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Abstract
Variability in treatment effects is common in intervention studies using cluster randomized controlled trial (C-RCT) designs.
Such variability is often examined in multilevel modeling (MLM) to understand how treatment effects (TRT) differ based
on the level of a covariate (COV), called TRT × COV. In detecting TRT × COV effects using MLM, relationships between
covariates and outcomes are assumed to vary across clusters linearly. However, this linearity assumption may not hold in all
applications and an incorrect assumption may lead to biased statistical inference about TRT × COV effects. In this study, we
present generalized additive mixed model (GAMM) specifications in which cluster-specific functional relationships between
covariates and outcomes can be modeled using by-variable smooth functions. In addition, the implementation for GAMM
specifications is explained using themgcv R package (Wood, 2021). The usefulness of the GAMM specifications is illustrated
using intervention data from a C-RCT. Results of simulation studies showed that parameters and by-variable smooth functions
were recoveredwell in variousmultilevel designs and themisspecification of the relationship between covariates and outcomes
led to biased estimates of TRT × COV effects. Furthermore, this study evaluated the extent to which the GAMM can be
treated as an alternative model to MLM in the presence of a linear relationship.

Keywords By-variable smooth function · Cluster randomized controlled trial · Functional covariate effects · Generalized
additive mixed model · Nonlinear effects · Variability in treatment effects

Introduction

Studymotivation: modeling variability in treatment
effects

In the last two decades, the number of interventions to
improve outcomes has increased. One popular study design
for such interventions is a cluster randomized controlled
trial (C-RCT). In C-RCT designs, clusters (e.g., schools,
hospitals) are randomized to either the control or treatment
group. As an example of the C-RCT design, D. Fuchs et
al. (2021) evaluated the efficacy of an intervention called
First-Grade Peer-Assisted Learning Strategies to improve
students’ scores of phonological awareness. In their study,
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teachers from 33 first-grade classrooms in eight elementary
schools and their 491 students participated and the 33 teach-
ers were assigned randomly to a control group or a treatment
group.Hypotheses related to treatment effects are the primary
target for inference, with the effectiveness of the intervention
being assessed by determining whether a program, policy, or
approach improves outcomes.

Researchers often report an average treatment effect
(ATE), the average effect of a given intervention on the
population of individuals or clusters. However, variability
in treatment effects is commonly observed in intervention
studies (Weiss et al., 2017). For example, Weiss et al. (2017)
provided empirical evidence of cross-site treatment effect
variation in 16 large multisite randomized trials. If variabil-
ity in treatment effects is large and unexplained, knowing
ATE will not tell us about how well an intervention works in
particular settings. Examining variability in treatment effects
is important to better understand when, how, why, and for
whom interventions do or do not work (e.g., Raudenbush &
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Liu, 2000; Spybrook et al., 2016). For instance, Lawrence
(2017) found that the effect of a vocabulary program was
stronger for students with low initial vocabulary skills, not
for all students in the study. Variability in treatment effects
can inform the use of interventions for individuals (e.g., stu-
dents) or clusters (e.g., schools, districts) by facilitating the
targeting of resources toward individuals or clusters that are
likely to benefit most from them.

Multilevel modeling (MLM) is a dominant analytic
method to evaluate programs and interventions in the C-RCT
design because the patterns of variability can be modeled
within and across different levels of analysis (e.g., students
in schools) due to the effects of covariates (e.g., variabil-
ity in effects of student-level pretest scores across schools).
In understanding variability in treatment effects, covariates
in MLM have an important role to explain variability in
treatment effects (e.g., Bloom & Spybrook, 2017; Tipton
& Hedges, 2017). Specifically, an ATE that is conditional
on preintervention factors (e.g., pretest scores, demographic
information) can be examined in MLM to understand that
treatment effects (TRT) differ based on the level of a covariate
(COV), hereafter called TRT × COV. In multilevel settings,
covariates may be measured at the individual level (level 1)
or at the cluster level (level 2). They may also be categorical
(e.g., student free lunch status) or continuous (e.g., student
self-efficacy). In this study, we focus on interactions between
continuous covariates measured at the individual level and
a categorical TRT at the cluster level in two-level C-RCT
designs.

Current issues

In detecting TRT × COV using MLM, linear relationships
are often assumed between covariates and outcomes (i.e., the
effects of covariates on outcomes are the same over the range
of each covariate), which can vary across clusters (e.g., Rau-
denbush & Liu, 2000). However, this assumption is rarely
tested in detecting treatment effects using MLM (Preacher
& Sterba, 2019). When there are unmodeled relationships
between covariates and outcomes, it is expected that the esti-
mates and standard errors of the treatment effects are biased
(e.g., Cho et al., 2022;Harrell, 2015). As a flexible alternative
approach, the generalized additive mixed model (GAMM;
Lin & Zhang, 1999) can be used; here, smooth functions can
be used for covariates that are not known to predict an out-
come in a linear or parametric way. The smooth functions for
a covariate in GAMM represent functional covariate effects,
which means that these covariate effects refer to the intrinsic
structure of the data rather than to their explicit form (Ram-
say & Silverman, 2005; p. 38). Cho et al. (2022) specified
GAMM (with an identity link) to model functional covariate
effects by levels of a TRT covariate using smooth functions,
which are assumed to be the sameacross clusters (e.g., classes

in which students are nested). Although Cho et al. (2022)
showed that the specified GAMM fits well to the empirical
data set in their study, it limits the applications of the spec-
ified GAMM to cases in which functional covariate effects
are the same or similar across clusters. It has not been shown
how to specify GAMM to detect functional covariate effects
which vary across clusters (hereafter, called cluster-specific
functional covariate effects) in C-RCT designs for unbiased
statistical inference on the TRT × COV effects.

Functional data analysis (FDA; Ramsay & Silverman,
2002, 2005) is closely related to GAMM for modeling func-
tional covariate effects (see examples for relations between
FDA and GAMM in Wood (2017), pp. 390-397). FDA and
its extensions to mixed-effects modeling (known as func-
tionalmixed-effectsmodeling,Guo (2002) have been applied
mainly to longitudinal or time-series data in which func-
tional covariates are time-related covariates. Examples in
Ramsay and Silverman (2002, 2005) are for FDA with func-
tional covariates such as age, years, days, and reaction time
intervals. As another example, Fine et al. (2019) presented
a functional mixed-effects model for longitudinal data to
model complex nonlinear trajectories using person(cluster)-
specific smooth functions. GAMM and functional mixed-
effects models are general modeling frameworks, and a
statistical package to estimate parameters of the models is
presented for the general model. Therefore, it may not be
straightforward to researchers how to apply the general mod-
els to detect level-specific (called the unconflated solution
[e.g., Preacher & Sterba, 2019]) TRT × COV effects in
cross-sectional data from C-RCT designs in the presence of
cluster-specific functional relationships between non-time-
related covariates and outcomes. In this study, GAMM was
chosen over FDA because the smooth functions to model
cluster-specific functional covariate effects of interest were
developed within a GAMM framework (Wood, 2017).

Study purposes

The first purpose of this study is to present GAMM spec-
ifications for detecting TRT × COV effects in C-RCT
designs, controlling for cluster-specific functional relation-
ships between continuous covariates and outcomes using a
by-variable smooth function. The by-variable smooth func-
tion estimates a smooth function of a continuous covariate
for each level of a categorical variable (i.e., control vs. treat-
ment groups and clusters in C-RCT designs). For parameter
estimation, we utilize the gam function in the mgcv pack-
age (Wood, 2021) in R (R Core Team, 2021) using penalized
iteratively re-weighted least squares (PIRLS; Wood, 2017).
Because themgcv packagewas developed for a general spec-
ification of GAMM, the specificity of implementation for
GAMM specifications in detecting TRT × COV effects in
C-RCT designs and the description of selected estimation
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methods are needed. Thus, the second purpose of the current
study is to present and evaluate the estimation method of the
specified GAMMs in usingmgcv package. In this study, use
of a smoother called the by-variable smoother in the mgcv
package is explained to represent a by-variable smooth func-
tion in GAMM specifications for C-RCT designs, which has
not been shown in the literature. The GAMM specifications
and their parameter estimation methods are illustrated using
an empirical data set from a C-RCT design. In addition, a
simulation study is presented to investigate (a) the accuracy
of GAMM parameter estimates and their standard errors
in various multilevel designs, (b) consequences of model-
ing linear relationships between covariates and outcomes
in the presence of cluster-specific functional relationships
between them, and (c) the recovery of GAMM parameters in
the presence of cluster-specific linear relationships between
covariates and outcomes.

