Relationships between centering choices and collinearity problems in multilevel models

Haley E. Yaremych & Kristopher J. Preacher

Department of Psychology & Human Development, Vanderbilt University

Background

Centering & Conflation in Multilevel Models

- Uncentered (UN) level-1 predictors yield slope estimates that are *conflated*, uninterpretable mixes of within- and between-cluster effects.
- In contrast, inclusion of the cluster mean as a level-2 predictor alongside the cluster-mean-centered (CWC) level-1 predictor is often advocated. This approach effectively separates the unique withinand between-cluster effects of the predictor, yielding an *unconflated* model
- Raudenbush & Bryk (2002)¹ derived an equation to algebraically predict the conflated estimate that would arise from a single UN predictor:

$$\hat{\gamma}_{10}^{*} = \frac{W_{1}\hat{\beta}_{b} + W_{2}\hat{\beta}_{w}}{W_{1} + W_{2}} \quad ; \quad W_{1} = \left[\operatorname{var}\left(\hat{\beta}_{b}\right)\right]^{-1} \quad ; \quad W_{2} = \left[\operatorname{var}\left(\hat{\beta}_{w}\right)\right]^{-1}$$

The conflated estimate is a precision-weighted average of its within- and between-cluster effects. It is unknown whether this equation holds for multiple predictors, which typically covary at both levels.

Multicollinearity in Multilevel Models

- Sparse prior work suggests multicollinearity causes similar problems in single- and multilevel settings (unstable point estimates, large SEs of fixed effects)^{2,3,4}
- None of this work has addressed collinearity problems as they relate to centering choices. It is unknown whether different centering choices may exaggerate or mitigate the harmful effects of collinearity.

Aims & Hypotheses

Aim: to determine whether different centering choices for level-1 predictors yield models that differ in susceptibility to the harmful effects of multicollinearity in MLM.

Hypothesis: In general, conflated estimates will be more susceptible to the harmful effects of collinearity than unconflated (i.e., level-specific) estimates. Specifically, conflated point estimates will change as the strength and direction (positive/negative) of predictor correlation changes at both levels.

Analytics

- Our goal was to analytically show whether and how covariance among level-1 predictors would impact conflated slope estimates. Because maximum likelihood (ML) estimates are algebraically intractable, we turned to the the generalized least squares (β_{GLS}) estimator⁵. β_{GLS} is asymptotically equivalent to ML.
- We derived the maximally general form of the β_{GLS} estimator, which allows for any number of predictors, and any number of clusters of potentially varying sizes:

Simulation Study

- Multilevel data sets (100 clusters, each of size 30, ICC_y = .3; 1000 data sets per condition) with two level-1 predictors and a level-1 outcome were simulated. Correlation at level 1 and level 2, $cor(x_{1,i}, x_{2,i})$, was varied while correlation at the other level was held at zero.
- We then fit three models: (1) fully conflated, where both x_{1ij} and x_{2ij} were uncentered; (2) partially conflated, where x_{1ij} was split into level-specific parts and x_{2ij} was uncentered; (3) unconflated, where both x_{1ii} and x_{2ii} were split into level-specific parts. Point estimates and their SEs were recorded.
- Point estimates associated with x_{1i} are shown below. Its true within-cluster effect was 2 (upper red line), and its true between-cluster effect was -1 (lower red line).

$$P_{GLS} = \left\{ \sum_{j=1}^{J} \left[\frac{\left(1 + \left(n_{j} - 1\right)\rho\right)^{-1} n_{j}}{\left(1 + \left(n_{j} - 1\right)\rho\right)^{-1} n_{j} \overline{\mathbf{x}}_{j}} \frac{\left(1 + \left(n_{j} - 1\right)\rho\right)^{-1} n_{j} \overline{\mathbf{x}}_{j}}{\left(1 + \left(n_{j} - 1\right)\rho\right)^{-1} n_{j} \overline{\mathbf{x}}_{j}} \frac{\overline{\mathbf{x}}_{j}}{\left(1 + \left(n_{j} - 1\right)\rho\right)^{-1} \left(\mathbf{x}_{j}' \mathbf{x}_{j} - n_{j} \overline{\mathbf{x}}_{j} \overline{\mathbf{x}}_{j}'\right)} \right] \right\}^{-1} \times \left\{ \sum_{j=1}^{J} \left(\left(1 + \left(n_{j} - 1\right)\rho\right)^{-1} \left[\mathbf{1}_{n_{j}} \mid \mathbf{1}_{n_{j}} \overline{\mathbf{x}}_{j}'\right]^{T} Y_{j} + \left(1 - \rho\right)^{-1} \left[\mathbf{0}_{n_{j}} \mid \mathbf{x}_{j} - \mathbf{1}_{n_{j}} \overline{\mathbf{x}}_{j}'\right]^{T} Y_{j} \right) \right\}$$

$$X_{j} = \text{mat}$$

$$n_{j} = \text{clust}$$

VANDERBILT UNIVERSITY

- ρ = intraclass correlation of y_{ii}
 - ctor of predictor means in cluster j
 - trix of predictor values in cluster j
 - ster size

,
$$cor(x_{1ij} - x_{1.j}, x_{2ij} - x_{2.j})$$
,

Conclusions

- Our derivation of the β_{GLS} estimator shows that each conflated slope estimate varies as a function of within- and between-cluster covariance among predictors.
- In contrast, unconflated point estimates are robust to inaccurate point estimates as a result of collinearity.
- Interestingly, in the partially conflated model, level-specific point estimates still varied as a function of predictor covariance.
- This suggests that inclusion of any uncentered predictors may result in bias that propagates throughout the model, the severity of which is a function of collinearity strength.
- The unconflated model still suffered from large SEs when collinearity at the relevant level was extremely strong, but did not suffer from biased point estimates under any condition.

Next Steps

- Expand the simulation study to examine how other data characteristics (e.g., cluster size, number of clusters, ICC_x), interact with collinearity to exaggerate or mitigate its harmful effects.
- Record the degree of mismatch between observed conflated estimates and those predicted by the Raudenbush & Bryk (2002) equation.
- Evaluate the utility of diagnostic measures (e.g., kappa coefficient, multilevel VIF) for identifying problematic levels of collinearity in multilevel models.^{2,3}

References

Raudenbush, S. W., & Brvk, A. S. (2002). Hierarchical linear models: Applications and data analysis 2. Yu, H., Jiang, S., & Land, K. C. (2015). Multicollinearity in hierarchical linear models. Social Science Research, 53, 118-136. 3. Clark, P. C., Jr. (2013). The effects of multicollinearity in multilevel models (Doctoral dissertation Vright State University

4. Shieh, Y. Y., & Fouladi, R. T. (2003). The effect of multicollinearity on multilevel modeling parameter stimates and standard errors. Educational and Psychological Measurement. 63(6), 951-985. 5. Scott, A. J., & Holt, D. (1982). The effect of two-stage sampling on ordinary least squares methods. *Journal of the American Statistical Association*, 77(380), 848-854.