on a particular
group — will diverge further from its corresponding population proportion. As a consequence of
this, derived group mean differences move away from the true within-cluster effects and toward
the between-cluster effects.

Under more commonly-encountered data conditions wherein the ICC of a given coding variable
is neither 0 nor 1, expected mean differences on y across groups are driven partially by within-
effects and partially by between-effects. To the extent that ICC of the coding variable is low,
group mean differences are driven by within-effects. To the extent that ICC of the coding
variable is high, group mean differences are driven by between-effects. Thus, raw group mean
differences on y are equal to neither the within-cluster slope nor the between-cluster slope, and
are not of practical utility in multilevel contexts (when ICCx # 0 or 1). Note that in order for the
group mean difference to be equal to a slope coefficient, the ICC of only that particular contrast
must be 0 or 1, and ICC with respect to the other coding variables does not matter.
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The results of these derivations are akin to those presented by Raudenbush and colleagues (2002;
1995) regarding single-level OLS regression models fit to multilevel data. Here, the single-level

regression coefficient — denoted ﬂ, — corresponding to a predictor with a true within-cluster

effect [, and a true between-cluster effect 35, will be a mix of these two true effects that is
pulled toward one or the other as a function of ICCx:

B =1cc p,+(1-1CC,)B, (D.1)

Our results suggest that a similar pattern emerges in categorical predictor settings, such that
group mean differences, as estimated in a naive single-level setting, will vary as a function of
ICC of the relevant coding variable.

The overall group mean differences derived here, akin to ﬂ,, are different from the conflated
slope estimates, )710 and 77 50> observed in the UN Model. Whereas each group mean difference

ﬂt superficially resembles a regression coefficient that one would obtain from a single-level OLS
regression model, and varies as a function of ICCy, the UN multilevel model yields conflated

slope estimates 7;10 and 79 »o that vary as a function of ICCx as well as other extraneous

characteristics of the data, including cluster size, ICCy, and correlations among the dummy
codes. With this distinction in mind, we reiterate that conflated slope estimates hold no practical
or substantive meaning.
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Online Appendix F: R Code for Empirical Example

ibrary (dplyr)
ibrary (lme4)
ibrary (lmerTest)

data <- read.csv("xwdata 9var.csv", header = T)
data$PID <- as.factor (data$PID)

#
#
#
#
#
#
#
#
#
#
#

#
b
n
s
s
s

#
#
#
#

#

FHEHH AR R R R R

VRQ: A verbal reasoning score from tests pupils took when they entered secondary school
ATTAIN: Attainment score of pupils at age 16

PID: Primary school identifying code

SEXF: Pupil’s gender (0 = boy and 1 = girl)

SC: Pupil’s social class scale (continuous score from low to high social class)

SID: Secondary school identifying code

FED: Father’s education (0,1)

CHOICE: Choice of secondary school that they attend (l1=first choice, ... 4=fourth choice)
MED: Mother’s education (0,1)

FHEHEHH AR R R R

descriptives
y _school <- data %>% group by (data$PID)

_groups (by school)

ummary (group size (by school))
d(group_ size (by school))
ummary (data$SATTAIN)

constructing the categorical predictor
1 = mom no, dad no

2 = mom yes, dad no

3 = mom no, dad yes

4 - mom yes, dad yes

data$PED <- NA

data$PED <- ifelse(data$MED == 0 & data$FED == 0, 1,
ifelse(dataSMED == 1 & dataSFED == 0, 2,
ifelse(dataSMED == 0 & data$SFED == 1, 3,
ifelse(data$MED == 1 & data$FED == 1, 4, NA))))

table (data$PED) /3435

# constructing the dummy codes

datasdl <- data$d2 <- data$d3 <- NA

datasdl <- ifelse(data$PED==2, 1, 0)

datas$d2 <- ifelse(data$PED==3, 1, 0)

datas$d3 <- ifelse(data$PED==4, 1, 0)

# constructing the effect codes

datasel <- data$e2 <- data$e3 <- NA

datasel <- ifelse(data$PED==1, -1,
ifelse(data$PED==2, 1, 0))

datas$e2 <- ifelse(data$PED==1, -1,
ifelse(data$PED==3, 1, 0))

datas$e3 <- ifelse(data$PED==1, -1,
ifelse (data$SPED==4, 1, 0))

# constructing the contrast codes

datascl <- data$c2 <- data$c3 <- NA

datas$cl <- ifelse(data$PED==1, -1, 1/3)

data$c2 <- ifelse(data$PED==2 | data$PED==3, -1/2,

ifelse(data$PED==4, 1, 0))

datas$c3 <- ifelse(data$PED==2, -1,

#

ifelse (data$PED==3, 1, 0))

compute cluster means

datas$dl.mean <- ave (data$dl,dataS$PID)
datas$d2.mean <- ave (data$d2,dataS$PID)
data$d3.mean <- ave (data$d3,data$PID)

datasel.mean <- ave (data$el,dataS$PID)
data$e2.mean <- ave (data$e2,dataS$PID)



data$e3.

