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A cluster randomized controlled trial (C-RCT) is common in educational intervention
studies. Multilevel modelling (MLM) is a dominant analytic method to evaluate treatment
effects in a C-RCT. In most MLM applications intended to detect an interaction effect, a
single interaction effect (called a conflated effect) is considered instead of level-specific
interaction effects in a multilevel design (called unconflated multilevel interaction effects),
and the linear interaction effect is modelled. In this paper we present a generalized
additive mixed model (GAMM) that allows an unconflated multilevel interaction to be
estimated without assuming a prespecified form of the interaction. R code is provided to
estimate the model parameters using maximum likelihood estimation and to visualize the
nonlinear treatment-by-covariate interaction. The usefulness of the model is illustrated
using instructional intervention data from a C-RCT. Results of simulation studies showed
that the GAMM outperformed an alternative approach to recover an unconflated logistic
multilevel interaction. In addition, the parameter recovery of the GAMM was relatively
satisfactory in multilevel designs found in educational intervention studies, except when
the number of clusters, cluster sizes, and intraclass correlations were small. When
modelling a linear multilevel treatment-by-covariate interaction in the presence of a
nonlinear effect, biased estimates (such as overestimated standard errors and
overestimated random effect variances) and incorrect predictions of the unconflated
multilevel interaction were found.

I. Introduction

I.1. Study motivation

Intervention studies in education (e.g., concerning curriculum, policy, or instructional
programmes) have become more common over the past two decades. The evaluation
setting is often a randomized controlled trial (RCT). One popular RCT design in education
research is the cluster RCT (C-RCT) with control and treatment groups. In the C-RCT
design, clusters (e.g., schools) are randomized to the control or treatment group, and the
inferential goal is to test hypotheses related to treatment effects.
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The effectiveness of the intervention measures whether a programme, policy, or
approach improves outcomes. In education, outcomes are commonly continuous
variables (e.g., continuous scale scores of students’ achievement). Multilevel modelling
(MLM) is a dominant analytic method because it allows researchers to model complex
patterns of variability within and across different levels of analysis (e.g., students in
schools) to evaluate whether outcomes are improved due to the effects of covariates.
Education researchers often report an average treatment effect (ATE), sometimes
conditional on a pre-intervention covariate as a moderator (MOD; e.g., pretest scores,
demographic information) (hereafter denoted TRT X MOD, indicating that treatment
effects (TRT) differ based on the values of MOD). MODs have an important role in
understanding variability in treatment effects, and they are commonly used as covariates
in MLM to explain variability in treatment effects. In multilevel settings commonly found
in education, MODs can be assessed either at the individual level or at the cluster level. In
addition, MODs can be categorical (e.g., grade levels, school types) or continuous (e.g.,
student pretest scores, teaching experience in years). In this study, we focus on
continuous MODs assessed at the individual level and a categorical TRT at the cluster level
in a C-RCT.

1.2. Current issues

In multilevel designs, the TRT X MOD effect represents multilevel interaction or
moderation (e.g., Preacher, Curran, & Bauer, 2006; Raudenbush & Bryk, 2002). In testing
hypotheses of multilevel interaction, several conceptual and statistical problems have
been discussed (Preacher, Zhang, & Zyphur, 2016). Preacher et al. (2016) noted that
problems occur because most applications testing multilevel interaction do not separate
level-1 and level-2 effects into their orthogonal components (in a two-level design as an
example) and instead combine them into a single coefficient (called conflation). As a
conceptional problem, conflation results in insensitivity to the theoretically meaningful
ways in which multilevel interaction can occur. As a statistical problem, conflation leads
to estimates of a weighted average of within- and between-cluster effects in the presence
of the level-specific interaction effects. As a solution, Preacher and Sterba (2019)
suggested modelling level-specific interaction (TRT X MOD) for fixed effects by centring a
covariate (e.g., pretest) at its cluster mean (called the unconflated solution).

‘When a continuous MOD (e.g., pretest scores) and a treatment variable (e.g., control
versus treatment groups) are considered in detecting TRT X MOD interaction, the linear
effect of the TRT X MOD interaction is often modelled in MLM to detect interaction effects
(Preacher & Sterba, 2019). When the treatment variable is dummy-coded (control group =
0, treatment group = 1), the MOD effect is the linear effect of MOD in the control group
and the MOD + TRT X MOD effect is the linear effect of MOD in the treatment group. As
such, the expected difference between the control and the treatment condition is the
marginal TRT effect plus the TRT X MOD effect for each value of MOD. If the relationship
between an outcome and MOD is incorrectly assumed to be linear, estimates of treatment
effects are expected to be inaccurate (Harrell, 2015). To model nonlinear TRT X MOD
interaction, Preacher and Sterba (2019) presented a logistic function in MLM. The
parametric logistic function may work well when there are floor and ceiling effects. As a
more flexible approach, smooth functions can be used for MODs that are known to
predict an outcome nonlinearly. To the best of our knowledge, smooth functions have not
been applied to MLM in the context of detecting unconflated TRT X MOD interaction
effects.
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1.3. Study purpose

