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A cluster randomized controlled trial (C-RCT) is common in educational intervention

studies. Multilevel modelling (MLM) is a dominant analytic method to evaluate treatment

effects in a C-RCT. In most MLM applications intended to detect an interaction effect, a

single interaction effect (called a conflated effect) is considered instead of level-specific

interaction effects in a multilevel design (called unconflated multilevel interaction effects),

and the linear interaction effect is modelled. In this paper we present a generalized

additive mixed model (GAMM) that allows an unconflated multilevel interaction to be

estimated without assuming a prespecified form of the interaction. R code is provided to

estimate the model parameters using maximum likelihood estimation and to visualize the

nonlinear treatment-by-covariate interaction. The usefulness of the model is illustrated

using instructional intervention data from a C-RCT. Results of simulation studies showed

that the GAMMoutperformed an alternative approach to recover an unconflated logistic

multilevel interaction. In addition, the parameter recovery of the GAMM was relatively

satisfactory in multilevel designs found in educational intervention studies, except when

the number of clusters, cluster sizes, and intraclass correlations were small. When

modelling a linear multilevel treatment-by-covariate interaction in the presence of a

nonlinear effect, biased estimates (such as overestimated standard errors and

overestimated random effect variances) and incorrect predictions of the unconflated

multilevel interaction were found.

1. Introduction

1.1. Study motivation

Intervention studies in education (e.g., concerning curriculum, policy, or instructional

programmes) have become more common over the past two decades. The evaluation

setting is often a randomized controlled trial (RCT). One popular RCT design in education

research is the cluster RCT (C-RCT) with control and treatment groups. In the C-RCT

design, clusters (e.g., schools) are randomized to the control or treatment group, and the

inferential goal is to test hypotheses related to treatment effects.
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The effectiveness of the intervention measures whether a programme, policy, or

approach improves outcomes. In education, outcomes are commonly continuous

variables (e.g., continuous scale scores of students’ achievement). Multilevel modelling

(MLM) is a dominant analytic method because it allows researchers to model complex
patterns of variability within and across different levels of analysis (e.g., students in

schools) to evaluate whether outcomes are improved due to the effects of covariates.

Education researchers often report an average treatment effect (ATE), sometimes

conditional on a pre-intervention covariate as a moderator (MOD; e.g., pretest scores,

demographic information) (hereafter denoted TRT × MOD, indicating that treatment

effects (TRT) differ based on the values of MOD). MODs have an important role in

understanding variability in treatment effects, and they are commonly used as covariates

in MLM to explain variability in treatment effects. In multilevel settings commonly found
in education, MODs can be assessed either at the individual level or at the cluster level. In

addition, MODs can be categorical (e.g., grade levels, school types) or continuous (e.g.,

student pretest scores, teaching experience in years). In this study, we focus on

continuousMODs assessed at the individual level and a categorical TRT at the cluster level

in a C-RCT.

1.2. Current issues
In multilevel designs, the TRT × MOD effect represents multilevel interaction or

moderation (e.g., Preacher, Curran, & Bauer, 2006; Raudenbush&Bryk, 2002). In testing

hypotheses of multilevel interaction, several conceptual and statistical problems have

been discussed (Preacher, Zhang, & Zyphur, 2016). Preacher et al. (2016) noted that

problems occur because most applications testing multilevel interaction do not separate

level-1 and level-2 effects into their orthogonal components (in a two-level design as an

example) and instead combine them into a single coefficient (called conflation). As a

conceptional problem, conflation results in insensitivity to the theoretically meaningful
ways in which multilevel interaction can occur. As a statistical problem, conflation leads

to estimates of a weighted average of within- and between-cluster effects in the presence

of the level-specific interaction effects. As a solution, Preacher and Sterba (2019)

suggestedmodelling level-specific interaction (TRT×MOD) for fixed effects by centring a

covariate (e.g., pretest) at its cluster mean (called the unconflated solution).

When a continuous MOD (e.g., pretest scores) and a treatment variable (e.g., control

versus treatment groups) are considered in detecting TRT × MOD interaction, the linear

effect of the TRT×MOD interaction is oftenmodelled inMLM to detect interaction effects
(Preacher& Sterba, 2019).When the treatment variable is dummy-coded (control group=
0, treatment group = 1), the MOD effect is the linear effect of MOD in the control group

and the MOD + TRT ×MOD effect is the linear effect of MOD in the treatment group. As

such, the expected difference between the control and the treatment condition is the

marginal TRT effect plus the TRT ×MOD effect for each value of MOD. If the relationship

between an outcome andMOD is incorrectly assumed to be linear, estimates of treatment

effects are expected to be inaccurate (Harrell, 2015). To model nonlinear TRT × MOD

interaction, Preacher and Sterba (2019) presented a logistic function in MLM. The
parametric logistic function may work well when there are floor and ceiling effects. As a

more flexible approach, smooth functions can be used for MODs that are known to

predict an outcomenonlinearly. To the best of our knowledge, smooth functions have not

been applied to MLM in the context of detecting unconflated TRT × MOD interaction

effects.
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1.3. Study purpose

The purpose of this study is to illustrate modelling of nonlinear multilevel TRT × MOD

interaction with unconflated effects in intervention studies from C-RCT designs. With

multilevel TRT×MOD interactionwith unconflated effects, the TRT effect is estimated as
a function ofMODat each level. Amodelling framework to detect the nonlinearmultilevel

interaction effect is the generalized additive mixed model (GAMM; Lin & Zhang, 1999;

Wood, 2017) with an identity link function. A GAMM can be considered to be a multilevel

mixed model (having fixed and random effects) with an identity link in which the linear

predictor partly depends on some unknown smooth functions. The nonlinearmultilevel

TRT×MOD interaction using GAMM is illustrated using an instructional intervention data

set in a C-RCT and compared with the linear multilevel TRT × MOD interaction from

MLM. For parameter estimation, we utilize the gamm function in the mgcv package
(Wood, 2019) in R (RCore Team, 2020) formaximum likelihood estimation. In thegamm
function, smooth functions in GAMM are reformulated as random effects, and parameters

ofGAMMare estimated as parameters of generalized linearmixed-effectsmodels (GLMMs)

(Wood, 2019). In this study, the key derivations on the reformulation of smooth functions

as random effects by Wood (2004, 2006, 2017, p. 239) in the statistics literature are

illustrated for researchers in the social and behavioral sciences. Furthermore, the R code is

provided to visualize nonlinear multilevel TRT × MOD based on results from the gamm
function. In addition, the accuracy and precision of parameter estimates is evaluated and
the consequences of modelling linear multilevel TRT × MOD are presented in the

presence of nonlinear multilevel TRT × MOD via simulation.

The remainder of this paper is organized as follows. In Section 2wepresent theGAMM

specification, provide the estimation method using R, and describe model checking and

testing. In Section 3 we illustrate the model using an empirical data set. In Section 4 we

present the design of simulation studies and their results. In Section 5we concludewith a

summary and a discussion.

2. Methods

In this section, the GAMM is specified with a comparison to MLM, and its parameter

estimation method in the gamm function is described. In addition, testing for nonlinear

TRT × MOD interaction is explained.

2.1. The generalized additive mixed model

A GAMM with an identity link and univariate smooth functions is written as

μ ¼ Xγ þ Zuþ∑
H

h

f hðxhÞ,u ∼ MNð0;ΣÞ, y ∼ Nðμ, σ2Þ, (1)

whereh is an index for the smooth function (h ¼ 1, . . .,H); y is an outcome variable;X is a

design matrix for fixed effects; Z is a design matrix for random effects; γ is the vector of
fixed parameters; u is the vector of random parameters; fh is the univariate smooth

function for covariate xh; Σ is a covariance matrix of the random parameters in a

multivariate normal (MN) distribution; σ2 is an error variance; and N μ, σ2ð Þ denotes a

normal distribution with mean μ and an error variance σ2. Here, one can see that the
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GAMM is aGLMM inwhich the linear predictor partly depends linearly on some unknown

smooth functions (fh).

A general form ofGAMMwith an identity link (equation (1)) can be presented using an

MLM specificationwith a smooth function for a nonlinear interaction of categorical TRT×
continuous MOD. To illustrate MLM specifications as GAMM in testing a nonlinear

multilevel interaction, a level-1 MOD (xij) and a level-2 TRT (zj; focal covariate) in a C-RCT

are considered for a level-1 outcome (yij) in a two-level nested design in which an

individual i is nested within a cluster j. For an unconflated solution for a nonlinear

multilevel interaction of categorical TRT × continuous MOD, a level-1 MOD xij can be

decomposed into uncorrelated level-1 and level-2 components by subtracting the cluster

average x.j from xij (i.e., xij – x.j) and using x.j as a level-2MOD: xij ¼ xij � x:j
� �þ x:j. In this

design, researchers can test whether the level-1 part of the MOD (xij � x:j) or level-2 part
of the MOD (x.j) moderates a level-2 TRT (zj) effect on an outcome variable (yij). Below,

with the unconflated level-1 MOD (xij � x:j) and the level-2 MOD (x.j), we first present a

multilevel model specification for a linear multilevel interaction of categorical TRT ×
continuous MOD for comparison purposes and then present a multilevel model

specification for a nonlinear multilevel interaction with smooth functions as a special

case of the GAMM.