The remainder of this paper is organized as follows. In
Section 2, we present the GAMM specifications, and provide
the estimation method and testing using the mgcv package.
In Section 3, the empirical illustration is shown. In Section 4,
the simulation studies are presented. In Section 5, a summary
and a discussion are provided.

Methods

In this section, GAMM is specified with a comparison to
MLM, and its parameter estimation method and testing in
the mgcv package are described.

Model specifications

In the model specifications below, a continuous level-1
covariate (xi j where i is an index for an individual and j
is an index for a cluster) is decomposed into a level-1 part
of (xi j − x. j ) and a level-2 part (x. j ) to model level-specific
interaction TRT × COV effects by centering xi j at its cluster
mean x. j . An inferential goal using the specified models is
to test the following hypothesis:
The level-2 part of xi j (COV; x. j ) moderates the effect of
level-2 variable z j (TRT) on the outcome variable yi j .

MLM specification with random effects

The followingMLM specification utilizes notation and sym-
bols from Raudenbush and Bryk (2002), and models linear
relationships between covariates and outcomes. MLM with
a random intercept β0 j and a random slope β1 j is written as
follows for a two-level nested design:

Level 1: yi j = β0 j + β1 j (xi j − x. j ) + ri j

Level 2: β0 j = γ00 + γ01x. j + γ02z j + γ03x. j z j + u0 j
and β1 j = γ10 + γ11z j + u1 j

Reduced Form:

yi j = γ00 + γ10(xi j − x. j ) + γ01x. j + γ02z j + γ03x. j z j

+γ11(xi j − x. j )z j + u0 j + (xi j − x. j )u1 j + ri j , (1)

where γ00 is a fixed intercept; γ10 is a fixed effect of the
level-1 component (xi j − x. j ) of COV xi j when z j = 0;
γ01 is a fixed effect of the level-2 component x. j of COV
xi j when z j = 0; γ02 is a fixed effect of the dummy coded
level-2 TRT z j (a conditional treatment effect when x. j = 0);
γ03 is a fixed linear interaction effect of the level-2 compo-
nent of COV (x. j ) and the dummy coded level-2 TRT z j ;
γ11 is a fixed linear interaction effect of the level-1 compo-
nent of COV (xi j − x. j ) and the dummy coded level-2 TRT
z j ; u0 j is a random intercept; u1 j is a random slope; and
ri j is random error. It is assumed that the random effects,
[u0 j , u1 j ]′, follow a multivariate normal (MV N ) distribu-
tion, [u0 j , u1 j ]′ ∼ MV N ([γ00, γ10]′, τ ), where random
intercept variance is indicated by τ00, random slope variance
is τ11, and their covariance is τ01 in τ . It is also assumed
that the random error, ri j , follows a normal (N ) distribution,
ri j ∼ N (0, σ 2), where random error variance is indicated by
σ 2.

In Equation 1, focal parameters are level-2 fixed effects
for TRT × COV in C-RCTs, γ02 + γ03x. j . In addition,
it is expected that the standard errors of fixed-effect esti-
mates γ̂02 and γ̂03 are underestimated when the random
effects [u0 j , u1 j ]′ are ignored as controlling parameters in
the presence of the linear relationship between covariates
and outcomes (see Longford, 1993, pp. 53–56 for techni-
cal details). This bias leads to overestimating the statistical
significance of the fixed effects. It is expected that the func-
tional relationships between covariates and outcomes can be
another source of bias for γ02+γ03x. j when there are cluster-
specific functions relating them.

GAMM specification with by-variable smooth functions

GAMM can be specified to model functional relationships
between covariates and outcomes as follows:

yi j = γ00 + γ02z j + f1(x. j )(z j = 0) + f1(x. j )(z j = 1)

+ f2(xi j − x. j )(z j = 0) + f2(xi j − x. j )(z j = 1)

+ f3(xi j − x. j )(Cluster j = j) + u0 j + ri j , (2)

where γ02 is the mean of all smooth functions when z j
(z j = 0 for a control group; z j = 1 for a treatment
group) is specified as a factor in R; f1(x. j )(z j = 0) is the
smooth function of a level-2 component x. j ofCOV xi j where
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z j = 0 (i.e., functional level-2 effect for a control group);
f1(x. j )(z j = 1) is the smooth function of a level-2 compo-
nent x. j of COV xi j where z j = 1 (i.e., functional level-2
effect for a treatment group); f2(xi j − x. j )(z j = 0) is the
smooth function of a level-1 component xi j − x. j of COV
xi j where z j = 0 (i.e., functional level-1 effect for a con-
trol group); f2(xi j − x. j )(z j = 1) is the smooth function
of a level-1 component xi j − x. j of COV xi j where z j = 1
(i.e., functional level-1 effect for a treatment group); and
f3(xi j − x. j )(Cluster j = j) is a cluster-specific by-variable
smooth function to model functional covariate effects over
(xi j − x. j ) for each cluster.1 Cho et al. (2022) did not con-
sider f3(xi j − x. j )(Cluster j = j) in detecting TRT × COV
effects. Here, the functional level-1 and level-2 effects mean
that the effects change at a different rate as a function of
changes in xi j − x. j and x. j , respectively.

In Equation 2, focal parameters are level-2 functional
effects for TRT × COV in C-RCTs, γ02 + { f1(x. j )(z j =
1)− f1(x. j )(z j = 0)}. The two by-variable smooth functions
of the level-1COV, f2(xi j−x. j )z j and f3(xi j−x. j )Cluster j ,
are controlling terms to describe the functional relationship
between (xi j − x. j ) and yi j for each cluster adequately so as
to have unbiased estimates for the focal parameters.

The difference among the three kinds of by-variable
smooth functions inEq. 2 is that f1(x. j )z j and f2(xi j−x. j )z j
have two levels of a factor (z j = 0 for a control group;
z j = 1 for a treatment group), while f2(xi j − x. j )Cluster j
hasmultiple levels of a factor. As a general form of f1(x. j )z j ,
f2(xi j − x. j )z j , and f3(xi j − x. j )Cluster j , a by-variable
smooth function ( fh(xh) f actor j , where h is an index for
a smooth function) creates a smooth function of a covari-
ate ( fh(xh)) for each factor level ( f actor j ) in GAMM. The
smooth function fh(xh) f actor j is specified as a weighted
sum of a set of basis functions over the covariate xh for each
factor level:

fh(xh) f actor j =
K

∑

k=1

δhk. j bhk. j (xh) f actor j , (3)

where j is an index for a factor level ( j = 1, . . . , J ), k is
an index for a basis function (k = 1, . . . , K ), δhk. j is a basis
coefficient for each factor level (each factor level for z j and
Cluster j in Eq. 2), and bhk. j (xh) is the kth basis function for
each factor level in a smooth function. Note that we use the
subscript j as an index for both cluster and factor because
factor in the current study is at the cluster level in C-RCTs.

1 We use a notation of a by-variable smooth function as f (x) f actor
following notations in GAMM (e.g., Wood, 2017, p. 326), which means
that a smooth function fh (where h is an index for a smooth function)
is conditional on a factor.

Comparisons between MLM and GAMM

Table 1 shows the comparable terms of MLM (Equation 1)
and GAMM (Equation 2). Because γ03 is a fixed linear inter-
action effect in the focal parameters ofMLM(γ02+γ03x. j ), it
is expected that the differences between a control group and
a treatment group (TRT effects) change at a constant rate
as a function of changes in x. j . In contrast, the differences
between the two groups (TRT effects) can change at different
rates as a function of changes in x. j in the focal parameter of
GAMM (γ02 + { f1(x. j )(z j = 1) − f1(x. j )(z j = 0)}) due to
smooth functions.

In addition, Fig. 1 illustrates differences between ran-
dom effects in MLM and by-variable smooth functions in
GAMM with 10 clusters as an example. As shown in Fig.
1(a), random effects inMLM (u0 j and u1 j in Equation 1) can
be specified to model linear relationships between covari-
ates and outcomes that vary across clusters. Figure 1(b) and
(c) present two different types of functional relationships
between covariates and outcomes across clusters, which can
be specified using a smooth function or a by-variable smooth
function in GAMM: a global smooth function as depicted
in Fig. 1(b) can be modeled, assuming that the functional
relationship is the same across clusters; and varying smooth
functions having different wiggliness across clusters can be
modeled as presented in Fig. 1(c). Cho et al. (2022) presented
GAMM specifications for the case depicted in Fig. 1(b). This
study presents the new case depicted in Fig. 1(c) in GAMM
in testing TRT × COV.