The purpose of this study is to illustrate modelling of nonlinear multilevel TRT X MOD
interaction with unconflated effects in intervention studies from C-RCT designs. With
multilevel TRT X MOD interaction with unconflated effects, the TRT effect is estimated as
a function of MOD at each level. A modelling framework to detect the nonlinear multilevel
interaction effect is the generalized additive mixed model (GAMM,; Lin & Zhang, 1999;
Wood, 2017) with an identity link function. A GAMM can be considered to be a multilevel
mixed model (having fixed and random effects) with an identity link in which the linear
predictor partly depends on some unknown smooth functions. The nonlinear multilevel
TRT X MOD interaction using GAMM is illustrated using an instructional intervention data
set in a C-RCT and compared with the linear multilevel TRT X MOD interaction from
MLM. For parameter estimation, we utilize the gamm function in the mgcv package
(Wood, 2019) in R (R Core Team, 2020) for maximum likelihood estimation. In the gamm
function, smooth functions in GAMM are reformulated as random effects, and parameters
of GAMM are estimated as parameters of generalized linear mixed-effects models (GLMMs)
(Wood, 2019). In this study, the key derivations on the reformulation of smooth functions
as random effects by Wood (2004, 2006, 2017, p. 239) in the statistics literature are
illustrated for researchers in the social and behavioral sciences. Furthermore, the R code is
provided to visualize nonlinear multilevel TRT X MOD based on results from the gamm
function. In addition, the accuracy and precision of parameter estimates is evaluated and
the consequences of modelling linear multilevel TRT X MOD are presented in the
presence of nonlinear multilevel TRT X MOD via simulation.

The remainder of this paper is organized as follows. In Section 2 we present the GAMM
specification, provide the estimation method using R, and describe model checking and
testing. In Section 3 we illustrate the model using an empirical data set. In Section 4 we
present the design of simulation studies and their results. In Section 5 we conclude with a
summary and a discussion.

2. Methods

In this section, the GAMM is specified with a comparison to MLM, and its parameter
estimation method in the gamm function is described. In addition, testing for nonlinear
TRT X MOD interaction is explained.

2.1. The generalized additive mixed model
A GAMM with an identity link and univariate smooth functions is written as

H
p=Xy+Zu+ Y f,(x,),u~MN(0,X),y ~ N(y,0%), €))
»

where b is an index for the smooth function (b = 1, . . ., H); y is an outcome variable; X is a
design matrix for fixed effects; Z is a design matrix for random effects; y is the vector of
fixed parameters; u is the vector of random parameters; f; is the univariate smooth
function for covariate x,; X is a covariance matrix of the random parameters in a
multivariate normal (MN) distribution; 6° is an error variance; and N (b, 02) denotes a
normal distribution with mean p and an error variance 6°. Here, one can see that the
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GAMM is a GLMM in which the linear predictor partly depends linearly on some unknown
smooth functions (f3,).

A general form of GAMM with an identity link (equation (1)) can be presented using an
MLM specification with a smooth function for a nonlinear interaction of categorical TRT X
continuous MOD. To illustrate MLM specifications as GAMM in testing a nonlinear
multilevel interaction, a level-1 MOD (x;) and a level-2 TRT (z;; focal covariate) in a C-RCT
are considered for a level-1 outcome (y;) in a two-level nested design in which an
individual 7 is nested within a cluster j. For an unconflated solution for a nonlinear
multilevel interaction of categorical TRT X continuous MOD, a level-1 MOD x;; can be
decomposed into uncorrelated level-1 and level-2 components by subtracting the cluster
average x ; fromx;; (i.e., x;—x ) and using x ;as alevel-2 MOD: x;; = (xl, - X J-) + x ;. In this
design, researchers can test whether the level-1 part of the MOD (x;; — x ;) or level-2 part
of the MOD (x ) moderates a level-2 TRT (z)) effect on an outcome variable (y;). Below,
with the unconflated level-1 MOD (x;; — x ;) and the level-2 MOD (x ), we first present a
multilevel model specification for a /inear multilevel interaction of categorical TRT X
continuous MOD for comparison purposes and then present a multilevel model
specification for a nonlinear multilevel interaction with smooth functions as a special
case of the GAMM.

Following the multilevel model specification, notation, and symbols in Raudenbush
and Bryk (2002), the multilevel model with a random intercept By, a random slope By,
and a linear interaction of dummy-coded TRT X continuous MOD is written as follows for
a two-level nested design. A level-1 model is given by

Vi =PBo + Blj(xi] _xj) + 7y,
a level-2 model is presented as

Boj = Y00 + 701X + Y022) + V03X 2 + Uy,

Py = Y10 T Y112 + 1y,
and the reduced form is expressed as

Yii = Yoo + Y10 (‘x’J - XJ') + Yo1Xj t Yo2Zi T Yo3X,Zj + Y11 (xlj - x]‘)zj

gy + (o0 — X )uny + 1y, @

where v, is a fixed intercept; v, is a fixed effect of alevel-1 component (xlj —X f) of MOD
x;where z; = 057y, is a fixed effect of alevel-2 component x ; of MOD x,; where z; = 0; Yy,
is a fixed effect of a dummy coded level-2 TRT z; (a conditional treatment effect where
x; = 0); Yo3 is a fixed linear interaction of a level-2 component of MOD x;; (x ) and a
dummy coded level-2 TRT z;; v, is a fixed linear interaction of a level-1 component of
MOD x;; (x; — x;) and a dummy coded level-2 TRT z;; u; is a random intercept; uy; is a
random slope of a level-1 component (x,] - X j) of MOD x;;; and r;; is random error. The
random effects, [uoj, ulj] , are assumed to follow a multivariate normal distribution,
[uoj, Uy j} "~ MN (0, %), with a random intercept variance oo, a random slope variance 1,
and a covariance 7o in 2. The random error, 74, is assumed to follow a normal distribution,
ry ~ N(0,06%).
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Asaspecial case of the GAMM, the multilevel model with arandom intercept, a random
slope of alevel-1 covariate, and a smooth function for a nonlinear multilevel interaction of
dummy-coded TRT X continuous MOD is written as follows:

Yy =Yoo + V022 + 11 (%) (27 = 0) + 11 (%)) (27 = 1) + /(x5 — x;) (2 = 0)
2y — %) (7 = 1) +ug + (oo — o) uy + 7y, 3

where y,, is a mean of all smooth functions when z;(z; = 0 fora control group; z; = 1 fora
treatment group) is specified asa factorin R; £ (x;) (z; = 0) isasmooth function of alevel-
2 component x ; of MOD x; where z; = 0 (i.e., nonlinear level-2 interaction for a control
group); [, (x J») (zj = 1) is a smooth function of a level-2 component x ; of MOD x; where
z; = 1 (i.e., nonlinear level-2 interaction for a treatment group); f, (x; — x;) (z; = 0) isa
smooth function of a level-1 component x; — x; of MOD x;; where z; = 0 (i.e., nonlinear
level-1 interaction for a control group); and f, (x; — x;) (z; = 1) is a smooth function of a
level-1 component x; — x; of MOD x;; where z; = 1 (i.e., nonlinear level-1 interaction for
a treatment group).

In MLM (equation (2)) and GAMM (equation (3)), the same fixed intercept terms for
TRT (z)), Yoo + Yo2%j, are specified. However, different slope terms of MOD (x;) for TRT
(z)) are specified in MLM and GAMM. In MLM, Y3 ;2; and v, (x; — x;)z; terms are for
modelling /inear multilevel interaction: the yy;x ;z; is for the linear TRT X level-2 MOD
interaction and v, (xlj - X j)zj is for the linear TRT X level-1 MOD interaction. In GAMM,
the f, (x,) (27 = 0), /1(x,) (2 = 1), f2 (x5 = x,) (2 = 0), and f (x5 — %) (z; = 1) are
for modelling nonlinear multilevel interactions: the f; (x:,-) (zj = O) and f; (x J-) (zj = 1)
are for the nonlinear TRT X level-2 MOD interaction, and f,(x; — x;)(z; = 0) and
f2(xy — x;) (z; = 1) are for the nonlinear TRT X level-1 MOD interaction.

2.1.1. Smooth functions for categorical TRT x Continuous MOD
The univariate smooth function f, (x5, ) of a covariate x;, is specified as a weighted sum of a
set of basis functions over the covariate x;,:

K
Sr(xp) = Z Spebpr(xp), “@

k=1

where & is an index for a basis function (2 = 1,...,K), x;, is a covariate for a smooth
function b, 8y is a basis coefficient, and bye(x;) is the & th basis function for smooth
function b. The basis functions (b, = [Dp1, . . .,bh,(]/) are a set of known curves to
represent f,(x;) and they are functioned as covariates to estimate basis coefficients
®p = [6p1,- - .,('SbK]'). In the mgcv package, a smooth function is estimated with an
identification constraint such that f;, sums to 0 over the observed covariate values (i.e.,
>f1,(xpy) = 0 for each b, where v is an index for observations); otherwise, f,(x) can be
donfounded with the intercept. When the TRT is specified as a factor, the mgcv package
automatically computes a separate smooth function for the MOD effect, for every level in
TRT (Wieling, 2018).

In GAMM applications using the mgcv package, a cubic regression spline (CRS; Wood,
2017, Section 5.3.1) and a thin plate regression spline (TPRS; Wood, 2017, Section 5.5.1)
are commonly used splines for the univariate smooth function (f,(x;)). The CRS is a
smooth curve made up of sections of cubic polynomials. The sections are joined together
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atlocations referred to as Rnots. At each knot, the joined sections of the cubic polynomials
have equivalent values, first and second derivatives (Wood, 2017, Section 5.3.1). In the
mgcv package, the default is for the knots to be equally spaced over the entire range of the
observed covariate, and the number of knots is the same as the number of basis functions
(K). The CRS and the TRPS yield comparable results for the univariate smooth function
(e.g., Finch & Finch, 2018), although the CRS yields better computational efficiency;
therefore, we use the CRS in the current study.

As shown in equation (3), a nonlinear categorial TRT X continuous MOD interaction is
specified by including different smooth functions of a continuous MOD multiplied by a
dummy-coded TRT, f, (x j)zj and f, (x,] - X J)z]». In Appendix S1, the CRS for a smooth
function of z; = 0 or z; = 1 is illustrated.

For the selected basis functions for smooth functions, the number of basis functions
(K) should be selected to obtain a good fit. The dimensionality of the basis expansion is
determined by K. When K is too small, oversmoothing will occur, and when K is too large,
computation time is increased. K = 10 is the default in mgcv, and is often sufficient in
generalized additive modelling (e.g., Bringmann et al., 2017). Thus, we set K = 10 in the
current study. To determine whether a selected K is large enough, the value of the &-index
can be assessed. The k-index is a measure of the remaining pattern in the residuals. Let r
denote the vector of residuals 7, ordered according to the value of covariate x;, and define
differencing residuals that are near neighbours according to the covariate of the smooth
as Ay = 7(;41 — 7. The k-index is calculated as the ratio of (a) an estimate of the mean of

the squared differencing residuals (Gi =F [A;}) to (b) an estimate of residual variance

from a model fit (6*) (Wood, 2017, pp. 243, 330). A k-index below 1 indicates that there is
amissed pattern left in the residuals with a specified K, and a larger K should be considered
in this case. The k-index can be obtained through the gam.check function in mgcuv.