Following the multilevel model specification, notation, and symbols in Raudenbush

and Bryk (2002), the multilevel model with a random intercept β0j, a random slope β1j,
and a linear interaction of dummy-coded TRT× continuousMOD is written as follows for

a two-level nested design. A level-1 model is given by

yij ¼ β0j þ β1j xij � x:j
� �þ rij,

a level-2 model is presented as

β0j ¼ γ00 þ γ01x:j þ γ02zj þ γ03x:jzj þ u0j,

β1j ¼ γ10 þ γ11zj þ u1j,

and the reduced form is expressed as

yij ¼ γ00 þ γ10 xij � x:j
� �þ γ01x:j þ γ02zj þ γ03x:jzj þ γ11 xij � x:j

� �
zj

þu0j þ xij � x:j
� �

u1j þ rij, (2)

where γ00 is a fixed intercept; γ10 is a fixed effect of a level-1 component xij � x:j
� �

ofMOD

xijwhere zj ¼ 0; γ01 is a fixed effect of a level-2 component x.jofMOD xijwhere zj ¼ 0; γ02
is a fixed effect of a dummy coded level-2 TRT zj (a conditional treatment effect where
x:j ¼ 0); γ03 is a fixed linear interaction of a level-2 component of MOD xij (x.j) and a

dummy coded level-2 TRT zj; γ11 is a fixed linear interaction of a level-1 component of

MOD xij xij � x:j
� �

and a dummy coded level-2 TRT zj; u0j is a random intercept; u1j is a

random slope of a level-1 component xij � x:j
� �

of MOD xij; and rij is random error. The

random effects, u0j,u1j

� �0
, are assumed to follow a multivariate normal distribution,

u0j,u1j

� �0 ∼ MN 0,Σð Þ, with a random intercept variance τ00, a random slope variance τ11,
and a covariance τ01 inΣ. The randomerror, rij, is assumed to follow anormal distribution,

rij ∼ N 0, σ2ð Þ:
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As a special case of theGAMM, themultilevelmodelwith a random intercept, a random

slope of a level-1 covariate, and a smooth function for anonlinearmultilevel interaction of

dummy-coded TRT × continuous MOD is written as follows:

yij ¼ γ00 þ γ02zj þ f 1 x:j
� �

zj ¼ 0
� �þ f 1 x:j

� �
zj ¼ 1
� �þ f 2 xij � x:j

� �
zj ¼ 0
� �

þf 2 xij � x:j
� �

zj ¼ 1
� �þu0j þ xij � x:j

� �
u1j þ rij, (3)

where γ02 is amean of all smooth functionswhen zj (zj ¼ 0 for a control group; zj ¼ 1 for a

treatment group) is specified as a factor inR; f 1 x:j
� �

zj ¼ 0
� �

is a smooth function of a level-

2 component x:j of MOD xij where zj ¼ 0 (i.e., nonlinear level-2 interaction for a control

group); f 1 x:j
� �

zj ¼ 1
� �

is a smooth function of a level-2 component x:j of MOD xij where

zj ¼ 1 (i.e., nonlinear level-2 interaction for a treatment group); f 2 xij � x:j
� �

zj ¼ 0
� �

is a

smooth function of a level-1 component xij � x:j of MOD xij where zj ¼ 0 (i.e., nonlinear

level-1 interaction for a control group); and f 2 xij � x:j
� �

zj ¼ 1
� �

is a smooth function of a

level-1 component xij � x:j of MOD xij where zj ¼ 1 (i.e., nonlinear level-1 interaction for
a treatment group).

In MLM (equation (2)) and GAMM (equation (3)), the same fixed intercept terms for

TRT (zj), γ00 þ γ02zj, are specified. However, different slope terms of MOD (xij) for TRT

(zj) are specified in MLM and GAMM. In MLM, γ03x:jzj and γ11 xij � x:j
� �

zj terms are for

modelling linear multilevel interaction: the γ03x:jzj is for the linear TRT × level-2 MOD

interaction and γ11 xij � x:j
� �

zj is for the linear TRT × level-1 MOD interaction. In GAMM,

the f 1 x:j
� �

zj ¼ 0
� �

, f 1 x:j
� �

zj ¼ 1
� �

, f 2 xij � x:j
� �

zj ¼ 0
� �

, and f 2 xij � x:j
� �

zj ¼ 1
� �

are

for modelling nonlinear multilevel interactions: the f 1 x:j
� �

zj ¼ 0
� �

and f 1 x:j
� �

zj ¼ 1
� �

are for the nonlinear TRT × level-2 MOD interaction, and f 2 xij � x:j
� �

zj ¼ 0
� �

and

f 2 xij � x:j
� �

zj ¼ 1
� �

are for the nonlinear TRT × level-1 MOD interaction.

2.1.1. Smooth functions for categorical TRT × Continuous MOD

The univariate smooth function f h xhð Þ of a covariate xh is specified as aweighted sum of a

set of basis functions over the covariate xh:

f hðxhÞ ¼ ∑
K

k¼1

δhkbhkðxhÞ, (4)

where k is an index for a basis function (k ¼ 1, . . .,K), xh is a covariate for a smooth

function h, δhk is a basis coefficient, and bhk xhð Þ is the k th basis function for smooth

function h. The basis functions (bh ¼ bh1, . . ., bhK½ �0) are a set of known curves to

represent f h xhð Þ and they are functioned as covariates to estimate basis coefficients

(δh ¼ δh1, . . ., δhK½ �0). In the mgcv package, a smooth function is estimated with an

identification constraint such that fh sums to 0 over the observed covariate values (i.e.,
∑
v
f h xhvð Þ ¼ 0 for each h, where v is an index for observations); otherwise, f h xð Þ can be

confounded with the intercept. When the TRT is specified as a factor, themgcv package

automatically computes a separate smooth function for the MOD effect, for every level in

TRT (Wieling, 2018).

In GAMM applications using themgcv package, a cubic regression spline (CRS;Wood,

2017, Section 5.3.1) and a thin plate regression spline (TPRS; Wood, 2017, Section 5.5.1)

are commonly used splines for the univariate smooth function (f h xhð Þ). The CRS is a

smooth curve made up of sections of cubic polynomials. The sections are joined together
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at locations referred to as knots. At each knot, the joined sections of the cubic polynomials

have equivalent values, first and second derivatives (Wood, 2017, Section 5.3.1). In the

mgcv package, the default is for the knots to be equally spaced over the entire range of the

observed covariate, and the number of knots is the same as the number of basis functions
(K). The CRS and the TRPS yield comparable results for the univariate smooth function

(e.g., Finch & Finch, 2018), although the CRS yields better computational efficiency;

therefore, we use the CRS in the current study.

As shown in equation (3), a nonlinear categorial TRT× continuousMOD interaction is

specified by including different smooth functions of a continuous MOD multiplied by a

dummy-coded TRT, f 1 x:j
� �

zj and f 2 xij � x:j
� �

zj. In Appendix S1, the CRS for a smooth

function of zj ¼ 0 or zj ¼ 1 is illustrated.

For the selected basis functions for smooth functions, the number of basis functions
(K) should be selected to obtain a good fit. The dimensionality of the basis expansion is

determined byK.WhenK is too small, oversmoothingwill occur, andwhenK is too large,

computation time is increased. K = 10 is the default in mgcv, and is often sufficient in

generalized additive modelling (e.g., Bringmann et al., 2017). Thus, we set K = 10 in the

current study. To determinewhether a selectedK is large enough, the value of the k-index

can be assessed. The k-index is a measure of the remaining pattern in the residuals. Let ~r
denote the vector of residuals rij, ordered according to the value of covariate xh and define

differencing residuals that are near neighbours according to the covariate of the smooth
asΔij ¼ ~r ijð Þþ1 � ~rij. The k-index is calculated as the ratio of (a) an estimate of the mean of

the squared differencing residuals (σ2Δ ¼ E Δ2
ij

h i
) to (b) an estimate of residual variance

from amodel fit (σ2) (Wood, 2017, pp. 243, 330). A k-index below 1 indicates that there is

amissedpattern left in the residualswith a specifiedK, and a largerK should be considered

in this case. The k-index can be obtained through the gam.check function in mgcv.
In addition to the k-index, the corrected Akaike information criterion (correctedAIC;

Wood, Pya, & Säfken, 2016) is considered to select a model with an adequate amount of

smoothing from the data among candidate models differing in K, as a commonly used

model selection criterion in generalized additive modelling (Ruppert, Wand, & Carroll,

2003, p. 120). The correctedAIC for GAMM uses the effective degrees of freedom (edf) as

the number of parameters needed to represent smooth functions in the penalty term of

the Akaike information criterion (AIC; Akaike, 1974). The correctedAIC is specified as

follows:

CorrectedAIC ¼ �2ll þ 2� edfð Þ, (5)

where ll is the log-likelihood. The ll and edf in the correctedAIC for GAMM can be

extracted using the function logLik.gam for a fitted model in the mgcv package.