Estimation and testing

Estimation of by-variable smooth functions and random
effects

A thin plate regression spline (TPRS; Wood, 2017, 5.5.1)
is recommended for factor-smooth interactions as a default
in the mgcv package (Wood, 2021); thus, we used TPRS

Table 1 Comparability between MLM and GAMM Specifications

MLM (Eq. 1) GAMM (Eq. 2)

γ00 γ00

γ10(xi j − x. j ) f2(xi j − x. j )(z j = 0)

γ01x. j f1(x. j )(z j = 0)

γ02z j γ02z j

γ03x. j z j f1(x. j )(z j = 1)

γ11(xi j − x. j )z j f2(xi j − x. j )(z j = 1)

u0 j u0 j

(xi j − x. j )u1 j f3(xi j − x. j )(Cluster j = j)

ri j ri j
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Fig. 1 Random effects in MLM (a) vs. global smooth function (b) and
by-variable smooth functions in GAMM (c)

for all kinds of by-variable smooth functions in the current
study. TPRS estimates a smooth function fh(xh) for each
level of a factor by finding the predicted function f̃h(xh) that
minimizes

‖y − fh(xh)‖2 + λh J ( f ), (4)

where y is a vector of data, λh is a smoothing parameter
controlling the trade-off between goodness of fit and smooth-
ness of fh(xh), and J ( f ) is a penalty function measuring the
“wiggliness” of fh(xh). Having λh ≈ ∞ results in a straight
line estimate for fh(xh) (i.e., totally smooth), whereas having
λh = 0 leads to an un-penalized piecewise linear regression
estimate.

The number of basis functions (K ) for smooth functions
should be selected to obtain a good fit. Oversmoothing will
occur when K is too small, and computation time slows if
K is too large. Therefore, the value of the k-index should
be assessed in order to determine whether the selected K
is appropriate. The k-index is a measure of the remaining
pattern in the residuals (see Cho et al. [2022] for details). A
k-index below 1 indicates that there is a pattern remaining
in the residuals that has been missed due to the specified K
being too small, and a larger K should be considered. The k-
index can be obtained through the gam.check function in
mgcv. In addition, the correctedAkaike information criterion
(corrected AIC; Wood et al., 2016) is used to select a model
among candidate models differing in K .

The ‘wiggliness’ of a by-variable smooth function fh(xh)
f actor j is controlled by a quadratic smoothing penalty (e.g.,
Wood, 2017). The quadratic smoothing penalty for themodel
can be written as:

λh. jδ
T
h. jSh. jδh. j , (5)

where λh. j is a smoothing parameter, δh. j is a vector of basis
coefficients, and Sh. j is a penalty matrix embedded as a diag-
onal block in a matrix, for a by-variable smooth function
fh(xh) f actor j . The elements of Sh. j are known and are
determined by the chosen basis functions (for TPRS in this
study). The penalty matrix Sh. j can be extracted using the
smoothCon function in the mgcv package. The parameter
λh. j controls the trade-off between goodness of fit andmodel
smoothness.

Imposing the penalty for a smooth function (e.g., fh. j (xh)
f actor j ) is equivalent to having a prior on basis coefficients
δh. j using a multivariate normal (MV N ) distribution with
mean vector 0 and the variance matrix (λh. jSh. j )

−1 (Kimel-
dorf & Wahba, 1970; Silverman, 1985; Wahba, 1983):

δh. j ∼ MV N (0, (λh. jSh. j )
−1). (6)

The smoothing penalty is a measure of how much the basis
coefficients δh. j deviate from 0. This implies shrinkage
in ̂δh. j towards 0, as occurs in random effects in mixed-
effects models. A random effect is equivalent to a smooth
function with penalty matrix Ih called ridge penalty (i.e.,
Sh. j = Ih , where Ih is an identitymatrix) (Wood, 2017).Hav-
ing Sh. j = Ih means that there is a pure shrinkage penalty on
basis coefficients δ j (as random effects) which penalizes all
deviations from 0 regardless of any patterns in those devia-
tions. As a result, a random intercept (u0 j ) in Equation 2 can
be estimated as basis coefficients δh in GAMM:

δh = u0 j ∼ N (0, (λhIh)−1), (7)
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Here, one can see that the variance of the random effect is the
inverse of the smoothing parameter (λh). The gam.vcomp
function inmgcv converts smoothing parameter estimates to
the variance estimates of the random effects.

In Appendix S.1, we explain specifications of smoothers
for the by-variable smooth functions ( f1(x. j )z j , f2(xi j −
x. j )z j , and f3(xi j − x. j )Cluster j ) and the random intercept
(u0 j ) in Equation 2 in themgcv package. The gam function
was selected as a main GAMM fitting routine in the mgcv
package.

Parameter estimation

The specified GAMM in Equation 2 can be rewritten as fol-
lows for parameter estimation:

yi j = X
′
β + ri j , (8)

where X is a design matrix having all components of
the model and all the basis functions for the by-variable
smooth functions ( f1(x. j )z j , f2(xi j − x. j )z j , and f3(xi j −
x. j )Cluster j ), β is a set of parameters including the coeffi-
cients of fixed effects ([γ00, γ02]), a random effect (u0 j ; esti-
mated as basis coefficients with a random effect smoother),
and the basis coefficients (δ) (i.e., β = [γ00, γ02, u0 j , δ]′).
In the mgcv package, given smoothing parameters (λ) esti-
matedwithREMLand the variance (τ00) of the randomeffect
u0 j , the default option for estimating the parameters (β)
is PIRLS: optimizer=c("outer","newton"). The
standard errors of ̂β are obtained with the diagonal terms in
the square root of the estimated covariance matrix of X

′
β

(Wood, 2017, p. 341).

Testing

The following null hypothesis can be tested to determine
whether or not a smooth function fh(xh) of a covariate xh is
distinguishable from zero: H0 : fh(xh) f actor j = 0 for all
xh in the range of interest. A test statistic for fh(xh) f actor j
is:

Tr =̂fTh V
−
fh
̂fh, (9)

where r is the rounded effective degrees of freedom (ed f ;
the number of parameters to represent a smooth function)
of fh(xh), the ̂fh is the vector of fh(xh) evaluated at the
xh values, and V−

fh
is a rank r pseudo-inverse of V fh

(V fh = XhVδhXT
h , where Xh are basis functions and Vδh is

the covariance matrix of basis coefficient estimates) (Wood,
2017, pp. 305-306). Under H0, the test statistic Tr follows a
chi-square distribution (Tr ∼ χ2

r ) (Wood, 2013).

Empirical study

In this section, illustrations of a GAMM specification are
presented using an empirical data set from Baranov et al.
(2020a) to detect a categorical level-2 TRT × a continuous
level-1 COV in a C-RCT design. The empirical data set was
downloaded from Baranov et al. (2020b). The purpose of the
study in Baranov et al. (2020a) was to evaluate the effect of a
psychotherapy intervention (the Thinking Healthy Program)
on treating maternal depression in rural Pakistan. The inter-
vention was designed to reduce the incidence of depression
among prenatally depressed mothers, and follow-up surveys
were conducted at 6 and 12 months postpartum to evalu-
ate effectiveness of the intervention. The analytic goal is to
detect the treatment effect, which is done by comparing dif-
ferences between control and treatment groups in changes in
depression scores from pre- to post- treatment.

Participants andmeasures

The subset of the data set in Baranov et al. (2020a) we
analyzed included 818 women (individuals) nested within
40 communities (clusters). The trial was randomized across
40 communities: 20 clusters were randomly assigned to the
intervention arm, with the remaining 20 clusters assigned to
the control arm. There were 400 women in the control arm
and 418 in the intervention arm. Cluster size ranged from 26
to 35.

Among tests to measure maternal mental health in Bara-
nov et al. (2020a),HamiltonDepressionRating (HDR) scores
were chosen as a continuous measure of depression sever-
ity. Lower HDR scores indicate lower degrees of depression.
HDR scores were obtained at baseline, 6-month follow-up,
and 12-month follow-up. Baseline and 6-month follow-up
HDR were selected in this study for illustrative purposes.
There are no missing data in baseline and 6-month follow-
up. The mean HDR score was 14.575 (SD = 4.072) at the
baseline, and 6.534 (SD = 7.035) at the 6-month follow up.

Analyses and results

The R code for the empirical example is shown in Appendix
S.2.

Step 1: Fitting unconditional GAMM and exploratory
graphical analysis

To show dependency in 6-month follow-up HDR scores
(outcomes) due to communities (clusters), the unconditional
GAMM2 was fitted to the data to calculate an intraclass cor-

2 Because a parametric random intercept is considered in Equation 2,
the unconditional GAMM is the same as the unconditional MLM.
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relation coefficient (ICC). ICC was .164 (= 8.118/[8.118+
41.323] where τ̂00 = 8.118, σ̂ 2 = 41.323), which indi-
cates that there is non-ignorable dependency in the 6-month
follow-up HDR scores due to community clustering.