In addition to the k-index, the corrected Akaike information criterion (correctedAIC;
Wood, Pya, & Sifken, 2016) is considered to select a model with an adequate amount of
smoothing from the data among candidate models differing in K, as a commonly used
model selection criterion in generalized additive modelling (Ruppert, Wand, & Carroll,
2003, p. 120). The correctedAIC for GAMM uses the effective degrees of freedom (edf) as
the number of parameters needed to represent smooth functions in the penalty term of
the Akaike information criterion (AIC; Akaike, 1974). The correctedAIC is specified as
follows:

CorrectedAIC = —2/l + (2 X edf), ©)

where /I is the log-likelihood. The /I and edf in the correctedAIC for GAMM can be
extracted using the function logLik.gam for a fitted model in the mgcv package.

2.2. Parameter Estimation
The glmm function in the mgcv package was used for maximum likelihood estimation.
Below, we describe the details of the implementation of the glmm function for the
specified GAMM (equation (3)).

The ‘wiggliness’ of the smooth function f,(x};) is controlled less by K (the number of
basis functions) than by a quadratic smoothing penalty (e.g., Wood, 2017). The quadratic
smoothing penalty for the model can be written as
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M 8, S8, ©)

where ), is a smoothing parameter, §,, is a vector of basis coefficients, and S, is a penalty
matrix embedded as a diagonal block in a matrix. For smooth functions, the elements of S,,
are known and are determined by the chosen basis functions. The parameter A;, controls
the trade-off between goodness of fit and model smoothness.

For the identity link, the glmm function uses a GLMM formulation to fita GAMM. Wood
(2004, 2006, 2017, p. 239) showed how a smooth function in a GAMM can be
reformulated into fixed and random effects in a GLMM. Key derivations in Wood (2004,
2006, 2017, p. 239) are explained and illustrated in Appendix S2.

2.3. Testing for nonlinear TRTxMOD interactions

To determine whether or not the smooth function f, (x;,) is distinguishable from zero, the
null hypothesis Hy : f,(x5) = 0 for all x;, in the range of interest can be tested. A test
statistic for f, (o) is as follows:

v, i, ®)

where 7 is the rounded effective degrees of freedom (edp) for f, (x;,) (integer; e.g.,7 = 1in
the case of edf = 1.45),1fh is the vector of f,(x;) evaluated at the observed predictor
values, and V}b is a pseudo-inverse of Vg, of rank r» (Vy, = XV;X”, where X are basis
functions and V; is the covariance matrix of basis coefficient estimates) (Wood, 2017, pp.
305-3006). Under H , the test statistic T, follows a chi-square distribution (7, ~ ;(f) (Wood,
2013).

Smooth functions have confidence intervals around them, which are obtained by
taking the quantiles from the posterior distribution of the £, (x;) (Marra & Wood, 2012).
To calculate the distribution of the f,(x), a large number (e.g., 1,000) of basis coefficient
parameters (8;,) are simulated from the posterior distributions of basis coefficients using a
multivariate normal distribution:

8, ~ MN (S,,, V5) , ®

where 8, contains basis coefficient estimates. Then a large number of the f,(x;) can be
calculated using sampled basis coefficients and basis functions using equation (4). The
.025 and .975 quantiles of the posterior distribution can be used for the lower and upper
bounds of a 95% confidence interval of the smooth functions.

In addition to significance testing for the smooth function, we can visualize over what
ranges of MOD the smooth functions differ significantly (called the region of
significance). As an example, varying treatment effects depending on the levels of x
can be estimated for each level of a TRT variable (one for a control group and another for a
treatment group) using the GAMM specification (equation (3)), as shown in Figure 1
(left). Based on the result of the smooth functions, differences in the smooth functions in
Figure 1 (left) (a smooth function for a treatment group minus a smooth function for a

'In the gamm output, the degrees of freedom used in computing test statistics and p-values are presented as
Ref.df.
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Figure 1. Varying effects of MOD x on outcome y by the TRT z modelled with smooth functions
with confidence bands (left) and differences in outcome y between the two smooth functions (the
smooth function for the treatment group minus the smooth function for the control group) with
confidence bands (right). Vertical lines in Figure 1 (right) indicate windows of significant
differences.

control group) can be presented as in Figure 1 (right). Windows of significant differences
are found in ranges between 2.606 and 16.505, and between 26.495 and 40.828 (noted
with vertical bars in Figure 1 (right)) in x.

3. Empirical study

In this section a GAMM specification is illustrated using an empirical data set to detect a
nonlinear multilevel interaction of categorical level-2 TRT and continuous level-1 MOD in
a C-RCT design. The data set comes from Fuchs et al. (2021). The purpose of the study was
to evaluate the efficacy of two revised versions of first-grade Peer-Assisted Learning
Strategies (PALS) called the PALS-Only and PALS+Fluency programmes. Using a subset of
the data from Fuchs et al. (2021), an analysis goal in the present study is to test whether
the contrast of both PALS conditions against control moderates the effect of students’ pre-
treatment scores of phonological awareness (prePA) on students’ post-treatment scores of
phonological awareness (postPA).