data$cl.
data$c2.
data$c3.

mea

mea
mea
mea

n <- ave (data$e3,data$PID)

n <- ave (data$cl,data$PID)
n <- ave (data$c2,data$PID)
n <- ave (data$c3,data$PID)

# compute CWC level-1 variables

datas$dl
datas$d2
datas$d3

datas$el
datas$e?2
datas$e3

datas$cl
datas$c2
data$c3.

ifidddddddadRaRARARARE RS
un.d <- Ilmer (ATTAIN ~ dl +
un.e <- lmer (ATTAIN ~ el +
un.c <- lmer (ATTAIN ~ cl +

.CwC
.CwC
.CwC

.CwC
.CwC
.CwC

.CwC
.CwC

cwcC

anova (un.d,

<- data$dl
<- data$d2
<- data$d3
<- data$el
<- data$e2
<- data$e3
<- data$cl
<- data$c2
<- data$c3

un.c, un.e)

datas$dl
datas$d2
datas$d3

datas$el
datas$e?2
datas$e3

datas$cl
datas$c2
datas$c3

#HEFFHFRFRE SRS ESE CUC (M)
cwcm.d <- lmer (ATTAIN ~ dl.cwc +
data=data)
cwcm.e <- lmer (ATTAIN ~ el.cwc +
data=data)
cwcm.c <- lmer (ATTAIN ~ cl.cwc +
data=data)
anova (cwcm.d, cwcm.c,

cwcm.e)

d2 + d3 +
e2 + e3 +
c2 + c3 +

.mean
.mean
.mean

.mean
.mean
.mean

.mean
.mean
.mean

(11PID),
(11PID),
(11PID),

UN MODEL #########4#4#4#4H4H4H4H4H4H4HHHHHHHHSHEHEHS
data=data)
data=data)
data=data)

MODEL ###########44##H#H 44 H#HHHEHHHHHHHSHHHHHS

d2.cwc + d3.cwc + dl.mean + d2.mean + d3.mean +

e2.cwc + e3.cwc + el.mean + e2.mean + e3.mean +

c2.cwc + c3.cwc + cl.mean + c2.mean + c3.mean +

#HHFHHFSF S ESF S ESE UN (M) MODEL
unm.d <- lmer (ATTAIN ~ dl + d2 + d3 +
unm.e <- lmer (ATTAIN ~ el + e2 + e3 +
unm.c <- lmer (ATTAIN ~ cl + c2 + c3 +
anova (unm.d, unm.c, unm.e)

FHEH A AR A A R A

dl.mean + d2.mean + d3.mean + (1|PID), data=data)
el.mean + e2.mean + e3.mean + (1|PID), data=data)
cl.mean + c2.mean + c3.mean + (1|PID), data=data)

#4444 4444444444 TESTING OVERALL EFFECTS OF THE PREDICTOR ############# 4444444

### deviance tests ###

# null model - no predictors

null.model <- lmer (ATTAIN ~

# level 1 CWC predictors only

cwc.d <- lmer (ATTAIN ~ dl.cwc
cwc.e <- lmer (ATTAIN ~ el.cwc
cwc.c <- lmer (ATTAIN ~ cl.cwc

# level 2 cluster means
m.d <- lmer (ATTAIN ~ dl
m.e <- lmer (ATTAIN ~ el
m.c <- lmer (ATTAIN ~ cl

anova (null
anova (null
anova (null

anova (null
anova (null
anova (null

anova (null
anova (null
anova (null

.model,
.model, m.d)
.model,

.model,
.model, m.e)
.model,

.model,
.model, m.c)
.model,

only

(1|PID),

+ d2.cwc
+ e2.cwc
+ c2.cwc

.mean + d2.mean
.mean + e2.mean
.mean + c2.mean

cwc.d)

cwecm.d)

cwc.e)

cwcm.e)

cwc.c)

cwcm. c)

+
+
+

ds.
e3.
c3.

ds.
e3.
c3.

data=data)

cwcC
cwcC
cwcC

mean
mean
mean

# joint significance of
# joint significance of level-2 fixed effects

+
+
+

(1|/PID), data=data)
(1|/PID), data=data)
(1|/PID), data=data)

