
Compared to maximum likelihood estimation,    

Bayesian estimation led to successful 

convergence of a theoretically better-

motivated and more complex model.

INTRODUCTION
• Psychological studies often give rise to data that are 

clustered within three distinct units of nesting.
• This data structure requires fitting multilevel models 

with three-way cross-classification.
• Maximum likelihood estimation (MLE) struggles to 

fit these models; Bayesian estimation may be the 

better approach.

METHOD
• Used empirical data from a psycholinguistics study: 

three-way cross-classified with 3 key predictors.
• Identified the ”maximal” (most complex) cross-classified 

model that would converge with MLE.
• Then aimed to fit a more complex (and substantively 

better) model with Bayesian estimation.

DETAILS: PLANNED 
SIMULATION STUDY

Design Factors:
• Sample size for each level-2 unit
• Variance and intraclass correlation of y
• Magnitude of random effects 

Expected Findings:
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DETAILS: PRIOR CHOICES

RESULTS
• With Bayesian estimation, a more complex model 

successfully converged.

• But for some parameters, highly informative priors were 
needed to achieve convergence.

DISCUSSION
• Bayesian approaches allow the incorporation of priors, 

which can stabilize complex models. 
• Priors must be chosen carefully and communicated 

transparently, especially if sample size is small.
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Fig 1: Empirical data nesting structure

• For cross-classified models, weakly informative 
priors are recommended.

• The Student’s t distribution with 3 < df < 7 is the 
suggested prior for fixed effects when y is binary.

• To achieve convergence, a very informative prior 
was necessary for random effects across the third 
unit of nesting (stimuli), due to a very small sample 
size (N = 8) for this unit.

Fixed effects: 
• Intercept: Student’s t(df = 6, M = 0, SD = 10) 
• Slopes: Student’s t(df = 6, M = 0, SD = 2.5)

Random effects: 
• Random intercept and slope SDs across persons 

and items: half Cauchy(M = 0, SD = 25) 
• Random intercept and slope SDs across stimuli: 

half Cauchy(M = 0, SD = 1) 
• Correlation matrices for random effects: LKJ(2) 
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Components Included in Converged Models Using Empirical Data 

= in converged model with maximum likelihood estimation
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DETAILS: RESULTS
• Across items, random intercept variance was small.

o This led to convergence problems for MLE, but 
not Bayesian estimation. 

• Bayesian estimation may be especially 
advantageous when random effect variances are 
small and/or when level-2 sample size is small.