3.1. Data description

3.1.1. Participants

Teachers from 33 first-grade classrooms in eight elementary schools and their 491
students participated. In the C-RCT, the 33 teachers were assigned randomly within
schools to a control group (11 teachers and their 171 students) and two treatment groups
- the PALS-Only (11 teachers and their 168 students) and PALS+Fluency groups (11
teachers and their 152 students). Cluster size (the number of students per classroom)
ranged from 1 to 18 (median = 15, semi-interquartile range = 1). One classroom had one
student in a PALS+Fluency group. Fuchs et al. (2021) reported that there were no
statistically significant differences among the three study groups on student demo-
graphics, teacher demographics, or pre-treatment reading performance.



Modelling nonlinear multilevel interactions using GAMM 501

3.1.2. Measures

Students were tested before and immediately following the 22-week treatment period.
The same measures, used by Yopp (1988) for segmenting sounds in words and by Fuchs,
Fuchs, Hosp, and Jenkins (2001) for blending sounds in words, were used to assess
phonological awareness at two time points. In this study, the same continuous scores of
phonological awareness were used in GAMM and MLM analyses as were used in Fuchs
et al. (2021). There are no missing data in prePA or postPA. As descriptive information, the
normality assumption of the postPA scores is tested. A Shapiro-Wilk test indicated that the
postPA scores were significantly non-normal (W = 0.950, p < .0001). However, the
deviance from normality is not large in the quantile-quantile plot and it is localized in the
tails of the distribution. As employed in Fuchs et al. (2021), zero-centring of the prePA and
postPA scores was used. The mean and standard deviation of prePA scores are 0 and 0.911,
respectively, and the mean and standard deviation of postPA scores are 0 and 0.842,
respectively.

3.2. Analyses and results

Below, we describe how to test whether the contrast of both PALS conditions against the
control group moderates the effect of prePA on students’ postPA. The R code for the
empirical data analyses is presented in Appendix S3.

3.2.1. Step I: Fitting the unconditional GAMM

The postPA results are from a nested data structure: 491 students (level 1) nested within
33 classes (level 2), nested within eight schools (level 3). Dependencies in the postPA
scores due to clusters (classes and schools) can be accounted for in the three-level model.
However, there was a convergence problem with estimating the variance of the random
intercept for schools in the unconditional three-level random intercept model.' This
problem may be due to having only eight schools, which is fewer upper-level units than
recommended in MLM (Snijders & Bosker, 2012). In this circumstance, it is recommended
to replace a random intercept with -1 dummy codes (where L is the number of clusters)
for cluster membership (e.g., McNeish & Stapleton, 2016). The unconditional GAMM with
the Z-1 dummy codes for eight schools is specified as follows (the model can be called an
MLM because smooth functions have not yet been introduced):

L
Vi =Yoo T 2 Dy + to; + 1y, (©)
=2
where /isanindex foraschool(! = 2, ..., L; L = 8in this example), D;is adummy code for

school membership with the first school as the reference school, and o; is the fixed effect
of D,. The intraclass correlation coefficient (ICC), calculated based on the results of
equation (9), was .107 (= 0.066/[0.066 + 0.552] where 0.066 is Ty and 0.552 is 6°),
which suggests that there is non-ignorable dependency in postPA scores due to class
clustering.

! The warning message from the /mer function in the hme4 package is ‘Model failed to converge with maxigradi =
0.00206106 (tol = 0.002, component 1)’.
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3.2.2. Step 2: Adding covariates (TRT and MOD) and comparing and checking models

In Step 2, a dummy-codedlevel-2 TRT (z; = 0 fora control group; z; = 1 for PALS-Only and
PALS+Fluency groups) and a cluster (class)-centred level-1 MOD (prePA x;; x; — x ; and
x ;) were considered as covariates. Prior to modelling, the relationship between postPA
scores (y,;) and prePA scores (x;; — x; or x;) was explored by TRT groups (z)) using
scatter plots. Figure 2 (top) presents a scatter plot of y,; againstx;; — x; by z;, and Figure 2
(bottom) presents a scatter plot of y,; against x; by z;. This figure shows nonlinear
relationships presented with smooth lines deviant from the linear dotted lines at each
level. In addition, the figure shows that the differences in postPA between the two groups
(presented with 95% confidence bands) differ depending on the levels of prePA. Given the
patterns identified in Figure 2, smooth functions of f, (x;)(z; = 0), f,(x;)(z; = 1),
Sfa(xg—x;)(z;=0), and f,(xy—x,)(z;=1) (along with z) were added to
equation (9).

The random-intercept-and-slope GAMM and the random-intercept GAMM were fit-
ted with 10 basis functions (K = 10 as the mgcv default). The k-index was close to 1
and the correctedAIC differs in the first decimal place for the models with K = 10
(correctedAIC = 897.706), 12 (correctedAIC = 897.683), 14 (correctedAIC =
897.606), and 16 (correctedAIC = 897.453). These results indicate that K = 10 is
adequate to obtain a good fit in both models.

