
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
National Institutes of Health

Haley E. Yaremych & Kristopher J. Preacher

Department of Psychology & Human Development, Vanderbilt University

References

AnalyticsBackground
Centering & Conflation in Multilevel Models

• Uncentered (UN) level-1 predictors yield slope 
estimates that are conflated, uninterpretable mixes of 
within- and between-cluster effects.

• In contrast, inclusion of the cluster mean as a level-2 
predictor alongside the cluster-mean-centered 
(CWC) level-1 predictor is often advocated. This 
approach effectively separates the unique within-
and between-cluster effects of the predictor, yielding 
an unconflated model.

• Raudenbush & Bryk (2002)1 derived an equation to 
algebraically predict the conflated estimate that 
would arise from a single UN predictor: 

• The conflated estimate is a precision-weighted 
average of its within- and between-cluster effects. It 
is unknown whether this equation holds for multiple 
predictors, which typically covary at both levels. 

Multicollinearity in Multilevel Models
• Sparse prior work suggests multicollinearity causes 

similar problems in single- and multilevel settings 
(unstable point estimates, large SEs of fixed 
effects)2,3,4

• None of this work has addressed collinearity 
problems as they relate to centering choices. It is 
unknown whether different centering choices may 
exaggerate or mitigate the harmful effects of 
collinearity.  

Aims & Hypotheses

Hypothesis: In general, conflated estimates will be 
more susceptible to the harmful effects of collinearity 
than unconflated (i.e., level-specific) estimates. 
Specifically, conflated point estimates will change as 
the strength and direction (positive/negative) of 
predictor correlation changes at both levels. 

Conclusions

Relationships between centering choices and collinearity problems in multilevel models

Simulation Study

• Our goal was to analytically show whether and how covariance among level-1 predictors would impact conflated slope estimates. Because maximum likelihood (ML) estimates are algebraically intractable, 
we turned to the the generalized least squares (!"#$) estimator5. !"#$ is asymptotically equivalent to ML.  

• We derived the maximally general form of the !"#$ estimator, which allows for any number of predictors, and any number of clusters of potentially varying sizes:
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• Multilevel data sets (100 clusters, each of size 30, ICCY = .3; 1000 data sets per condition) with two level-1 predictors and a level-1 outcome were simulated. Correlation at level 1, %&'()*+, − )*.,, )0+, − )0.,), 
and level 2, %&'()*.,, )0.,), was varied while correlation at the other level was held at zero. 

• We then fit three models: (1) fully conflated, where both x1ij and x2ij were uncentered; (2) partially conflated, where x1ij was split into level-specific parts and x2ij was uncentered; (3) unconflated, where both 
x1ij and x2ij were split into level-specific parts. Point estimates and their SEs were recorded.

• Point estimates associated with x1ij are shown below. Its true within-cluster effect was 2 (upper red line), and its true between-cluster effect was –1 (lower red line). 

• Our derivation of the !"#$ estimator 
shows that each conflated slope estimate 
varies as a function of within- and 
between-cluster covariance among 
predictors.

• In contrast, unconflated point estimates 
are robust to inaccurate point estimates 
as a result of collinearity. 

• Interestingly, in the partially conflated 
model, level-specific point estimates still 
varied as a function of predictor 
covariance. 
Ø This suggests that inclusion of any 

uncentered predictors may result in 
bias that propagates throughout the 
model, the severity of which is a 
function of collinearity strength.

• The unconflated model still suffered from 
large SEs when collinearity at the relevant 
level was extremely strong, but did not 
suffer from biased point estimates under 
any condition.

Next Steps
• Expand the simulation study to examine 

how other data characteristics (e.g., 
cluster size, number of clusters, ICCX), 
interact with collinearity to exaggerate or 
mitigate its harmful effects. 

• Record the degree of mismatch between 
observed conflated estimates and those 
predicted by the Raudenbush & Bryk 
(2002) equation.

• Evaluate the utility of diagnostic measures 
(e.g., kappa coefficient, multilevel VIF) for 
identifying problematic levels of 
collinearity in multilevel models.2,3
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Aim: to determine whether different centering 
choices for level-1 predictors yield models that differ 
in susceptibility to the harmful effects of 
multicollinearity in MLM. 