The starting analysis to consider the cluster-specific
functional covariate effects using the GAMM specification
(Equation 2) is to create scatter plots of the outcome (yi j ) vs.
a covariate of interest (xi j ) by cluster at level 1 and by control
vs. treatment groups (z j ) at level 2. For an unconflated solu-

tion, xi j was cluster-mean centered: xi j−x. j as a level-1COV
and x. j as a level-2 COV.A scatter plot can be used to observe
variability in the linear covariate effects (in the linear model)
vs. functional covariate effects (in the by-variable smooth
function) across clusters for the level-1 COV, and control vs.
treatment groups for the level-1 and level-2 COV, by adding
the predicted linear model and the predicted smooth function
by clusters and by groups. As shown in Fig. 2, the shapes of
linear or nonlinear relationships between cluster-mean cen-

Fig. 2 Empirical Study: Scatter plots of yi j vs. xi j − x. j by community (denoted by z j_community id). Note. The red curves indicate the fitted
smooth lines and the dotted blue lines indicate the fitted linear lines

123



Behavior Research Methods

tered baseline HDR (level-1 COV xi j − x. j ) and 6-month
follow-up HDR (yi j ) differ across communities (clusters).
Ignoring the variability in shapes across communities may
result in biased estimates of focal parameters, TRT × COV
in C-RCTs, γ02 + { f1(x. j )(z j = 1) − f1(x. j )(z j = 0)}. In
addition, it is apparent that there are functional relationships,
presented with smooth lines, deviating from the linear dot-
ted lines in most communities. For example, in the panel of
community id=25 (from a control group) in Fig. 2, there is
an increasing relationship predicted with a linear regression
model. However, based on the predicted smooth function
there is a decreasing relationship for baseline HDR scores
of 10 or less and an increasing relationship for the mid-
dle range of HDR scores. Figure 3 presents a scatter plot

Fig. 3 Empirical Study: Scatter plots of yi j vs. xi j − x. j by z j (top)
and yi j vs x. j by z j (bottom)

of 6-month follow-up HDR (yi j ) vs. cluster-mean centered
baseline HDR (level-1 COV xi j − x. j ) by groups (z j ) (top)
and a scatter plot of baseline HDR cluster means (level-2
COV x. j ) by groups (z j ) (bottom). These figures show that
the effects differ over the ranges of xi j − x. j and x. j (i.e.,
functional effects), although there are small differences in
the two predicted lines by the linear regression model and
smooth functions for each group. GAMM was fit in the next
step based on empirical evidence of variability in the shape
and wiggliness of smooth functions across clusters shown in
Fig. 2.

Step 2: Adding covariates (TRT and COV) to the
unconditional GAMM

A dummy-coded level-2 TRT (z j = 0 for a control group;
z j = 1 for a treatment group) and a cluster-centered
level-1 COV (baseline HDR xi j ; xi j − x. j and x. j ) were
selected as covariates in GAMM. Based on evidence in
Figs. 2 and 3, a by-variable smooth function of xi j − x. j

( f2(xi j − x. j )Cluster j ) was added to the unconditional
GAMM. Smooth functions of x. j and xi j − x. j by z j
( f1(x. j )z j and f1(xi j − x. j )z j ) were considered because the
differences between the two fitted lines appeared to be dif-
ferent depending on the levels of baseline HDR scores (that
is, functional covariate effects).

The GAMM (Equation 2) was fitted with different values
of K ranging from 3 to 12. Five basis functions (K = 5) were
chosen for all by-variable smooth functions in the model for
having a k-index close to 1 and the smallest correctedAIC.
These results indicate that K = 5 is adequate to obtain a good
fit. Figure 4 shows thepredictionbyGAMMfor each commu-
nity to present model-data fit by GAMM (thick line) and by
MLM (dotted line). In the figure, it is observed that data were
better predictedwithGAMMthanMLM, especially for com-
munity id=16, 18, 25, 26, 36, and 38. As controlling effects
for a focal parameter (TRT × COV), a smooth function of
level-1 COV for the control group ( f2(xi j − x. j )(z j = 0))
is statistically significant (see Table 2). In addition, smooth
functions for community id=2, 3, 6, 7, 10, 12, 14, 15, 17, 18,
24-27, 29, 31, 33, 35, 36, and 38 were distinguishable from
zero based on a chi-square test (see Table 2).

Step 3: Interpreting results

Table 2 shows the results of GAMM. A significant fixed
TRT effect was found (γ̂02 = −4.173, SE=0.717), indi-
cating that women in the treatment group of the Thinking
Healthy Program have 4.173 lower HDR scores on average
than women in the control group. The corresponding effect
size, Hedges’ g, is 0.702. A smooth function for a treat-
ment group ( f1(x. j )(z j = 1)) was statistically significant
(T1 = 4.615, p-value=.032). The effective degrees of free-
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Fig. 4 Empirical Study: Prediction by GAMM (thick line) and MLM (dotted line) for each community (denoted by z j_community id)

dom (ed f ) being 1 for the smooth function indicates that
there is a linear relationship. It is of interest to interpret the
level-2 TRT effect (z j ) on cluster means (y. j ) at any chosen
value of the level-2 part of COV (x. j ). Figure 5 (top) shows
the effect of z j on y. j by quantiles of x. j (0.1, 0.25, 0.5,
0.75, 0.9). Figure 5 (bottom) shows the level-2 TRT effects
(γ02+{ f1(x. j )(z j = 1)− f1(x. j )(z j = 0)}) across all levels
of x. j . The region of significance for the effect of cluster-level
HDR (x. j ) was [11.048, 16.803], shown in the vertical lines
of Fig. 5 (bottom). As shown in Fig. 5 (bottom), the level-

2 TRT effects decrease as cluster means of baseline HDR
increase. This result suggests that the Thinking Healthy Pro-
gram is more effective at the low-medium levels of baseline
HDR than at the higher levels of baseline HDR.

Comparisons between GAMM andMLM

For MLM, restricted maximum likelihood (REML) esti-
mation was implemented to obtain unbiased estimates of
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Table 2 Empirical study:
Results of GAMM and MLM

GAMM MLM
Fixed effects

EST SE EST SE
Intercept[γ00] 8.593 0.513 2.942 5.893
xi j − x. j [γ10] - 0.481 0.084
x. j [γ01] - 0.392 0.407
z j [γ02] -4.173 0.716 −8.534 7.752
x. j z j [γ03] - 0.295 0.531
(xi j − x. j )z j [γ11] - −0.197 0.115

Random effects
EST EST√

τ00 1.778 1.908√
τ11 - 0.0004

τ01 - 0.000
σ 6.124 6.256

Smooth functions

Ref .ed f Tr (p-value)