Results of the random-intercept-and-slope GAMM were compared with those of the
random-intercept GAMM. In the random-intercept-and-slope GAMM, T;; was
3.699829 x 10~?. In addition, estimates and standard errors of fixed effects differed in
the second or third decimal places and patterns in the smooth functions were similar
between the two models. Furthermore, the AIC and the Bayesian information criterion
(BIC; Schwarz, 1978) suggested that the random-intercept GAMM fits better than the
random-intercept-and-slope GAMM (see the AIC and BIC values in Table 1 (top)). Thus,
the random-intercept GAMM was chosen for result interpretations. Residual analysis of
the model indicates that there is evidence of good model-data fit (see Appendix S4).

3.2.3. Step 3: Interpreting results

Table 1 (bottom) presents results of the random-intercept GAMM, compared with the
MLM results we will discuss in the following subsection. The GAMM results are
interpreted below.

A significant fixed conditional TRT (z;) effect was found (§y, = 0.439, SE = 0.071).
This result means that students in PALS-Only and PALS+Fluency programs together
outperformed control students. The corresponding effect size (Hedges’s g) is 0.537,
following the guideline suggested by What Works Clearinghouse (2017). When TRT is a
focal covariate at the class level (level 2) and MOD is a moderator, the level-2 TRT effect
(z)) on class means (y f) atany chosen value of the level-2 part of MOD (x ) is of interest to
interpret. Figure 3(a) presents the effect of z; on y J by quantiles (.1, .25, .5, .75, .9) of x;,

and Figure 3(b) shows the level-2 TRT effects (Y., + {f 1 (x j) (zj = 1) — f 1 (x J) (zj = 0) })
against x; from the GAMM. The region of significance of class-level prePA (x;) was
[—0.494, 0.568], presented in the vertical lines of Figure 3(b). PostPA scores were higher
for the treatment groups than for the control group in the range of [—0.494, 0.568|.
However, the difference at the extremes was not significant (see Figure 3(b)).
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Table 1. Empirical study: Results of model selection (top) and results (bottom) of GAMM and MLM

GAMM MLM

Model AIC BIC AIC BIC
Random-intercept 895.59 975.32 911.98 974.93
Random-intercept-and-slope 899.59 987.71 * *

GAMM MLM
Fixed effects EST SE EST SE
Intercept[yy] 0.384 0.133 0.318 0.149
x5 — X 4[Y10] - 0.693 0.056
X;[Yo1l - 0.537 0.189
2i[¥o5] 0.439 0.071 0.463 0.081
X ,;Zi[Yo3] - -0.183 0.209
(x5 — x4)2j[¥1;] - -0.212 0.070
Dslaz] -0.216 0.173 -0.304 0.206
Ds[az] -1.123 0.150 -1.056 0.180
Djloy] -0.353 0.155 -0.381 0.183
Dslos] -0.928 0.139 -0.877 0.161
Dglag] -0.680 0.152 -0.689 0.181
D[] -0.713 0.220 -0.506 0.232
Dglog] -0.679 0.146 -0.594 0.168
Random effects EST EST
Too 0.010 0.023
c? 0.316 0.337
Smooth functions Ref .edf T, (p-value)
Sa(xy —x;)(z =0) 3.630 47.747 (<2 x 10719 --
Falxg—x;)(z7=1) 3.153 51.731 (<2 x 107'%) -
f1(x;)(z=0) 2.270 7.728 (.000165) --
filxy)(z=1) 1.000 3.981 (.046566) --

Note. — indicates a parameter which was not considered under GAMM,; - - indicates a smooth
function which was not considered under MLM; Significance for fixed effects in bold based on #-test
at alpha = .05; * indicates that AIC and BIC were not reported because there was a convergence
problem with estimating the random-intercept-and-slope model.

3.3. Comparisons between GAMM and MLM

Because MLM is a dominant analytic method to evaluate TRT effects in a C-RCT, the results
of GAMM and MLM are compared for instructive purposes in Table 1 (bottom). Similarly
to the GAMM, there was a convergence problem with estimating a random intercept
variance for classes in the unconditional three-level MLM. L-1 dummy codes for school
memberships (where L is the number of schools) were considered to account for
dependency due to school clustering. In addition, there was a convergence problem with
estimating t; in the random-intercept-and-slope model (equation (2).? Thus, the

2 The error message from the Ime function was ‘nlminb problem, convergence error code = 1 message = iteration
limit reached without convergence (10)’.
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Figure 3. Empirical study: Probing an interaction between a level-2 TRT (focal covariate) and a
level-2 part of MOD for GAMM and MLM. Vertical lines in (b) and (d) indicate windows of significant
differences.

random-intercept MLM with dummy codes for school memberships was considered for
comparison with the random-intercept GAMM.

Regarding model selection between the random-intercept GAMM and the random-
intercept MLM as shown in Table 1 (top), the random-intercept GAMM fits better than the
random-intercept MLM based on the AIC, whereas the random-intercept MLM fits better
than the random-intercept GAMM based on the BIC. However, the differences in the BIC
between the two models were small (975.32 for GAMM and 974.93 for MLM, yielding a
difference of 0.39), indicating that there is no strong evidence that the random-intercept
MLM fits better than the random-intercept GAMM based on the BIC.