2.2. Parameter Estimation
The glmm function in the mgcv package was used for maximum likelihood estimation.

Below, we describe the details of the implementation of the glmm function for the

specified GAMM (equation (3)).

The ‘wiggliness’ of the smooth function f h xhð Þ is controlled less by K (the number of

basis functions) than by a quadratic smoothing penalty (e.g., Wood, 2017). The quadratic

smoothing penalty for the model can be written as
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λh δTh Shδh, (6)

where λh is a smoothing parameter, δh is a vector of basis coefficients, and Sh is a penalty
matrix embedded as a diagonal block in amatrix. For smooth functions, the elements of Sh
are known and are determined by the chosen basis functions. The parameter λh controls
the trade-off between goodness of fit and model smoothness.

For the identity link, the glmm function uses aGLMM formulation to fit aGAMM.Wood

(2004, 2006, 2017, p. 239) showed how a smooth function in a GAMM can be

reformulated into fixed and random effects in a GLMM. Key derivations in Wood (2004,

2006, 2017, p. 239) are explained and illustrated in Appendix S2.

2.3. Testing for nonlinear TRT×MOD interactions

To determinewhether or not the smooth function f h xhð Þ is distinguishable from zero, the

null hypothesis H0 : f h xhð Þ ¼ 0 for all xh in the range of interest can be tested. A test

statistic for f h xhð Þ is as follows:

Tr ¼ f̂
T

hV
�
f h
f̂h, (7)

where r is the rounded effective degrees of freedom (edf) for f h xhð Þ (integer; e.g., r = 1 in

the case of edf = 1.45),1f̂h is the vector of f h xhð Þ evaluated at the observed predictor

values, and V�
f h

is a pseudo-inverse of Vf h
of rank r (Vf h

¼ XVδX
T , where X are basis

functions and Vδ is the covariancematrix of basis coefficient estimates) (Wood, 2017, pp.

305-306). UnderH0, the test statistic Tr follows a chi-square distribution (Tr ∼ χ2r ) (Wood,

2013).

Smooth functions have confidence intervals around them, which are obtained by

taking the quantiles from the posterior distribution of the f h xhð Þ (Marra & Wood, 2012).

To calculate the distribution of the f h xð Þ, a large number (e.g., 1,000) of basis coefficient

parameters (δh) are simulated from the posterior distributions of basis coefficients using a
multivariate normal distribution:

δh ∼ MN δ̂h,Vδ

� �
, (8)

where δ̂h contains basis coefficient estimates. Then a large number of the f h xhð Þ can be

calculated using sampled basis coefficients and basis functions using equation (4). The

.025 and .975 quantiles of the posterior distribution can be used for the lower and upper

bounds of a 95% confidence interval of the smooth functions.

In addition to significance testing for the smooth function, we can visualize over what

ranges of MOD the smooth functions differ significantly (called the region of

significance). As an example, varying treatment effects depending on the levels of x

can be estimated for each level of a TRT variable (one for a control group and another for a

treatment group) using the GAMM specification (equation (3)), as shown in Figure 1

(left). Based on the result of the smooth functions, differences in the smooth functions in

Figure 1 (left) (a smooth function for a treatment group minus a smooth function for a

1 In the gamm output, the degrees of freedom used in computing test statistics and p-values are presented as
Ref.df.
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control group) can be presented as in Figure 1 (right). Windows of significant differences

are found in ranges between 2.606 and 16.505, and between 26.495 and 40.828 (noted

with vertical bars in Figure 1 (right)) in x.

3. Empirical study

In this section a GAMM specification is illustrated using an empirical data set to detect a

nonlinear multilevel interaction of categorical level-2 TRT and continuous level-1 MOD in

aC-RCT design. The data set comes fromFuchs et al. (2021). Thepurpose of the studywas
to evaluate the efficacy of two revised versions of first-grade Peer-Assisted Learning

Strategies (PALS) called the PALS-Only and PALS+Fluency programmes. Using a subset of

the data from Fuchs et al. (2021), an analysis goal in the present study is to test whether

the contrast of both PALS conditions against control moderates the effect of students’ pre-

treatment scores of phonological awareness (prePA) on students’ post-treatment scores of

phonological awareness (postPA).

3.1. Data description

3.1.1. Participants

Teachers from 33 first-grade classrooms in eight elementary schools and their 491
students participated. In the C-RCT, the 33 teachers were assigned randomly within

schools to a control group (11 teachers and their 171 students) and two treatment groups

-- the PALS-Only (11 teachers and their 168 students) and PALS+Fluency groups (11

teachers and their 152 students). Cluster size (the number of students per classroom)

ranged from 1 to 18 (median = 15, semi-interquartile range = 1). One classroom had one

student in a PALS+Fluency group. Fuchs et al. (2021) reported that there were no

statistically significant differences among the three study groups on student demo-

graphics, teacher demographics, or pre-treatment reading performance.

Treatment Group

Control Group

Figure 1. Varying effects of MOD x on outcome y by the TRT z modelled with smooth functions

with confidence bands (left) and differences in outcome y between the two smooth functions (the

smooth function for the treatment group minus the smooth function for the control group) with

confidence bands (right). Vertical lines in Figure 1 (right) indicate windows of significant

differences.
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3.1.2. Measures

Students were tested before and immediately following the 22-week treatment period.

The same measures, used by Yopp (1988) for segmenting sounds in words and by Fuchs,

Fuchs, Hosp, and Jenkins (2001) for blending sounds in words, were used to assess
phonological awareness at two time points. In this study, the same continuous scores of

phonological awareness were used in GAMM and MLM analyses as were used in Fuchs

et al. (2021). There are nomissing data in prePAor postPA. As descriptive information, the

normality assumption of the postPA scores is tested. A Shapiro--Wilk test indicated that the

postPA scores were significantly non-normal (W ¼ 0:950, p< :0001). However, the

deviance from normality is not large in the quantile--quantile plot and it is localized in the

tails of the distribution. As employed in Fuchs et al. (2021), zero-centring of the prePA and

postPA scoreswas used. Themean and standarddeviation of prePA scores are 0 and 0.911,
respectively, and the mean and standard deviation of postPA scores are 0 and 0.842,

respectively.

3.2. Analyses and results

Below, we describe how to test whether the contrast of both PALS conditions against the

control group moderates the effect of prePA on students’ postPA. The R code for the

empirical data analyses is presented in Appendix S3.

3.2.1. Step 1: Fitting the unconditional GAMM

The postPA results are from a nested data structure: 491 students (level 1) nested within

33 classes (level 2), nested within eight schools (level 3). Dependencies in the postPA

scores due to clusters (classes and schools) can be accounted for in the three-level model.

However, there was a convergence problem with estimating the variance of the random

intercept for schools in the unconditional three-level random intercept model.1 This
problem may be due to having only eight schools, which is fewer upper-level units than

recommended inMLM (Snijders&Bosker, 2012). In this circumstance, it is recommended

to replace a random intercept with L–1 dummy codes (where L is the number of clusters)

for clustermembership (e.g.,McNeish&Stapleton, 2016). The unconditionalGAMMwith

the L–1 dummy codes for eight schools is specified as follows (the model can be called an

MLM because smooth functions have not yet been introduced):

yij ¼ γ00 þ ∑
L

l¼2

αlDl þ u0j þ rij, (9)

where l is an index for a school (l ¼ 2, . . ., L; L ¼ 8 in this example),Dl is a dummycode for

school membership with the first school as the reference school, and αl is the fixed effect

of Dl. The intraclass correlation coefficient (ICC), calculated based on the results of

equation (9), was .107 (¼ 0:066= 0:066þ 0:552½ � where 0.066 is τ̂00 and 0.552 is σ̂2),
which suggests that there is non-ignorable dependency in postPA scores due to class

clustering.