f1(x. j )(z j = 0) 1.000 1.460(0.227) -

f1(x. j )(z j = 1) 1.000 4.615(0.032) -

f2(xi j − x. j )(z j = 0) 1.000 7.780(0.005) -

f2(xi j − x. j )(z j = 1) 1.000 1.789(0.181) -

f3(xi j − x. j )(Cluster j = 1) 1.937 1.474(0.291) -

f3(xi j − x. j )(Cluster j = 2) 1.001 8.826(0.003) -

f3(xi j − x. j )(Cluster j = 3) 1.997 5.263(0.006) -

f3(xi j − x. j )(Cluster j = 4) 1.624 0.169(0.751) -

f3(xi j − x. j )(Cluster j = 5) 1.170 0.903(0.394) -

f3(xi j − x. j )(Cluster j = 6) 1.566 6.179(0.012) -

f3(xi j − x. j )(Cluster j = 7) 2.189 4.542(0.009) -

f3(xi j − x. j )(Cluster j = 8) 1.001 1.543(0.214) -

f3(xi j − x. j )(Cluster j = 9) 0.000 0.039(0.998) -

f3(xi j − x. j )(Cluster j = 10) 1.000 7.318(0.007) -

f3(xi j − x. j )(Cluster j = 11) 2.421 1.187(0.237) -

f3(xi j − x. j )(Cluster j = 12) 1.561 6.455(0.010) -

f3(xi j − x. j )(Cluster j = 13) 1.665 0.740(0.582) -

f3(xi j − x. j )(Cluster j = 14) 1.000 8.958(0.003) -

f3(xi j − x. j )(Cluster j = 15) 1.000 7.463(0.006) -

f3(xi j − x. j )(Cluster j = 16) 1.000 0.044(0.834) -

f3(xi j − x. j )(Cluster j = 17) 1.000 9.268(0.002) -

f3(xi j − x. j )(Cluster j = 18) 3.325 4.134(0.003) -

f3(xi j − x. j )(Cluster j = 19) 1.000 0.157(0.692) -

f3(xi j − x. j )(Cluster j = 20) 1.000 1.165(0.281) -

f3(xi j − x. j )(Cluster j = 21) 1.000 0.272(0.602) -

f3(xi j − x. j )(Cluster j = 22) 1.000 0.412(0.521) -

f3(xi j − x. j )(Cluster j = 23) 1.000 0.046(0.831) -

f3(xi j − x. j )(Cluster j = 24) 1.000 9.516(0.002) -

f3(xi j − x. j )(Cluster j = 25) 2.483 4.225(0.010) -

f3(xi j − x. j )(Cluster j = 26) 2.573 5.350(0.002) -

f3(xi j − x. j )(Cluster j = 27) 1.333 5.826(0.007) -

f3(xi j − x. j )(Cluster j = 28) 1.000 0.561(0.454) -

f3(xi j − x. j )(Cluster j = 29) 1.000 8.652(0.003) -

f3(xi j − x. j )(Cluster j = 30) 1.000 1.630(0.202) -
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Table 2 continued
f3(xi j − x. j )(Cluster j = 31) 1.795 5.495(0.014) -

f3(xi j − x. j )(Cluster j = 32) 1.000 1.438(0.231) -

f3(xi j − x. j )(Cluster j = 33) 1.001 10.222(0.001) -

f3(xi j − x. j )(Cluster j = 34) 1.000 0.377(0.540) -

f3(xi j − x. j )(Cluster j = 35) 1.526 6.870(0.008) -

f3(xi j − x. j )(Cluster j = 36) 1.486 3.967(0.021) -

f3(xi j − x. j )(Cluster j = 37) 1.000 0.132(0.716) -

f3(xi j − x. j )(Cluster j = 38) 2.488 5.930(0.002) -

f3(xi j − x. j )(Cluster j = 39) 1.000 1.606(0.205) -

f3(xi j − x. j )(Cluster j = 40) 1.000 0.854(0.356) -

Note - indicates a parameter or a smooth function which was not considered; Significance for fixed effects in
bold based on t-test at α = .05; Tr is a test statistic for a smooth function and Ref .ed f is a reference ed f
used in computing test statistic and the p-values

variance and covariance parameters using the gamm func-
tion in themgcv package, which calls thelme function in the
nlme package (Pinheiro et al., 2021). Table 2 presents results
of MLM in comparison with GAMM. As described earlier,
the level-2 TRT effects detected by MLM are γ02 + γ03x. j .
Unlike GAMM, the level-2 TRT effects were not significant
when detected with MLM. For the comparisons between
GAMM and MLM with respect to model-data fit, the root
mean squared error as a model-data fit index (RMSEI)3 was
calculated as a measure of differences between observed
data and model predicted values. The RMSEI can be under-
stood as the standard deviation of the part of the data that
remains unexplained by a model; therefore, a lower value of
RMSEI signals better model-data fit. The RMSEI was 5.815
for GAMMand 6.490 forMLM, which indicates that there is
improvement ofmodel-data fitwith by-variable smooth func-
tions as presented in Fig. 5. However, Akaike information
criterion (AIC; Akaike, 1974) for GAMM is 5386.947 and
AIC for MLM is 5383.156, which indicates that the model
fit can be similar when taking model complexity (the number
of parameters) into account.

Simulation study

A simulation study was designed to answer the following
three research questions: (a) are parameters and standard
errors of the GAMM specification recovered well in a C-
RCT design commonly found in intervention research?, (b)
what are the consequences of modeling linear relationships
between covariates and outcomes to detect TRT × COV
effects in the presence of cluster-specific functional relation-
ships?, and (c) can parameter recovery in GAMM be equally

3 We use the abbreviation RMSEI to distinguish it from the root mean
squared error of an estimator (RMSE) in the simulation study.

Fig. 5 Empirical Study: Probing the interaction between a level-2 TRT
and the level-2 part of COV for GAMM.Vertical lines in Fig. 5 (bottom)
indicate windows of significant differences
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as good as in MLM when there are varying linear relation-
ships between covariates and outcomes across clusters?

Simulation design

Three varying simulation conditions which affect accuracy
of parameter estimates in multilevel modeling were selected
(e.g., Geldhof et al., 2014): (a) the number of clusters (J ),
selected as 20, 40, and 80; (b) balanced cluster sizes (n j ),
selected as 15 and 30; and (c) ICC of outcomes, selected to
be at ICC = .05, .10, or .30. The levels of these simulation
conditions were chosen based on literature reviews on study
designs in RCTs, which are reported in Cho et al. (2022).

For Research Questions (a) and (b), the data-generating
model is the specified GAMM (Equation 2). Fixed param-
eters were generated as γ00 = 2.942 and γ02 = −8.534 as
found in the empirical study (see Table 2). Increasing non-
linear functions were generated using Equation 3 with K =
10−1 (1 is for an identification constraint; K = 10 should be
set in estimation) for ‘true’ smooth functions. The K = 10−1
was chosen in the simulation study as a default setting in
the mgcv package. Intervention studies are often designed
with the intention of improving outcomes at the lower end
of a covariate (e.g., improvement of learning for students
with low-achieving levels). To mimic this pattern in a C-
RCT design, for smooth functions at level 2 ( f1(x. j )z j ), data
were generated such that the lower end of the covariate cor-
responded with larger nonlinear treatment effects, whereas
smaller treatment effects were generated at the other ranges
of a covariate. This data structure simulates an intervention
that is more effective for individuals at lower levels of the
covariate. For smooth functions at level 1 ( f2(xi j − x. j )z j ),
small differences in the two smooth functions from control
and treatment groups were generated. For a cluster-specific
smooth function ( f3(xi j − x. j )Cluster j )), nine basis coeffi-
cients (for K = 10 − 1 with an identification constraint)
were generated from a uniform distribution to generate
cluster-specific functional effects. For illustrative purposes,
generated smooth functions were presented for one simula-
tion condition (J = 80, n j = 30, ICC = 0.30) in Appendix
S.3. For Research Question (c), the data-generating model is
the specified MLM (Equation 1). Estimates of fixed effects
in MLM for the empirical study (γ̂ reported in Table 2) were
considered to be true parameters.

For both GAMM and MLM as data-generating models,
ICC was varied by manipulating the ‘true’ variances of ran-
dom intercept and randomerrors. Specifically, given the error
variance σ 2 = 0.6, the three levels of τ00 were 0.032, 0.067,
and 0.257 which corresponded with ICC =.05, .10, and .30,
respectively. When MLM was the data-generating model,
the slope variance τ11 was set as 0.1 and the intercept-slope
covariance τ01 was set to be 0. The x. j and xi j − x. j were
drawn fromstandardnormal distributions. For all replications

within each simulation condition, the same COV (xi j − x. j

and x. j ) and generated by-variable smooth functionswere used,
whereas random effects were generated at each replication.

The simulation conditions regarding multilevel designs
were fully crossed, yielding 18 (= 3 number of clusters × 2
cluster sizes×3 ICCs) conditions. Five hundred replications
were simulated for each condition.To answerResearchQues-
tion (a), GAMM was fitted to the generated data sets under
GAMM as a data-generating model. To answer Research
Question (b),MLMwasfitted to the generated data sets under
GAMM as a data-generating model. For Research Question
(c), MLM and GAMM were fitted to the generated data sets
underMLM as a data-generatingmodel. Thus, the total num-
ber of fitted models is 36,000 (18 multilevel designs × 500
replications × 2 models [GAMM and MLM] for GAMM as
a data-generating model; and 18 multilevel designs × 500
replications × 2 models [GAMM and MLM] for MLM as a
data-generating model).

Evaluationmeasures and analysis

For the accuracy of estimates in the parametric part of
GAMM (γ̂00, γ̂02, τ̂00 and σ̂ 2) (Research Questions (a) and
(c)), the bias4 (calculated as

∑500
rep=1(γ̂02 − γ02)/500 where

rep is a replication number as an example) and the root mean

square error (RMSE;obtained as
√

∑500
rep=1(γ̂02 − γ02)2/500

as an example) were calculated. For the accuracy of standard
errors for the fixed effects (γ00 and γ02), the mean standard
error of the estimates (M(SE)) across 500 replications was
compared with the standard deviation of the estimates (SD)
across 500 replications. A ratio of M(SE) to SD is reported.
For the accuracy of fitted smooth functions in GAMM
( f̃1(x. j )z j , f̃2(xi j − x. j )z j , and f̃3(xi j − x. j )Cluster j ),
the root mean square difference (RMD) between predicted
smooth functions and true smooth functions was obtained at
level 1 and level 2. It was assumed that smooth functions
were specified with K = 10 because basis functions were
generated for K = 10. The same K = 10 was used in all
replications of each simulation condition. The RMD calcu-
lations at each level are presented in Table 3 (top).