There were similar patterns in the effects of school memberships and variances of
random effects between GAMM and MLM, as shown in Table 1 (bottom). The standard
errors of fixed effects were larger in MLM than in GAMM. For the comparison with an
interaction between a level-2 TRT (z;) and the level-2 part of MOD (x;) from GAMM,
Figure 3(c) presents the effect of z; on Y by quantiles (.1,.25,.5,.75,.9) of x;, and
Figure 3(d) shows the level2 TRT effects (Yo, + Jo3x,) against x; from MLM. In
Figure 3(d), 95% confidence bands were calculated as

(?02 + Yozx j) + Zerit \/ Var(y,,) + Var (?03)303. + 2x ;Cov (?02, ?03). Unlike GAMM (Fig-

ure 3(a)), postPA scores were higher for the treatment groups than for the control group
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over all quantiles of x;, as shown in Figure 3(c). The region of significance of class-level
prePA (x ) was [—1.690, 0.800], presented in the vertical lines of Figure 3(d).

4. Simulation study

A simulation study was designed to investigate the relative performance of GAMM in
detecting a nonlinear multilevel TRT X MOD interaction compared with an alternative
approach (MLM with a logistic function [MLM-Logistic]) in the presence of the level-
specific logistic (parametric) form of the interaction; and the accuracy of GAMM
(equation (3)) parameter estimates and their precision (standard errors). For both foci,
the results of modelling a nonlinear TRT X MOD in the GAMM are compared with those of
modelling a linear TRT X MOD in the MLM.

4.1. Simulation design
A two-level nested design (e.g., students nested within schools) was chosen for the
simulation study. As is common in education intervention studies, a balanced design for
control and treatment groups was used. The following simulation conditions were varied
because they are expected to affect parameter recovery and precision in multilevel
designs (Liidtke, Marsh, Robitzsch, & Trautwein, 2011; Preacher, Zhang, & Zyphur,
2011): the number of clusters, cluster sizes (i.e., the number of individuals within a
cluster), and ICC for outcomes. The levels of these three simulation conditions were
chosen based on literature reviews of study designs for educational intervention studies in
30 papers published in the Journal of Educational Psychology, American Educational
Research Journal, and Exceptional Children, and in other related MLM work. The
number of clusters in 30 papers we reviewed ranged from 28 to 225 (median = 70, semi-
interquartile range = 25). To mimic these numbers of clusters, the number of clusters was
selected as 30 (small), 70 (medium), and 200 (large). Cluster sizes in 30 papers ranged
from 13 to 35 (median = 16, semi-interquartile range = 7). Balanced cluster sizes were
selected as 15 and 30 in the simulation study. Eight of 30 papers reported ICCs ranging
from .08 to .25. The ICC of outcomes was selected to be at .05, .10, or .30. ICC values are
rarely greater than .30 in educational and organizational studies (e.g., Fox, 2010).

For the first focus (the performance of GAMM in the presence of the logistic form of the
TRT X MOD), the data-generating model is MLM-Logistic for the level-specific TRT X MOD.
The MLM with a logistic function as a data-generating model is written as.

1

S S A G —x ) uy 4+ 1, 10
1+exp[_u]+uoj+(x,] x )y + 1y 10)

Yij

where p = Yoo + Y10 (X5 — X;) + Vo1, + Y0227 + Yo3%,2; + Y11 (x5 — )25, and the error
term 7y is assumed to be distributed independently as N (0, 6*). Fixed parameters were
selected to generate no differences in logistic functions between control and treatment
groups at level 1 and to have large differences in logistic functions between control and
treatment groups at level 2 as expected in a C-RCT: y4, =0, 719 = 1.5, v = 7.2,
Yoz = 1.7, 793 = 5.1, and y;; = 0.1. The three levels of ICC were manipulated using the
‘true’ variances of random intercept and random errors. That is, given the error variance
6% = 0.6, the three levels of Ty were calculated as 0.032, 0.067, and 0.257 for ICC = .05,
.10, and .30, respectively. The slope variance t1; was set as 0.1 and the covariance ty; was
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set to 0. In generating the logistic functions for control and treatment groups at level 2, it
was assumed that students with low and high values of MOD would not benefit from TRT
and students in the middle values of MOD might gain from TRT, but to some extent
conditional on TRT (Preacher & Sterba, 2019). The generated logistic function in MLM
with K = 10 is shown for one condition (number of clusters = 200, cluster size = 30,
ICC = .30) in Appendix S5 as an example.

For the second focus (parameter recovery of GAMM), the data-generating model is a
random-intercept-and-slope GAMM (equation (3)). Fixed parameters, y,, = 0.4 and
Yoz = 0.4, were selected to mimic the results of the empirical study. The same 62, Too, T11,
and 1o used for the first focus were also used in the second focus. For ‘true’ smooth
functions, increasing nonlinear functions were generated using equation (4) with
K = 10. According to literature reviews of educational intervention studies in the 30
papers mentioned earlier, educational interventions are implemented mainly to improve
learning for students with low achievement levels. Thus, larger nonlinear treatment
effects were generated at the lower end and smaller differences were generated in the
other ranges of a covariate, assuming that the intervention is the most effective for them.
Parameters of basis coefficients (6,) and generated smooth functions are shown for one
condition (number of clusters = 200, cluster size = 30, ICC = .30) in Appendix S5 for
illustrative purposes.

In the two data-generating models, the x; was generated from a standard normal
distribution and then x; and x;; — x; were calculated. For each simulation condition, the
same MOD (x; — x; and x ;) and generated functions for TRT X MOD were used across
replications, and random effects were generated at each replication.