1 Thewarningmessage from the lmer function in the lme4package is ‘Model failed to convergewithmax¦grad¦=
0.00206106 (tol = 0.002, component 1)’.
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3.2.2. Step 2: Adding covariates (TRT and MOD) and comparing and checking models

In Step 2, a dummy-coded level-2 TRT (zj ¼ 0 for a control group; zj ¼ 1 for PALS-Only and

PALS+Fluency groups) and a cluster (class)-centred level-1 MOD (prePA xij; xij � x:j and

x:j) were considered as covariates. Prior to modelling, the relationship between postPA
scores (yij) and prePA scores (xij � x:j or x:j) was explored by TRT groups (zj) using

scatter plots. Figure 2 (top) presents a scatter plot of yij against xij � x:j by zj, and Figure 2

(bottom) presents a scatter plot of yij against x:j by zj. This figure shows nonlinear

relationships presented with smooth lines deviant from the linear dotted lines at each

level. In addition, the figure shows that the differences in postPA between the two groups

(presentedwith 95%confidencebands) differ depending on the levels of prePA.Given the

patterns identified in Figure 2, smooth functions of f 1 x:j
� �

zj ¼ 0
� �

, f 1 x:j
� �

zj ¼ 1
� �

,

f 2 xij � x:j
� �

zj ¼ 0
� �

, and f 2 xij � x:j
� �

zj ¼ 1
� �

(along with zj) were added to
equation (9).

The random-intercept-and-slope GAMM and the random-intercept GAMM were fit-

ted with 10 basis functions (K ¼ 10 as the mgcv default). The k-index was close to 1

and the correctedAIC differs in the first decimal place for the models with K ¼ 10

correctedAIC ¼ 897:706ð Þ, 12 correctedAIC ¼ 897:683ð Þ, 14 correctedAIC ¼ð
897:606Þ, and 16 correctedAIC ¼ 897:453ð Þ. These results indicate that K ¼ 10 is

adequate to obtain a good fit in both models.

Results of the random-intercept-and-slope GAMM were compared with those of the
random-intercept GAMM. In the random-intercept-and-slope GAMM, τ̂11 was

3:699829� 10�9. In addition, estimates and standard errors of fixed effects differed in

the second or third decimal places and patterns in the smooth functions were similar

between the two models. Furthermore, the AIC and the Bayesian information criterion

(BIC; Schwarz, 1978) suggested that the random-intercept GAMM fits better than the

random-intercept-and-slope GAMM (see the AIC and BIC values in Table 1 (top)). Thus,

the random-intercept GAMM was chosen for result interpretations. Residual analysis of
the model indicates that there is evidence of good model-data fit (see Appendix S4).

3.2.3. Step 3: Interpreting results

Table 1 (bottom) presents results of the random-intercept GAMM, compared with the

MLM results we will discuss in the following subsection. The GAMM results are

interpreted below.

A significant fixed conditional TRT (zj) effect was found (γ̂02 ¼ 0:439, SE = 0.071).
This result means that students in PALS-Only and PALS+Fluency programs together

outperformed control students. The corresponding effect size (Hedges’s g) is 0.537,

following the guideline suggested by What Works Clearinghouse (2017). When TRT is a

focal covariate at the class level (level 2) and MOD is a moderator, the level-2 TRT effect

(zj) on class means (y:j) at any chosen value of the level-2 part of MOD (x:j) is of interest to

interpret. Figure 3(a) presents the effect of zj on y:j by quantiles (.1, .25, .5, .75, .9) of x:j,

and Figure 3(b) shows the level-2 TRT effects (γ̂02 þ ~f 1 x:j
� �

zj ¼ 1
� �� ~f 1 x:j

� �
zj ¼ 0
� �� 	

)

against x:j from the GAMM. The region of significance of class-level prePA (x:j) was

�0:494, 0:568½ �, presented in the vertical lines of Figure 3(b). PostPA scores were higher

for the treatment groups than for the control group in the range of �0:494, 0:568½ �.
However, the difference at the extremes was not significant (see Figure 3(b)).
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Figure 2. Empirical study: Scatter plots of yij against xij � x:j by zj (top) and yij against x:j by zj

(bottom) (raw data).
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3.3. Comparisons between GAMM and MLM

BecauseMLM is a dominant analyticmethod to evaluate TRT effects in a C-RCT, the results

of GAMM and MLM are compared for instructive purposes in Table 1 (bottom). Similarly

to the GAMM, there was a convergence problem with estimating a random intercept

variance for classes in the unconditional three-level MLM. L–1 dummy codes for school

memberships (where L is the number of schools) were considered to account for

dependency due to school clustering. In addition, there was a convergence problemwith

estimating τ11 in the random-intercept-and-slope model (equation (2)).2 Thus, the

Table 1. Empirical study: Results of model selection (top) and results (bottom) of GAMM andMLM

Model

GAMM MLM

AIC BIC AIC BIC

Random-intercept 895.59 975.32 911.98 974.93

Random-intercept-and-slope 899.59 987.71 * *

Fixed effects

GAMM MLM

EST SE EST SE

Intercept[γ00] 0.384 0.133 0.318 0.149

xij � x:j[γ10] - 0.693 0.056

x:j[γ01] - 0.537 0.189

zj[γ02] 0.439 0.071 0.463 0.081

x:jzj[γ03] - -0.183 0.209

xij � x:j
� �

zj[γ11] - -0.212 0.070

D2[α2] -0.216 0.173 -0.304 0.206

D3[α3] -1.123 0.150 -1.056 0.180

D4[α4] -0.353 0.155 -0.381 0.183

D5[α5] -0.928 0.139 -0.877 0.161

D6[α6] -0.680 0.152 -0.689 0.181

D7[α7] -0.713 0.220 -0.506 0.232

D8[α8] -0.679 0.146 -0.594 0.168

Random effects EST EST

τ00 0.010 0.023

σ2 0.316 0.337

Smooth functions Ref :edf Tr (p-value)

f 2 xij � x:j
� �

zj ¼ 0
� �

3.630 47:747 (< 2� 10�16) - -

f 2 xij � x:j
� �

zj ¼ 1
� �

3.153 51:731 (< 2� 10�16) - -

f 1 x:j
� �

zj ¼ 0
� �

2.270 7:728 (:000165) - -

f 1 x:j
� �

zj ¼ 1
� �

1.000 3:981 (:046566) - -

Note. – indicates a parameter which was not considered under GAMM; - - indicates a smooth

function whichwas not considered under MLM; Significance for fixed effects in bold based on t-test

at alpha ¼ :05; * indicates that AIC and BIC were not reported because there was a convergence

problem with estimating the random-intercept-and-slope model.

2 The errormessage from the lme functionwas ‘nlminbproblem, convergence error code=1message= iteration
limit reached without convergence (10)’.
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random-intercept MLM with dummy codes for school memberships was considered for

comparison with the random-intercept GAMM.

Regarding model selection between the random-intercept GAMM and the random-

interceptMLM as shown in Table 1 (top), the random-intercept GAMMfits better than the

random-intercept MLM based on the AIC, whereas the random-intercept MLM fits better

than the random-intercept GAMM based on the BIC. However, the differences in the BIC
between the two models were small (975.32 for GAMM and 974.93 for MLM, yielding a

difference of 0.39), indicating that there is no strong evidence that the random-intercept

MLM fits better than the random-intercept GAMM based on the BIC.

There were similar patterns in the effects of school memberships and variances of

random effects between GAMM and MLM, as shown in Table 1 (bottom). The standard

errors of fixed effects were larger in MLM than in GAMM. For the comparison with an

interaction between a level-2 TRT (zj) and the level-2 part of MOD (x:j) from GAMM,

Figure 3(c) presents the effect of zj on y:j by quantiles (.1,.25,.5,.75,.9) of x:j, and

Figure 3(d) shows the level-2 TRT effects (γ̂02 þ γ̂03x:j) against x:j from MLM. In

Figure 3(d), 95% confidence bands were calculated as

γ̂02 þ γ̂03x:j
� �� zcrit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var γ̂02ð Þ þ Var γ̂03

� �
x2:j þ 2x:jCov γ̂02, γ̂03

� �q
. Unlike GAMM (Fig-

ure 3(a)), postPA scores were higher for the treatment groups than for the control group

(a) (c)

(b) (d)

Figure 3. Empirical study: Probing an interaction between a level-2 TRT (focal covariate) and a

level-2 part of MOD for GAMM andMLM. Vertical lines in (b) and (d) indicate windows of significant

differences.
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over all quantiles of x�j, as shown in Figure 3(c). The region of significance of class-level

prePA (x:j) was �1:690, 0:800½ �, presented in the vertical lines of Figure 3(d).