To present the consequences of modeling random effects in
the presence of cluster-specific functional effects (Research
Question (b)) and to show the accuracy of estimates in the
presence of cluster-specific linear effects (Research Ques-
tion (c)), the bias and RMSE were obtained based on MLM
estimates (γ̂00, γ̂02, τ̂00, and σ̂ 2, which are comparable with
GAMM estimates) and the ratio of M(SE) to SD was calcu-

4 In this study,wedid not consider relative bias due to its scaling artifact.
When true parameters are close to 0 (e.g., τ00 =0.032, 0.067, and 0.257
and basis coefficients for smooth functions in the simulation study),
relative bias will be inflated by the true parameters close to 0 in the
denominator even for small differences from the true parameters.
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ũ
1
j
−

f 3
(x

ij
−

x .
j)

(C
lu
st
er

=
j)

G
A
M
M

L
ev
el
1

z
j

√

∑

J j=
1
∑

n
j j=
1
d
2 ij

.G
1
/
(
J
n
j)

w
he
re

d i
j.
G
1

=
{f̃ 2

(x
ij

−
x .

j)
(z

j
=

0)
−

γ
10

(x
ij

−
x .

j)
}+

{f̃ 2
(x

ij
−

x .
j)

(z
j
=

1)
−

γ
11

(x
ij

−
x .

j)
z
j}

L
ev
el
2

z
j

√

∑

J j=
1
d
j.
G
2
/
J

w
he
re

d
j.
G
2

=
{f̃ 1

(x
.j

)(
z
j
=

0)
−

γ
01
x .

j}
+

{f̃ 1
(x

.j
)(
z
j
=

1)
−

γ
03
x .

jz
j}

C
lu
st
er

√

∑

J j=
1
d
j.
G
3
/
J

w
he
re

d
j.
G
3

=
f̃ 3

(x
ij

−
x .

j)
(C

lu
st
er

=
j)

−
(x

ij
−

x .
j)
u
1
j

M
L
M

L
ev
el
1

z
j

√

∑

J j=
1
∑

n
j j=
1
d
2 ij

.M
1
/
(
J
n
j)

w
he
re

d i
j.
M
1

=
{γ̂ 1

0
(x

ij
−

x .
j)

−
γ
10

(x
ij

−
x .

j)
}+

{γ̂ 1
1
(x

ij
−

x .
j)
z
j
−

γ
11

(x
ij

−
x .

j)
z
j}

L
ev
el
2

z
j

√

∑

J j=
1
d
j.
M
2
/
J

w
he
re

d
j.
M
2

=
(γ̂

01
x .

j
−

γ
01
x .

j)
+

(γ̂
03
x .

jz
j
−

γ
03
x .

jz
j)

C
lu
st
er

√

∑

J j=
1
d
j.
M
3
/
J

w
he
re

d
j.
M
3

=
(x

ij
−

x .
j)
ũ
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lated with the fixed effects of MLM (γ̂00, γ̂02). In addition,
the RMD of the predicted values of the linear TRT × COV
effects and the random slope underMLMwas calculated (see
Table 3 [bottom] for theRMDcalculations at level 1 and level
2).

The GAMM estimates were obtained using the gam
function in the mgcv package, as described in the method
section. As in the empirical study, REML estimation was
implemented to obtain unbiased estimates of variance and
covariance parameters in MLM using the gamm function.

Simulation results

There were no convergence problems in any simulation con-
ditions forMLMandGAMM.Results indicated that K = 10
was adequate. For all smooth functions in all simulation
conditions, the k-index was close to 1. The model with
K = 10 was selected among models with differing K values
(K = 6, 8, 10, 12, 14) based on the correctedAIC. When
GAMM is a data-generating model, RMSEIs of GAMM
were smaller than those of MLM in all replications for all
conditions, which indicates that RMSEI can be used to eval-
uate model-data fit in the presence of functional covariate
effects.

Below, simulation results are summarized by research
question. Table 4 (for Research Questions (a) and (b)) and
Table 5 (Research Question (c)) show bias and RMSE of γ̂00,
γ̂02, τ̂00 and σ̂ 2, which are comparable parameter estimates
between MLM and GLMM; ratio for standard error evalua-
tion of γ̂00 and γ̂02; and RMD for predictions. In the tables,
the average results are presented by the levels of simulation
conditions to interpret results by main effects of the condi-
tions. Results of all simulation results (disaggregated results)
are presented in the figures of Appendix S.4.

Research question (a)

As presented under the GAMM columns in Table 4 (top),
the bias of γ̂00, γ̂02, τ̂00, and σ̂ 2 was close to 0 (ranging
from −0.072 to 0.068) across the 18 simulation conditions.
Except for RMSE of σ̂ 2, clear patterns regarding simulation
conditions arose, such that bias and RMSE of these estimates
decreased as the number of clusters (J ) and cluster size (n j )
increased. The ratio of M(SE) to SD for γ̂00 and γ̂02 ranged
from 0.993 to 1.029 across 18 simulation conditions, which
indicates that the estimated SE is approximately correct.

For the three kinds of by-variable smooth functions, the
mean RMD across 500 replications ranged from 0.002 to
0.365 across the 18 simulation conditions (presented in the
figures of Appendix S4.4), which suggests that the predicted
smooth functions are close to the true smooth functions.
As shown in Table 4 (bottom), the RMD for f1(x. j )z j and
f2(xi j − x. j )z j decreased with increasing number of clus-

ters (J ) and cluster size (n j ). Regarding levels of ICC , the
RMD decreased with decreasing ICC for f2(xi j − x. j )z j
while there was no clear pattern for f1(x. j )z j . For f3(xi j −
x. j )Cluster j , the RMD increased as the number of clusters
(J ) and cluster size (n j ) increased. This pattern may be due
to the fact that there are more observations for model-data
fit predicted by f3(xi j − x. j )Cluster j for each cluster with
increasing the number of clusters (J ) and cluster size (n j ).
In addition, the RMD decreased as ICC increased, indicat-
ing that observations can be predicted better by f3(xi j −
x. j )Cluster j when there is greater between-cluster variabil-
ity. To conclude, parameters of GAMMwere recovered well
and functional covariate effects were predicted well by the
by-variable smooth functions in the considered multilevel
designs.

Research question (b)

Except for the bias of γ̂00 in conditionswith a smaller number
of clusters (J ) and smaller cluster size (n j ) (J = 30 or J =
70 with n j = 15), a larger bias, RMSE, and ratio ofM(SE) to
SDwere found inMLM estimates than in GAMM estimates.
The following patterns were found inMLMas amisspecified
model, as shown in Table 4 (top). First, bias tended to be
smaller as the number of clusters (J ) and cluster size (n j )
decreased, except for τ̂00 regarding the number of clusters
(J ). Second, for γ̂00, γ̂02, and τ̂00 in MLM, RMSE decreased
as the number of clusters (J ) and cluster size (n j ) increased.
Third, the ratio of M(SE) to SD in MLM ranged from 1.027
to 2.120 for γ̂00 and from 1.170 to 2.038 for γ̂02 (presented
in the figures of Appendix S4.3). These results suggest that
standard errors of these fixed effects are overestimated. The
degree of overestimation increased as the number of clusters
(J ), cluster size (n j ), and ICC decreased.

For predictions, MLM had a larger RMD than GAMM
in all 18 simulation conditions, as shown in Table 4 (bot-
tom). For f1(x. j )z j and f3(xi j − x. j )Cluster j , the RMD
in MLM increased as the number of clusters (J ) and clus-
ter size (n j ) increased. However, the opposite pattern was
found in MLM for f2(xi j − x. j )z j . Furthermore, the RMD
for f1(x. j )z j decreased with increasing ICC , whereas the
RMD for f2(xi j − x. j )z j increased with increasing ICC .
To summarize, these results indicate that misspecifying the
functional form of level-specific TRT × COV and cluster-
specific covariate effects leads to biased estimates of MLM
parameters (including a focal parameter γ02) and standard
errors of fixed effects in MLM.