+ (1|PID), data=data)
+ (1|PID), data=data)
+ (1|PID), data=data)

level-1 fixed effects

# joint significance of all fixed effects at both levels

# joint significance of level-1 fixed effects
# joint significance of level-2 fixed effects

# joint significance of all fixed effects at both levels

# joint significance of level-1 fixed effects
# joint significance of level-2 fixed effects

# joint significance of all fixed effects at both levels
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### multivariate Wald-style F-tests ###
## using package lmerTest

# 3df joint test of the three level 1 fixed effects
L.11 <- diag(length(fixef (cwcm.d))) [2:4, ]

contest (cwcm.d, L.11)

contest (cwcm.e, L.11)

contest (cwcm.c, L.11)

# 3df joint test of the three level 2 fixed effects
L.12 <- diag(length(fixef (cwcm.d))) [5:7, ]

contest (cwcm.d, L.12)

contest (cwcm.e, L.12)

contest (cwcm.c, L.12)

# 6df joint test for all fixed effects at both levels
L.all <- diag(length(fixef (cwcm.d))) [2:7, ]

contest (cwcm.d, L.all)

contest (cwcm.e, L.all)

contest (cwcm.c, L.all)
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Online Appendix G: Interpreting Unweighted Effect Codes in Empirical Example

With unweighted effect codes, slopes are interpreted as the difference between the mean of the
focal group fand the unweighted mean of all group means in the sample. Our derivations in
Appendix C indicate that this interpretation can be carried forward to multilevel settings in a
similar way. The within-cluster slope of an effect code is interpreted as the expected difference
between the within-cluster mean of group f'and the unweighted mean of all groups. Similarly, the
between-cluster slope can be interpreted as the difference between a cluster composed entirely of
group f'and the unweighted mean of all groups.

The CWC(M) Model
The within-cluster slope of the first effect code is y,, = 0.053. Within schools, on average,

we expect that children with an educated mother will have academic achievement scores that are
about 0.053 points greater than the unweighted mean. Next, the within-cluster slope of the
second effect code is y,, = 0.249, implying that within schools, children with an educated father

will have academic achievement scores that are about 0.249 points greater than the overall
unweighted mean. Finally, the within-cluster slope of the third effect code is y,, = 0.248,

indicating that we expect children with two educated parents to have academic achievement
scores that are about 0.248 points higher than the unweighted mean, within schools, on average.
Here, we see that relative to the unweighted mean, having only an educated father or having two
educated parents leads to similar gains in academic achievement among students.

The between-cluster slope of the first effect code is y,, =—0.764. This slope implies that

as we go from the unweighted mean of all groups to a school composed entirely of children with
an educated mother, we expect mean academic achievement score to decrease by about 0.764
points. Next, the between-cluster slope of the second effect code is y, = 3.057. As we go from

the unweighted mean of all groups to a school composed entirely of children with an educated
father, we expect the mean academic achievement score to increase by 3.057 points. Finally, the
between-cluster slope of the third effect code is y,, = 0.889. As we go from the unweighted mean

of all groups to a school composed entirely of children with two educated parents, the mean
academic achievement score is expected to increase by 0.889 points. These slopes indicate that
relative to the unweighted mean, attending a school in which many children have educated
fathers yields the greatest gains in academic achievement.

Note that the slopes associated with effect codes bear interpretations similar to those of
dummy codes, but instead of using the reference group (here, children with no educated parents)
as the comparison point, we instead use the unweighted mean of the group means from the entire
sample. Because children with no educated parents have been designated as the reference group
in our effect coding system, we do not obtain any estimates with respect to this group
specifically.

The UN(M) Model

The within-cluster slopes yielded by the UN(M) Model are identical to those yielded by
the CWC(M) Model and can be interpreted identically. At level 2, the contextual effects yielded
by the UN(M) Model can be interpreted as follows. First, the contextual effect associated with

the first effect code is ,, =—0.817. Holding an individual student’s parental education constant,
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we expect that as we move from the unweighted mean of all groups to a school where all
children have an educated mother, the mean academic achievement score will decrease by 0.817
points. Thus, holding constant the effect of having an educated mother at the individual level,
attending a school where many children have educated mothers predicts a reduction in academic
achievement relative to the unweighted sample mean. Next, the contextual effect of the second

effect code is 7, = 2.808. Holding an individual student’s parental education constant, we expect

academic achievement scores to increase by 2.808 points upon moving from the unweighted
mean to a school where all children have an educated father. Finally, the contextual effect of the

third effect code is 7, = 0.641. Holding an individual student’s parental education constant, upon

moving from the unweighted mean of all groups to a school where all children have two
educated parents, we expect academic achievement scores to increase by 0.641 points. Beyond
any effects that may be present at the individual level, it appears that attending a school where
many children have an educated father results in the greatest academic achievement gains
relative to the unweighted sample mean.