4. Simulation study

A simulation study was designed to investigate the relative performance of GAMM in

detecting a nonlinear multilevel TRT × MOD interaction compared with an alternative

approach (MLM with a logistic function [MLM-Logistic]) in the presence of the level-

specific logistic (parametric) form of the interaction; and the accuracy of GAMM

(equation (3)) parameter estimates and their precision (standard errors). For both foci,

the results ofmodelling anonlinearTRT×MOD in theGAMMare comparedwith those of

modelling a linear TRT × MOD in the MLM.

4.1. Simulation design

A two-level nested design (e.g., students nested within schools) was chosen for the

simulation study. As is common in education intervention studies, a balanced design for

control and treatment groups was used. The following simulation conditions were varied

because they are expected to affect parameter recovery and precision in multilevel

designs (Lüdtke, Marsh, Robitzsch, & Trautwein, 2011; Preacher, Zhang, & Zyphur,
2011): the number of clusters, cluster sizes (i.e., the number of individuals within a

cluster), and ICC for outcomes. The levels of these three simulation conditions were

chosen based on literature reviews of study designs for educational intervention studies in

30 papers published in the Journal of Educational Psychology, American Educational

Research Journal, and Exceptional Children, and in other related MLM work. The

number of clusters in 30 papers we reviewed ranged from 28 to 225 (median = 70, semi-

interquartile range= 25). Tomimic these numbers of clusters, the number of clusters was

selected as 30 (small), 70 (medium), and 200 (large). Cluster sizes in 30 papers ranged
from 13 to 35 (median = 16, semi-interquartile range = 7). Balanced cluster sizes were

selected as 15 and 30 in the simulation study. Eight of 30 papers reported ICCs ranging

from .08 to .25. The ICC of outcomes was selected to be at :05, :10, or :30. ICC values are

rarely greater than .30 in educational and organizational studies (e.g., Fox, 2010).

For the first focus (the performance ofGAMM in the presence of the logistic formof the

TRT×MOD), the data-generatingmodel isMLM-Logistic for the level-specific TRT×MOD.

The MLM with a logistic function as a data-generating model is written as.

yij ¼
1

1þ exp �μ½ � þ u0j þ xij � x:j
� �

u1j þ rij, (10)

where μ ¼ γ00 þ γ10 xij � x:j
� �þ γ01x:j þ γ02zj þ γ03x:jzj þ γ11 xij � x:j

� �
zj, and the error

term rij is assumed to be distributed independently as N 0, σ2ð Þ. Fixed parameters were

selected to generate no differences in logistic functions between control and treatment

groups at level 1 and to have large differences in logistic functions between control and

treatment groups at level 2 as expected in a C-RCT: γ00 ¼ 0, γ10 ¼ 1:5, γ01 ¼ 7:2,
γ02 ¼ 1:7, γ03 ¼ 5:1, and γ11 ¼ 0:1. The three levels of ICC were manipulated using the
‘true’ variances of random intercept and random errors. That is, given the error variance

σ2 ¼ 0:6, the three levels of τ00 were calculated as 0.032, 0.067, and 0.257 for ICC = .05,

.10, and .30, respectively. The slope variance τ11 was set as 0.1 and the covariance τ01 was
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set to 0. In generating the logistic functions for control and treatment groups at level 2, it

was assumed that students with low and high values of MODwould not benefit from TRT

and students in the middle values of MOD might gain from TRT, but to some extent

conditional on TRT (Preacher & Sterba, 2019). The generated logistic function in MLM
with K ¼ 10 is shown for one condition (number of clusters = 200, cluster size = 30,

ICC ¼ :30) in Appendix S5 as an example.

For the second focus (parameter recovery of GAMM), the data-generating model is a

random-intercept-and-slope GAMM (equation (3)). Fixed parameters, γ00 ¼ 0:4 and

γ02 ¼ 0:4, were selected tomimic the results of the empirical study. The same σ2, τ00, τ11,
and τ01 used for the first focus were also used in the second focus. For ‘true’ smooth

functions, increasing nonlinear functions were generated using equation (4) with

K ¼ 10. According to literature reviews of educational intervention studies in the 30
papers mentioned earlier, educational interventions are implemented mainly to improve

learning for students with low achievement levels. Thus, larger nonlinear treatment

effects were generated at the lower end and smaller differences were generated in the

other ranges of a covariate, assuming that the intervention is the most effective for them.

Parameters of basis coefficients (δh) and generated smooth functions are shown for one

condition (number of clusters = 200, cluster size = 30, ICC ¼ :30) in Appendix S5 for

illustrative purposes.

In the two data-generating models, the xij was generated from a standard normal
distribution and then x:j and xij � x:j were calculated. For each simulation condition, the

same MOD (xij � x:j and x:j) and generated functions for TRT × MOD were used across

replications, and random effects were generated at each replication.

The simulation conditions regarding multilevel designs were fully crossed, yielding 18

(= 3 numbers of clusters × 2 cluster sizes × 3 ICCs) conditions. Five hundred replications

were simulated for each condition. For MLM-Logistic and GAMM as data-generating

models, GAMM (equation (3)) was fitted to the generated data sets. In addition, for MLM-

Logistic and GAMM as data-generating models, MLM (equation (2)) was fitted to the same
generated data sets to demonstrate the consequences ofmodelling linear categorical TRT

× continuous MOD interactions in the presence of nonlinear categorical TRT ×
continuous MOD interactions. And for MLM-Logistic as a data-generating model, MLM-

Logistic (see Appendix S5 for estimation in R)was fitted to the same generated data sets to

compare its results with GAMM’s results. In addition, five candidate models for different

values ofK (K ¼ 6, 8, 10, 12, 14)were fitted to the generated data sets for each replication

in a condition to check whether the K used in generated smooth functions was adequate

based on the correctedAIC. Thus, the total number of fitted models is 225,000 (18
multilevel designs × 500 replications × 3 models [MLM-Logistic, GAMM, and MLM] × 5

models for different values ofK forMLM-Logistic as a data-generatingmodel= 135,000; 18

multilevel designs × 500 replications × 2 models [GAMM and MLM] × 5 models for

different values of K for GAMM as a data-generating model = 90,000).

4.2. Analysis

For the first focus, the ‘true’ level-specific TRT × MOD generated using MLM-Logistic is
compared with the predicted level-specific TRT × MOD generated using MLM-Logistic,

MLM, and GAMM, respectively. As an evaluation measure for the TRT × MOD, the root

mean squared difference (RMD) between predicted values (calculated based on estimates

of fixed effects for TRT ×MOD) and true values (calculated based on parameters of fixed

effects for TRT×MOD)was obtained. The RMD is interpreted as the standard deviation of
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the differences between predicted and true values. Equations to calculate the level-

specific TRT ×MOD in the MLM-Logistic, GAMM, and MLM are presented in Table 2, and

equations to calculate the RMD are presented in Table 3 (top). As a summary of the RMD,

the mean of RMDs over 500 replications was reported. For variance and covariance
estimates of random intercept and slope (τ̂00, τ̂11, τ̂01), and the variance estimate of

random residuals (σ̂2) in the MLM-Logistic, GAMM, and MLM, the bias (calculated

∑
500

rep¼1

τ̂00,rep � τ00
� �

=500 where rep denotes a replication number as an example) and the

root mean square error (RMSE; calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
500

rep¼1

τ̂00,rep � τ00
� �2

=500

s
as an example)

was used to evaluate overall accuracy (i.e., bias and variability) patterns with respect to

levels of simulation conditions.

To evaluate the accuracy of estimates in the parametric part of theGAMM (γ̂, Σ̂, and σ̂2)
in the second focus, the bias3 and RMSE were calculated and compared across simulation
conditions. To evaluate the accuracy of standard errors, the mean standard error of the

estimates (M(SE)) across 500 replications was compared with the standard deviation of

the estimates (SD) across 500 replications. A ratio of M(SE) to SD close to 1 suggests that

the estimated standard errors are approximately correct. Because smooth functions are

generated based on basis functions and basis coefficients, the accuracy of basis coefficient

estimates (δ̂, calculated based on γ̂ and λ̂) was evaluated using the bias and RMSE for the

smooth functions. As shown in equation (6), the precision of the smooth functions

depends on the standard errors of basis coefficient estimates. Thus, for the smooth

functions, the standard errors of the basis coefficient estimates were evaluated using the
ratio of M(SE) to SD. In addition, the RMD between predicted values of the level-specific

TRT×MODunderGAMMorMLMand ‘true’ smooth functionswas obtained (see the RMD

calculations in Table 3 (bottom)). To summarize the results of the RMD, itsmean over 500

replications was obtained. For GAMM, the k-index for K ¼ 10 used in generating smooth

functionswas close to 1 for all smooth functions in all conditions and amodelwithK ¼ 10

was selected among candidate models with different values of K (K ¼ 6, 8, 10, 12, 14)

based on the correctedAIC. These results indicate thatK ¼ 10 is adequate. In addition, to

show the effects of modelling linear TRT × MOD interactions on MLM parameter
estimates in the presence of nonlinear TRT × MOD interactions, the bias, RMSE, and the

ratio of M(SE) to SD were calculated for MLM estimates which are not part of the linear

interaction effects and are comparable with GAMM estimates: the intercept (γ̂00), the
effect of TRT (γ̂02), the covariance matrix of random effects (Σ̂ ¼ τ̂00, τ̂01, τ̂10, τ̂11½ �0), and
the residual variance (σ̂2) in equation (2).