Research question (c)

The following patterns, presented in Table 5, were observed
when comparing the results for MLM and GAMM when
MLM was the data-generating model. First, overall, larger
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Table 4 Simulation Study:
Results for Fixed and Random
Effects (top) and RMD (bottom)
of GAMM (‘True’ Model) and
MLM (Misspecified Model)
under GAMM as a
Data-Generating Model

Parameters Conditions GAMM MLM
Bias RMSE Ratio Bias RMSE Ratio

Fixed effects

γ00 J = 20 −0.035 0.122 0.999 0.008 0.157 1.553

J = 40 −0.025 0.089 1.004 0.012 0.143 1.462

J = 80 −0.008 0.058 1.006 0.032 0.066 1.430

n j = 15 −0.028 0.091 1.003 0.007 0.151 1.644

n j = 30 −0.017 0.088 1.003 0.027 0.094 1.319

ICC = 0.05 −0.011 0.050 1.000 0.028 0.117 1.676

ICC = 0.1 −0.029 0.086 1.000 0.017 0.117 1.545

ICC = 0.3 −0.027 0.132 1.009 0.006 0.133 1.224

γ02 J = 20 −0.011 0.161 0.997 0.057 0.205 1.551

J = 40 −0.010 0.119 0.998 0.036 0.149 1.379

J = 800 −0.009 0.095 1.008 −0.055 0.107 1.297

n j = 15 −0.013 0.127 1.002 0.072 0.177 1.459

n j = 30 −0.007 0.124 1.001 −0.047 0.130 1.359

ICC = 0.05 0.010 0.104 1.004 −0.015 0.106 1.515

ICC = 0.1 −0.024 0.132 0.995 0.022 0.157 1.463

ICC = 0.3 −0.016 0.139 1.004 0.031 0.198 1.249

Random effects

τ00 J = 20 0.017 0.068 0.107 0.184

J = 40 0.002 0.033 0.106 0.123

J = 80 −0.001 0.028 0.102 0.113

n j = 15 0.009 0.047 0.104 0.146

n j = 30 0.003 0.039 0.107 0.134

ICC = 0.05 0.013 0.029 0.142 0.178

ICC = 0.1 0.008 0.027 0.088 0.122

ICC = 0.3 −0.003 0.073 0.085 0.120

σ 2 J = 20 0.043 0.067 0.190 0.218

J = 40 0.035 0.050 0.213 0.248

J = 80 0.027 0.049 0.235 0.261

n j = 15 0.040 0.054 0.204 0.233

n j = 30 0.030 0.056 0.222 0.252

ICC = 0.05 0.043 0.064 0.267 0.280

ICC = 0.1 0.029 0.051 0.188 0.224

ICC = 0.3 0.033 0.051 0.183 0.223

Predictions Conditions GAMM MLM

f1(x. j )z j J = 20 0.022 0.084

J = 40 0.021 0.116

J = 80 0.016 0.129

n j = 15 0.023 0.096

n j = 30 0.017 0.123

ICC = 0.05 0.021 0.122

ICC = 0.1 0.018 0.115

ICC = 0.3 0.020 0.093

f2(xi j − x. j )z j J = 30 0.028 0.109

J = 70 0.015 0.098
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Table 4 continued
Predictions Conditions GAMM MLM

J = 200 0.009 0.092

n j = 15 0.019 0.108

n j = 30 0.015 0.092

ICC = 0.05 0.011 0.073

ICC = 0.1 0.011 0.094

ICC = 0.3 0.030 0.132

f3(xi j − x. j )Cluster j J = 20 0.220 0.441

J = 40 0.256 0.483

J = 80 0.266 0.500

n j = 15 0.243 0.461

n j = 30 0.252 0.489

ICC = 0.05 0.290 0.488

ICC = 0.1 0.235 0.464

ICC = 0.3 0.217 0.472

Note. Ratio of M(SE) to SD was considered for fixed effects; J indicates the number of clusters; n j indicates
a cluster size; ICC indicates an intraclass correlation coefficient; for each smooth function, RMD indicates
the mean RMD across 500 replications

bias and RMSE of γ̂00 and γ̂02 were found in GAMM than
in MLM. This could be due to the fact that there were more
parameters to be estimated in GAMM than in MLM when
the other fixed effects (γ10, γ01, γ03, γ11) and the random
slope (u1 j ) in MLM were replaced with smooth functions in
GAMM (see Table 1). For example, for modeling variability
in slope, the variance of the random slope was estimated in
MLM,while the smoothing parameter and the 9 (K = 10−1)
basis coefficientswere estimated for each cluster. Second, the
ratios of estimated standard errors to the standard deviation
for γ̂00 and γ̂02 inMLMandGAMMwere close to 1 (ranging
from 0.982 to 1.109 in MLM and from 0.957 to 0.997 in
GAMM). Although these results suggest that the estimated
standard errors are reasonably accurate (less than 10.9% bias
in MLM and less than 4.3% bias in GAMM), there was a
tendency for standard errors to be overestimated in MLM
and underestimated in GAMM. Third, differences in bias
and RMSE for τ̂00 and σ̂ 2 were relatively small in MLM
and GAMM except the condition of J = 20 and ICC =
0.3 for bias: average differences in bias and RMSE between
MLM and GAMM across the 18 simulation conditions were
0.011 and −0.003 respectively for τ̂00, and were 0.001 and 0
respectively for σ̂ 2. Fourth,RMDfor (xi j−x. j )z j was similar
betweenMLMandGAMM(average difference across the 18
simulation conditions=−0.006). However, different patterns
in RMD for x. j z j and (xi j − x. j )u1 j were found in MLM
and GAMM. For x. j z j , a larger RMD was found in GAMM
than in MLM (average difference across the 18 simulation
conditions=−0.051). For (xi j − x. j )u1 j , a larger RMD was

found inMLM than in GAMM (average difference across 18
simulation conditions=0.239).

Regarding simulation conditions, comparable patterns in
results were found in MLM and GAMM except for a few
cases listed below. First, for all parameters and predictions,
bias and RMSE decreased for MLM and GAMM as the
number of clusters J and cluster sizes n j increased, with a
few exceptions.5 Second, for all parameters and predictions
overall, bias andRMSEdecreasedwith decreasing the ICCs,
except for bias for γ̂00, γ̂02, and σ̂ 2 in GAMM. Third, the
ratios for γ̂00 and γ̂02 were close to exactly 1, particularly as
the number of clusters J and cluster sizes n j increased for
MLM and GAMM, except for γ̂02 with respect to J .

To summarize, results fromMLMandGAMMare compa-
rable in the presence of varying linear relationships between
covariates and outcomes across clusters in most conditions,
except for bias and RMSE of γ̂00 and γ̂02 and RMD of x. j z j
and (xi j − x. j )u1 j . Overall, the accuracy of the fixed effects
(γ̂00 and γ̂02) and the prediction of x. j z j were better inMLM
than in GAMM. For (xi j − x. j )u1 j , the accuracy of predic-
tionswas better when it was predictedwith a smooth function
in GAMM than with a random slope in MLM.

5 Exceptional cases include bias of γ̂00 and γ̂02 with respect to n j and
σ̂ 2 with respect to J in MLM; and bias of γ̂00 with respect to J and n j ,
γ̂02 with respect to J , and σ̂ 2 with respect to n j in GAMM.
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Table 5 Simulation study:
Results for fixed and random
effects (top) and RMD (bottom)
of MLM (‘True’ Model) and
GAMM (Alternative Model)
under MLM as a
data-generating model