4.3. Results

The results below are summarized by data-generating models. No convergence problems

occurred in any simulation condition for MLM-Logistic, GAMM, or MLM.

3Relative percentage biaswas not considered because it leads to scaling problems in the case of parameters close
to 0 as in our simulation study.
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4.3.1. Results for MLM with a logistic function as a data-generating model

Table 4 shows the average RMD across 500 replications for level-specific TRT × MOD

interactions, and the bias and RMSE of τ̂00, τ̂11, τ̂01, and σ̂2 in MLM-Logistic, GAMM, and

MLM. InTable 4, the averaged results are reported by the levels of simulation conditions in

order to understand the main effects of each condition. The results of all 18 simulation

conditions are presented in the figures of Appendix S6.

Performance ofGAMMcomparedwithMLM-Logistic for Predictions of Level-Specific

TRT ×MOD Interactions. When the data-generating model is MLM-Logistic, the RMDs in

GAMM are smaller than the RMDs in MLM-Logistic as an alternative approach to GAMM in

all simulation conditions (the RMD ranged from 0.042 to 0.126 at level 1 and ranged from

0.106 and 0.281 at level 2 inGAMM; it from0.082 to 0.301 at level 1 and ranged from0.250

and 0.410 at level 2 in MLM-Logistic). This result indicates that a logistic form of the level-

specific TRT × MOD interactions can be recovered better using smooth functions in

GAMM than using nonlinear fitting inMLM. Regarding patterns in the RMDby the levels of

simulation conditions, the following is observed. First, in MLM-Logistic, the RMD
decreased with increasing number of clusters (J) and decreasing cluster size (nj) at level 1

RMD, whereas it decreased with decreasing number of clusters (J) and increasing cluster

size (nj) at level 2 RMD. In the GAMM, the RMD decreased with increasing number of

clusters (J) and cluster size (nj) at both levels. Second, the RMDdecreasedwith increasing

ICC s at level 1 and at level 2 (from ICC ¼ :1 to ICC ¼ :3) inMLM-Logistic, and it decreased

with decreasing ICCs at level 2 in GAMM; in GAMM, ICC had no effect on RMD at level 1.

Effects of modelling linear TRT × MOD on predictions for level-specific TRT × MOD

interactions. Under MLM-Logistic as the data-generating model, the RMDs in MLM with
linear TRT ×MOD are larger than the RMDs in MLM-Logistic or in GAMM in all simulation

conditions (the RMD ranged from 0.499 to 0.597 at level 1 and from 0.512 and 0.663 at

level 2 inMLM). In theMLM, therewere small differences (to two decimal places) in RMDs

across simulation conditions. These results suggest that misspecifying the functional

forms for TRT×MOD interactions inMLM leads to biasedpredictions of the interactions in

all multilevel designs we considered.

Randomeffects comparisons.Overall, the bias andRMSEof τ̂00, τ̂11, σ̂2
� �0

were smaller

in GAMM than in MLM-Logistic. For τ̂01, smaller bias was observed in GAMM than in MLM-
Logistic, while larger RMSE was found in GAMM than MLM-Logistic. In addition, the bias

and RMSE of τ̂00, τ̂11, σ̂2
� �0

in MLM were similar to those in GAMM because

misspecification in MLM is not for these variances but for the level-specific TRT × MOD

interactions. With respect to simulation conditions, the bias and RMSE of τ̂00, τ̂11, σ̂2
� �0

tended to decrease as the number of clusters (J) and cluster size (nj) increased in all three

models, except for a few cases: the bias and RMSE of τ̂00 in MLM-Logistic regarding nj; the

bias of τ̂11 and σ̂2 regardingnj inMLM-Logistic; and the bias of σ̂2 with respect to J andnj in

MLM. As noticeable patterns regarding ICCs, the bias and RMSE of τ̂00 tended to decrease

with decreasing ICCs inMLM-Logistic andGAMM. And the bias and RMSE of τ̂11 decreased
with increasing ICCs in MLM-Logistic and those of τ̂01 decreased with increasing ICCs

mainly in GAMM.

4.3.2. Results for GAMM as a data-generating model

The averagedbias, RMSE, and the ratio ofM(SE) to SDby levels of simulation conditions are

reported in Table 5 for fixed and random effects of GAMM and MLM, and in Table 6 for

averaged basis coefficients across nine basis coefficients of each smooth function in
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Table 4. Simulation study: Results for predictions of level-specific TRT � MOD interactions (top)

and for random effects (bottom) of MLM-Logistic, GAMM, and MLM under MLM-Logistic as a data-

generating model

Conditions

MLM-Logistic GAMM MLM

RMD RMD RMD

Prediction of interactions

Level 1 J ¼ 30 0.205 0.107 0.519

J ¼ 70 0.170 0.073 0.526

J ¼ 200 0.162 0.050 0.528

nj ¼ 15 0.173 0.089 0.522

nj ¼ 30 0.187 0.070 0.527

ICC ¼ :05 0.190 0.080 0.531

ICC ¼ :1 0.189 0.079 0.526

ICC ¼ :3 0.159 0.081 0.517

Level 2 J ¼ 30 0.312 0.208 0.554

J ¼ 70 0.318 0.161 0.546

J ¼ 200 0.323 0.127 0.554

nj ¼ 15 0.347 0.180 0.554

nj ¼ 30 0.286 0.156 0.548

ICC ¼ :05 0.329 0.150 0.547

ICC ¼ :1 0.333 0.156 0.574

ICC ¼ :3 0.290 0.196 0.532

Random effects Conditions

MLM-Logistic GAMM MLM

Bias RMSE Bias RMSE Bias RMSE

τ00 J ¼ 30 0.131 0.155 -0.018 0.041 -0.007 0.038

J ¼ 70 0.116 0.126 -0.006 0.026 0.002 0.026

J ¼ 200 0.101 0.105 -0.001 0.016 0.006 0.018

nj ¼ 15 0.109 0.122 -0.011 0.031 0.001 0.029

nj ¼ 30 0.123 0.134 -0.006 0.025 0.000 0.025

ICC ¼ :05 0.099 0.104 -0.002 0.011 0.005 0.013

ICC ¼ :1 0.105 0.112 -0.005 0.018 0.002 0.018

ICC ¼ :3 0.143 0.169 -0.017 0.054 -0.006 0.051

τ11 J ¼ 30 0.044 0.068 -0.007 0.034 -0.007 0.034

J ¼ 70 0.045 0.056 -0.001 0.023 -0.001 0.023

J ¼ 200 0.042 0.046 0.000 0.014 0.000 0.014

nj ¼ 15 0.043 0.058 -0.004 0.026 -0.003 0.026

nj ¼ 30 0.045 0.056 -0.002 0.021 -0.002 0.021

ICC ¼ :05 0.052 0.063 -0.003 0.024 -0.002 0.024

ICC ¼ :1 0.047 0.059 -0.002 0.024 -0.002 0.024

ICC ¼ :3 0.032 0.048 -0.004 0.024 -0.004 0.024

τ01 J ¼ 30 0.074 0.086 0.019 0.348 0.022 0.295

J ¼ 70 0.070 0.074 0.004 0.189 0.004 0.174

J ¼ 200 0.063 0.064 0.003 0.105 0.001 0.100

nj ¼ 15 0.068 0.075 0.009 0.256 0.014 0.216

nj ¼ 30 0.070 0.075 0.008 0.173 0.004 0.163

ICC ¼ :05 0.071 0.074 0.023 0.260 0.019 0.214

ICC ¼ :1 0.070 0.074 -0.003 0.208 0.001 0.188

Continued
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GAMM. The results of all 18 simulation conditions are presented in the figures of

Appendix S6.

Accuracy of parameter estimates and precision of GAMM. As shown in the GAMM

columns inTable 5 and the figures of Appendix S6, the bias of the intercept estimate (γ̂00),
the TRT estimate (γ̂02), the variance and covariance estimates of random intercept and

slope (τ̂00, τ̂11, τ̂01), and the variance estimate of random residuals (σ̂2) was close to 0

(ranging from �0:086 to 0:109 for all fixed and random estimates in all 18 conditions).

Overall, the bias and RMSE of these estimates decreased with increasing number of

clusters (J) and cluster size (nj). For γ̂00, γ̂02, and τ̂00, the bias and RMSE of the estimates

decreased with smaller ICCs. However, this pattern was not observed for the other

parameter estimates. Except for two of the conditions with the smallest number of

clusters and smallest cluster size (J ¼ 30, nj ¼ 15, ICC ¼ :05; and J ¼ 30, nj ¼ 15, ICC =
.1), the ratios of M(SE) to SD for both γ̂00 and γ̂02 were close to 1 (ranging from 0.950 to
1.067 and from 0.964 to 1.024 across 16 conditions, respectively). The ratio approached 1

as the number of clusters and cluster size increased and as ICC decreased.

As presented in Table 6, the bias of the average basis coefficient estimate (across nine

basis coefficient estimates) for each smooth function was relatively small (ranging from

�0:012 to 0:278 across 18 conditions and four smooth functions). For all level-1

(f 2 xij � x:j
� �

zj ¼ 0
� �

; f 2 xij � x:j
� �

zj ¼ 1
� �

) and level-2 (f 1 x:j
� �

zj ¼ 0
� �

; f 1 x:j
� �

zj ¼ 1
� �

)

smooth functions, the bias and RMSE decreased with increasing the number of clusters

and cluster size. However, different patterns were found regarding ICCs at level 1 and
level 2. The bias and RMSE decreased with increasing ICCs for the smooth functions at

level 1, whereas they decreased with decreasing ICCs for the smooth functions at level 2.

Because a larger ICC corresponds with greater between-cluster variability, the pattern at

level 2 indicates that the accuracy of basis coefficients for level-2 smooth functions can

decrease when there is greater between-cluster variability. The ratio of M(SE) to SD for

level-1 smooth functions ranged from0:900 to 1:003 and the ratio ofM(SE) to SD for level-2

smooth functions ranged from 0:920 to 1:033. In addition, as shown in Table 6, the mean

RMDs across 500 replications are close to 0 (ranged from 0:037 to 0:326) across all
simulation conditions, indicating that the predicted smooth functions are close to the true

smooth functions. The RMDs decreasedwith increasing number of clusters (J) and cluster

Table 4. (Continued)

Random effects Conditions

MLM-Logistic GAMM MLM

Bias RMSE Bias RMSE Bias RMSE

ICC ¼ :3 0.067 0.077 0.006 0.174 0.006 0.167

σ2 J ¼ 30 0.003 0.036 -0.004 0.036 0.001 0.036

J ¼ 70 0.003 0.023 -0.002 0.023 0.001 0.023

J ¼ 200 0.004 0.015 0.000 0.014 0.003 0.014

nj ¼ 15 0.003 0.029 -0.003 0.029 0.000 0.029

nj ¼ 30 0.004 0.020 -0.002 0.020 0.003 0.020

ICC ¼ :05 0.004 0.025 -0.002 0.024 0.002 0.024

ICC ¼ :1 0.004 0.024 -0.002 0.023 0.002 0.024

ICC ¼ :3 0.002 0.025 -0.003 0.025 0.001 0.025

Note. RMD is themean the root mean squared difference between predicted values and true values

across 500 replications.
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Table 5. Simulation study: Results for fixed and random effects of GAMM (‘true’ model) and MLM

(misspecified model) under GAMM as a data-generating model

Parameters Conditions

GAMM MLM

Bias RMSE Ratio Bias RMSE Ratio

Fixed effects

γ00 J ¼ 30 -0.004 0.094 1.091 -0.028 0.137 1.721

J ¼ 70 -0.005 0.070 0.980 0.054 0.112 1.633

J ¼ 200 -0.002 0.033 1.009 0.075 0.105 1.612

nj ¼ 15 -0.005 0.079 1.045 0.022 0.144 1.546

nj ¼ 30 -0.002 0.053 1.008 0.045 0.092 1.765

ICC ¼ :05 -0.002 0.048 1.016 0.011 0.114 1.951

ICC ¼ :1 0.004 0.058 1.056 0.026 0.105 1.687

ICC ¼ :3 -0.013 0.093 1.009 0.064 0.136 1.328

γ02 J ¼ 30 0.031 0.113 1.109 -0.011 0.145 1.429

J ¼ 70 0.014 0.077 0.981 0.024 0.066 1.151

J ¼ 200 0.006 0.043 0.979 0.030 0.058 1.250

nj ¼ 15 0.031 0.107 1.054 0.012 0.125 1.381

nj ¼ 30 0.003 0.049 0.992 0.017 0.055 1.173

ICC ¼ :05 0.014 0.063 1.026 0.056 0.091 1.397

ICC ¼ :1 0.016 0.076 1.051 -0.015 0.085 1.272

ICC ¼ :3 0.020 0.095 0.992 0.001 0.092 1.161

Random effects

τ00 J ¼ 30 0.031 0.074 0.218 0.233

J ¼ 70 0.005 0.034 0.253 0.259

J ¼ 200 -0.002 0.016 0.257 0.259

nj ¼ 15 0.022 0.052 0.209 0.218

nj ¼ 30 0.000 0.030 0.276 0.283

ICC ¼ :05 0.004 0.018 0.260 0.262

ICC ¼ :1 0.018 0.038 0.239 0.243

ICC ¼ :3 0.011 0.067 0.229 0.246

τ11 J ¼ 30 -0.003 0.035 0.001 0.038

J ¼ 70 -0.002 0.023 0.005 0.026

J ¼ 200 0.000 0.014 0.006 0.016

nj ¼ 15 -0.002 0.026 0.003 0.028

nj ¼ 30 -0.001 0.022 0.005 0.025

ICC ¼ :05 -0.001 0.023 0.005 0.027

ICC ¼ :1 -0.002 0.024 0.004 0.026

ICC ¼ :3 -0.001 0.025 0.004 0.027

τ01 J ¼ 30 -0.011 0.261 -0.094 0.278

J ¼ 70 0.009 0.115 -0.035 0.155

J ¼ 200 0.002 0.097 -0.058 0.106

nj ¼ 15 -0.001 0.164 -0.040 0.185

nj ¼ 30 0.000 0.151 -0.084 0.174

ICC ¼ :05 0.003 0.167 -0.075 0.184

ICC ¼ :1 -0.008 0.159 -0.065 0.179

ICC ¼ :3 0.004 0.147 -0.047 0.175

σ2 J ¼ 30 0.008 0.039 0.191 0.198

J ¼ 70 0.004 0.025 0.132 0.136

J ¼ 200 0.000 0.014 0.133 0.134

Continued
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size (nj) for all smooth functions. They decreased with decreasing ICC for the level-2

smooth functions, whereas they were not affected by ICC for the level-1 smooth

functions.

Effects of modelling linear TRT × MOD on estimates of MLM and on prediction for

level-specific TRT ×MOD interactions. As presented in Table 5, a larger bias, RMSE, and

ratio ofM(SE) to SDwere observed inMLM estimates than inGAMM estimates. First, for all

parameter estimates reported in Table 5, the bias decreased with decreasing number of

clusters and cluster sizes, except for τ̂01 and σ̂2 regarding the number of clusters. Second,

for all parameter estimates, the RMSE decreased with increasing number of clusters and

cluster sizes, with a few exceptions for τ̂00 with respect to the number of clusters and

cluster sizes, and for σ̂2 with respect to cluster sizes. Third, bias tended to be larger with

decreasing levels of ICCs for all parameter estimates except γ̂00. Fourth, τ̂00, τ̂11, and τ̂01
fromMLMwere overestimated. Fifth, the ratio ofM(SE) to SD inMLM ranged from1.210 to

2.241 for γ̂00 and from 1.110 to 2.233 for γ̂02 across 18 simulation conditions, indicating
that standard errors of γ̂00 and γ̂02 were overestimated. The degree of overestimation of

standard errors increased mainly with decreasing number of clusters and ICCs. To

conclude, these results suggest that misspecifying the functional forms for TRT × MOD

interactions leads to biased estimates of MLM parameters. In addition, as shown in

Table 6, larger RMDs were found in MLM than in GAMM across all simulation conditions,

indicating thatmodelling linear TRT×MOD interactions leads to biased predictions of the

interactions in the presence of nonlinear interactions.