Parameters Conditions MLM GAMM
Bias RMSE Ratio Bias RMSE Ratio

Fixed effects

γ00 J = 20 0.003 0.106 1.109 0.001 0.139 0.957

J = 40 −0.002 0.085 1.015 −0.008 0.115 0.981

J = 80 0.000 0.061 0.995 −0.015 0.075 0.994

n j = 15 0.001 0.087 1.058 −0.001 0.118 0.958

n j = 30 0.000 0.081 1.022 −0.013 0.101 0.997

ICC = 0.05 −0.001 0.058 1.045 −0.053 0.084 0.984

ICC = 0.1 −0.002 0.065 1.052 0.000 0.102 0.963

ICC = 0.3 0.004 0.129 1.023 0.031 0.143 0.986

γ02 J = 20 −0.002 0.153 1.108 −0.001 0.181 0.960

J = 40 0.002 0.122 0.997 0.004 0.131 0.987

J = 80 0.001 0.086 0.982 −0.017 0.093 0.988

n j = 15 0.001 0.128 1.036 −0.010 0.142 0.969

n j = 30 0.000 0.113 1.022 0.001 0.128 0.988

ICC = 0.05 0.005 0.085 1.015 −0.032 0.101 0.979

ICC = 0.1 −0.003 0.098 1.047 0.007 0.118 0.972

ICC = 0.3 0.000 0.178 1.025 0.011 0.187 0.984

Random effects

τ00 J = 20 −0.001 0.059 −0.023 0.060

J = 40 0.000 0.035 −0.007 0.044

J = 80 0.005 0.029 0.002 0.029

n j = 15 0.005 0.042 −0.009 0.041

n j = 30 −0.003 0.041 −0.010 0.047

ICC = 0.05 0.008 0.021 0.003 0.020

ICC = 0.1 −0.008 0.028 −0.014 0.037

ICC = 0.3 0.004 0.074 −0.016 0.076

σ 2 J = 20 0.000 0.044 −0.002 0.044

J = 40 −0.001 0.032 −0.002 0.031

J = 80 0.001 0.022 0.000 0.022

n j = 15 0.000 0.038 −0.002 0.039

n j = 30 0.000 0.027 −0.001 0.026

ICC = 0.05 −0.001 0.033 −0.002 0.033

ICC = 0.1 −0.002 0.031 −0.002 0.032

ICC = 0.3 0.002 0.033 −0.001 0.033

Predictions Conditions MLM GAMM

x. j z j J = 20 0.128 0.186

J = 40 0.089 0.146

J = 80 0.062 0.100

n j = 15 0.101 0.152

n j = 30 0.085 0.136

ICC = 0.05 0.067 0.110

ICC = 0.1 0.076 0.141

ICC = 0.3 0.136 0.180

(xi j − x. j )z j J = 20 0.112 0.121

J = 40 0.080 0.086

J = 80 0.058 0.061

n j = 15 0.085 0.094
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Table 5 continued
Predictions Conditions MLM GAMM

n j = 30 0.081 0.085

ICC = 0.05 0.082 0.087

ICC = 0.1 0.085 0.090

ICC = 0.3 0.084 0.091

(xi j − x. j )u1 j J = 20 0.419 0.177

J = 40 0.403 0.164

J = 80 0.394 0.157

n j = 15 0.428 0.184

n j = 30 0.383 0.148

ICC = 0.05 0.402 0.164

ICC = 0.1 0.407 0.167

ICC = 0.3 0.407 0.167

Note. Ratio of M(SE) to SD was considered for fixed effects; J indicates the number of clusters; n j indicates
a cluster size; ICC indicates an intraclass correlation coefficient; for each term of predictions, RMD indicates
the mean RMD across 500 replications

Summary and discussion

Examining variability in treatment effects is important to
better understand for whom, and under what conditions,
interventions will be most effective (e.g., Spybrook et al.,
2016). The effect of TRT × COV can be detected to
understand such variability. This paper presented GAMM
specifications and their parameter estimation methods using
the freely available R package mgcv to obtain unbiased
estimates of TRT × COV when cluster-specific functional
covariate effects are observed graphically. In the presence of
cluster-specific functional covariate effects, we showed via
a simulation study (Research Question (a)) that parameters
of the GAMM specifications were recovered satisfactorily in
most multilevel designs from the C-RCT.

As illustrated in the empirical study, GAMM speci-
fications can be applied when cluster-specific functional
covariate effects are observed in the cluster-specific scatter
plots (e.g., Fig. 2), and then model-data fit can be compared
between GAMM and MLM using RMSEI. As shown in
our simulation study (for Research Question (b)), TRT ×
COV effects are biased in the presence of cluster-specific
functional covariate effects. Thus, we recommend conduct-
ing statistical inference on TRT × COV in GAMM rather
than in MLM when cluster-specific functional covariate
effects are observed in the cluster-specific scatter plots and
there is improvement in model-data fit by using by-variable
smooth functions in GAMM. By applying GAMM specifi-
cations, a primary benefit is to have better estimates of TRT
× COV effects when cluster-specific functional covariate
effects exist. As a supplementary benefit, as shown in the
empirical study, data can be better predicted with GAMM
than MLM (e.g., community id=16, 18, 25, 26, 36, and 38

in Fig. 4). These cluster-specific predictions can be infor-
mative when a researcher is interested in understanding the
effectiveness of intervention by clusters.

In addition, the simulation study (for Research Question
(c)) evaluatedwhether GAMMcan be an alternativemodel to
MLM in the presence of varying linear relationships between
covariates and outcomes across clusters. Results showed that
the relationships were better predicted with a by-variable
smooth function ( f3(xi j − x. j )Cluster j ) in GAMM than
with random effects ((xi j − x. j )u1 j ) in MLM, whereas the
fixed effects (γ̂00 and γ̂02) were more accurately estimated
in most conditions and x. j z j was more accurately predicted
under MLM than under GAMM. As illustrated in the empir-
ical study, statistical significance for the by-variable smooth
function can be tested in GAMM. However, one limitation
of estimating the relationships with the by-variable smooth
function in GAMM is that its covariance with a random inter-
cept (u0 j ) cannot be estimated as it can in MLM. When the
covariance is of interest, GAMM cannot be an alternative
model to MLM when the linear relationship is observed.
Nevertheless, as illustrated in the empirical study, GAMM
can be considered when cluster-specific functional covari-
ate effects are observed in the cluster-specific scatter plots
(e.g., Fig. 2). Thus, GAMMmay not be a good alternative to
MLM in practice when linear relationships are observed for
all clusters in the cluster-specific scatter plots.

When a functional covariate effect is modeled using by-
variable smooth functions by groups and clusters in the
presence of a functional relationship between covariates and
outcomes, the bias-variance trade-off can be of concern.
By-variable smooth functions have more parameters (basis
coefficients and penalty parameters) to be estimated than
a global smooth function. As described earlier, the bias-
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variance trade-off is controlled by the penalty matrix in
GAMM (i.e., larger penalties correspond to smaller variance,
whereas smaller penalties correspond to higher variance). In
addition, having by-variable smooth functions will increase
computational time as the number of clusters increases.6 In
this study, REML was used to estimate a variable-specific
penalty parameter in the mgcv package. To reduce overall
mean square errors and improve computational efficiency,
shrinkage estimators (i.e., pooling information on smooth-
ness between clusters) can be considered for the penalty
parameters to estimate cluster-specific smooth functions using
a hierarchical Bayes approach. Further research is needed to
investigate the relative performance of REML and hierarchi-
cal Bayes approaches for the by-variable smooth functions.

As the first attempt to model cluster-specific smooth func-
tions in detecting TRT × COV effects in C-RCT designs,
the GAMM specifications were illustrated and evaluated via
simulation studies for two-level nested designs. Further stud-
ies are needed to apply the GAMMwith by-variable smooth
functions to more complex multilevel designs than two-level
nested designs, such as higher-level designs and/or cross-
classified designs. In addition, simulation results presented
in this study are limited to the simulation conditions, spe-
cific parameters, and generated by-variable smooth functions
that we elected to include. To make generalizations, more
extensive simulation studies are required with varying sets
of parameters and by-variable smooth functions. As another
limitation of the current study, the model-data fit measured
with RMSEI was used when the GAMM was selected over
theMLM in the empirical study. Relying on RMSEI can lead
to selecting a model with overfitting. In the empirical study,
there were small differences in AIC between GAMM and
MLM. However, additional study is needed to evaluate com-
mon model selection methods accounting for the model-data
fit and model complexity (e.g., model information criteria)
in selecting a best-fitting model between GAMM andMLM.
Furthermore,when newly specifiedGAMMsare presented to
applied researchers, it is important to design a study to ensure
sufficient power (e.g., .80) for detecting ATEs and variability
in treatment effects. For example, in a C-RCT, it is important
to have a large number of clusters for inferences about the
ATE and to have a large number of clusters and large cluster
size for inferences about TRT × COV (Raudenbush & Liu,
2000). A future study is needed to present a power formula
for the model specifications in the current study.

Despite the extensivemodel specification work applicable
for C-RCT designs in methodological journals, specify-
ing and estimating cluster-specific functional relationships

6 For a single replication of GAMM estimation under GAMM as a
data-generating model in a simulation condition with J = 80, about an
hour was required on a laptop computer with a 2.8 GHz Intel Core i7
CPU and 16 GB of RAM.

between covariates and outcomes may not be straightfor-
ward to substantive researchers to obtain unbiased statistical
inference on TRT × COV when the cluster-specific func-
tional relationships are observed as shown in the empirical
study. The GAMM approach in the current study is likely to
be of increasing interest to researchers when variability in
treatment effects is explained using covariates.

Open science statement

The empirical data set is freely available from Baranov et al.
(2020b) and the R code is provided in the appendix.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13428-023-02138-
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