5. Summary and discussion

In this paper we presented a GAMM specification to model a nonlinear multilevel TRT ×
MOD interaction with unconflated effects in intervention studies from C-RCT designs.

The nonlinearmultilevel TRT×MOD interactionwasmodelled using smooth functions in
GAMM. Maximum likelihood estimation was implemented using the gamm function in

the mgcv package. Because the smooth functions are reformulated as random effects in

the gamm function, it may be challenging for researchers in the social and behavioural

sciences to interpret results from the software output. Thus, core derivations from the

statistical literature were explained.

The GAMM specification and its estimation were illustrated using instructional

intervention data from a C-RCT. We provided the R code to visualize the nonlinear

multilevel TRT × MOD interaction with unconflated effects. Because MLM is a dominant

Table 5. (Continued)

Parameters Conditions

GAMM MLM

Bias RMSE Ratio Bias RMSE Ratio

nj ¼ 15 0.005 0.031 0.111 0.117

nj ¼ 30 0.002 0.021 0.194 0.196

ICC ¼ :05 0.004 0.026 0.175 0.178

ICC ¼ :1 0.004 0.026 0.146 0.151

ICC ¼ :3 0.004 0.026 0.135 0.140

Note. Ratio of M(SE) to SD was considered for fixed effects; J is the number of clusters; nj is the

cluster size; ICC is the intraclass correlation coefficient.
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analytic method to detect a multilevel TRT × MOD interaction in education, the GAMM

results were contrasted with MLM results. In GAMM, TRT effects were different

depending on the values of MOD (pretest scores). However, this pattern was obscured

when the linear multilevel TRT × MOD interaction was modelled in MLM. In addition,

simulation studies were implemented to evaluate the performance of GAMM in

recovering the level-specific logistic (parametric) form of the TRT × MOD interaction,

compared with MLM-Logistic as an alternative approach and MLM as a misspecification

approach.We found that GAMM outperformedMLM-Logistic to recover the level-specific
logistic form of TRT × MOD interaction and MLM led to incorrect prediction of the

Table 6. Simulation study: Results (bias, RMSE, and ratio) of basis coefficient estimates in GAMM,

and RMD in GAMM and MLM under GAMM as a data-generating model

Smooth functions Conditions

GAMM MLM

Bias RMSE Ratio RMD RMD

f 2 xij � x:j
� �

zj ¼ 0
� �

J ¼ 30 0.155 0.511 0.938 0.126 0.398

J ¼ 70 0.147 0.397 0.945 0.084 0.361

J ¼ 200 0.032 0.192 0.980 0.045 0.439

nj ¼ 15 0.154 0.405 0.940 0.110 0.365

nj ¼ 30 0.069 0.329 0.968 0.071 0.433

ICC ¼ :05 0.116 0.381 0.964 0.089 0.380

ICC ¼ :1 0.110 0.369 0.952 0.095 0.410

ICC ¼ :3 0.108 0.350 0.945 0.095 0.408

f 2 xij � x:j
� �

zj ¼ 1
� �

J ¼ 30 0.177 0.444 0.936 0.130 0.326

J ¼ 70 0.133 0.348 0.991 0.084 0.297

J ¼ 200 0.037 0.207 0.985 0.045 0.359

nj ¼ 15 0.157 0.396 0.966 0.110 0.305

nj ¼ 30 0.074 0.270 0.976 0.077 0.350

ICC ¼ :05 0.123 0.344 0.980 0.095 0.308

ICC ¼ :1 0.115 0.334 0.967 0.095 0.334

ICC ¼ :3 0.109 0.320 0.965 0.095 0.340

f 1 x:j
� �

zj ¼ 0
� �

J ¼ 30 0.105 0.355 0.953 0.217 0.676

J ¼ 70 0.101 0.278 0.967 0.126 0.555

J ¼ 200 0.075 0.236 0.983 0.071 0.633

nj ¼ 15 0.142 0.389 0.962 0.179 0.589

nj ¼ 30 0.045 0.191 0.974 0.118 0.654

ICC ¼ :05 0.067 0.223 0.996 0.095 0.689

ICC ¼ :1 0.081 0.293 0.960 0.158 0.578

ICC ¼ :3 0.133 0.353 0.947 0.184 0.597

f 1 x:j
� �

zj ¼ 1
� �

J ¼ 30 0.083 0.387 0.977 0.217 0.536

J ¼ 70 0.051 0.322 0.992 0.138 0.416

J ¼ 200 0.003 0.169 0.996 0.077 0.430

nj ¼ 15 0.084 0.380 0.985 0.173 0.464

nj ¼ 30 0.007 0.205 0.992 0.134 0.457

ICC ¼ :05 0.036 0.231 0.998 0.118 0.465

ICC ¼ :1 0.043 0.272 0.990 0.138 0.487

ICC ¼ :3 0.058 0.375 0.978 0.195 0.430

Note. For each smooth function, the bias, RMSE, and ratio reported are averaged across nine basis

coefficient estimates; RMD is themean RMD across 500 replications; J is the number of clusters; nj is

the cluster size; ICC is the intraclass correlation coefficient.
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interaction. Simulation studies were also conducted to evaluate parameter recovery in

GAMM and to show consequences of modelling a nonlinear multilevel TRT × MOD as a

linearmultilevel TRT×MOD.Theparameter recovery inGAMMwas relatively satisfactory

inmost multilevel designs typical of educational intervention studies except designs with
small number of clusters, small cluster size, and small ICC. When ignoring the nonlinear

multilevel TRT×MOD interaction, biased estimates such as overestimated standard errors

and overestimated variance estimates of random effects were found. These bias patterns

were also observed in the empirical study.

The followingmethodological limitations remainbecause this paper is thefirst attempt

to apply the GAMM to model a nonlinear multilevel TRT × MOD interaction with

unconflated effects for educational intervention studies. First, we presented the GAMM

specification for two groups (control and treatment groups) in a two-level nested design.
As in Fuchs et al. (2021), there can be three groups (control, treatment 1, and treatment 2

groups). In this example, the two contrasts (e.g., between control and treatment 1 +
treatment 2; and between treatment 1 and treatment 2) can be created for the nonlinear

multilevel TRT × MOD interaction with unconflated effects. In addition, there are more

complex multilevel designs than the two-level nested design, such as three levels with

cross-classified units, for example, student (level 1) nested in a cross-classification of rater

and classroom (both level 2) nested in school (level 3). Further studies are needed to apply

the GAMM to detect a nonlinear multilevel TRT × MOD interaction with unconflated
effects for more than two groups and in more complex multilevel designs. Second, the

simulation study results are limited to the selected simulation conditions and the selected

parameters and nonlinear functions in this study. More extensive simulations that vary

these limited conditions should be conducted to make solid generalizations. Third, when

newly specified GAMMs are presented to researchers in substantive areas, it is important

to plan sample sizes to ensure high power for detecting hypothesizedmagnitudes of ATEs

and variability in treatment effects. In a C-RCT design, it is important to have a large

number of clusters for inferences about the ATE and to have a large number of clusters and
large cluster size for inferences about TRT × MOD (Raudenbush & Liu, 2000). Equations

for power calculation have been provided for TRT×MOD. For example, Raudenbush and

Liu (2000) derived a non-central F-statistic for the conflated fixed effects and variances of

random effects of site-level TRT × MOD in a multisite randomized trial (MRT) in which

individuals are randomly assigned within sites. Dong, Kelcey, and Spybrook (2020)

provided power calculation formulas for level-1 TRT × binary and continuous MOD in

MRTs. Bloom (2005) presented power calculation formulas for TRT × binary level-1 or

level-2 MOD in two-level C-RCTs. Spybrook, Kelcey, and Dong (2016) provided power
calculation formulas for level-2 TRT × Level-1 binary MOD and in C-RCTs. Dong, Kelcey,

and Spybrook (2018) presented power calculation formulas for level-3 TRT × level-1

binary and continuousMOD inC-RCTs. However, existing formulas for power calculation

have not been designed for detecting unconflated fixed and variances of random effects

for TRT × MOD in the C-RCT design. Further studies are needed to provide equations of

power calculations to detect such effects.

MLM is frequently used to detect a linear multilevel TRT × MOD interaction with

conflated effects in educational intervention studies. However, conflation results in
insensitivity to theoretically meaningful interactions, and estimates a weighted average of

within- and between-cluster effects in the presence of level-specific interaction effects. In

addition, a linear interaction is a misspecification in the presence of a more complex

nonlinear interaction. The main goal of this study is to illustrate the applicability of the

GAMM to detect a nonlinear multilevel TRT ×MOD interaction with unconflated effects.
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We hope that this paper can serve as an example of modelling nonlinear effects using

smooth functions in the GAMM for educational intervention research.
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