The simulation conditions regarding multilevel designs were fully crossed, yielding 18
(= 3 numbers of clusters X 2 cluster sizes X 3 ICCs) conditions. Five hundred replications
were simulated for each condition. For MLM-Logistic and GAMM as data-generating
models, GAMM (equation (3)) was fitted to the generated data sets. In addition, for MLM-
Logistic and GAMM as data-generating models, MLM (equation (2)) was fitted to the same
generated data sets to demonstrate the consequences of modelling linear categorical TRT
X continuous MOD interactions in the presence of nonlinear categorical TRT X
continuous MOD interactions. And for MLM-Logistic as a data-generating model, MLM-
Logistic (see Appendix S5 for estimation in R) was fitted to the same generated data sets to
compare its results with GAMM'’s results. In addition, five candidate models for different
values of K (K = 6,8, 10, 12, 14) were fitted to the generated data sets for each replication
in a condition to check whether the K used in generated smooth functions was adequate
based on the correctedAIC. Thus, the total number of fitted models is 225,000 (18
multilevel designs X 500 replications X 3 models [MLM-Logistic, GAMM, and MLM] X 5
models for different values of K for MLM-Logistic as a data-generating model = 135,000; 18
multilevel designs X 500 replications X 2 models [GAMM and MLM] X 5 models for
different values of K for GAMM as a data-generating model = 90,000).

4.2. Analysis

For the first focus, the ‘true’ level-specific TRT X MOD generated using MLM-Logistic is
compared with the predicted level-specific TRT X MOD generated using MLM-Logistic,
MLM, and GAMM, respectively. As an evaluation measure for the TRT X MOD, the root
mean squared difference (RMD) between predicted values (calculated based on estimates
of fixed effects for TRT X MOD) and true values (calculated based on parameters of fixed
effects for TRT X MOD) was obtained. The RMD is interpreted as the standard deviation of
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the differences between predicted and true values. Equations to calculate the level-
specific TRT X MOD in the MLM-Logistic, GAMM, and MLM are presented in Table 2, and
equations to calculate the RMD are presented in Table 3 (top). As a summary of the RMD,
the mean of RMDs over 500 replications was reported. For variance and covariance
estimates of random intercept and slope (Too, 711, 7To1), and the variance estimate of
random residuals (62) in the MLM-Logistic, GAMM, and MLM, the bias (calculated
500

Z (%Oo,rep — ‘coo) /500 where rep denotes a replication number as an example) and the
rep=1

500
root mean square error (RMSE; calculated as z ('Eoo,rep - 1700)2 /500 as an example)
rep=1
was used to evaluate overall accuracy (i.e., bias and variability) patterns with respect to
levels of simulation conditions.

To evaluate the accuracy of estimates in the parametric part of the GAMM (7, £, and 6%)
in the second focus, the bias® and RMSE were calculated and compared across simulation
conditions. To evaluate the accuracy of standard errors, the mean standard error of the
estimates (M(SE)) across 500 replications was compared with the standard deviation of
the estimates (SD) across 500 replications. A ratio of M(SE) to SD close to 1 suggests that
the estimated standard errors are approximately correct. Because smooth functions are
generated based on basis functions and basis coefficients, the accuracy of basis coefficient

estimates (5, calculated based on ¥ and 5\) was evaluated using the bias and RMSE for the
smooth functions. As shown in equation (6), the precision of the smooth functions
depends on the standard errors of basis coefficient estimates. Thus, for the smooth
functions, the standard errors of the basis coefficient estimates were evaluated using the
ratio of M(SE) to SD. In addition, the RMD between predicted values of the level-specific
TRT X MOD under GAMM or MLM and ‘true’ smooth functions was obtained (see the RMD
calculations in Table 3 (bottom)). To summarize the results of the RMD, its mean over 500
replications was obtained. For GAMM, the k-index for K = 10 used in generating smooth
functions was close to 1 for all smooth functions in all conditions and a model with K = 10
was selected among candidate models with different values of K (K = 6,8,10,12,14)
based on the correctedAIC. These results indicate that K = 10 is adequate. In addition, to
show the effects of modelling l/inear TRT X MOD interactions on MLM parameter
estimates in the presence of nonlinear TRT X MOD interactions, the bias, RMSE, and the
ratio of M(SE) to SD were calculated for MLM estimates which are not part of the linear
interaction effects and are comparable with GAMM estimates: the intercept (y,,), the
effect of TRT (J,,), the covariance matrix of random effects C = [200, To1, 710, 711] ), and
the residual variance (62) in equation (2).

4.3. Results
The results below are summarized by data-generating models. No convergence problems
occurred in any simulation condition for MLM-Logistic, GAMM, or MLM.

3 Relative percentage bias was not considered because it leads to scaling problems in the case of parameters close
to 0 as in our simulation study.
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4.3.1. Results for MLM with a logistic function as a data-generating model

Table 4 shows the average RMD across 500 replications for level-specific TRT X MOD
interactions, and the bias and RMSE of Tog, %11, o1, and 6* in MLM-Logistic, GAMM, and
MLM. In Table 4, the averaged results are reported by the levels of simulation conditions in
order to understand the main effects of each condition. The results of all 18 simulation
conditions are presented in the figures of Appendix S6.

Performance of GAMM compared with MLM-Logistic for Predictions of Level-Specific
TRT X MOD Interactions. When the data-generating model is MLM-Logistic, the RMDs in
GAMM are smaller than the RMDs in MLM-Logistic as an alternative approach to GAMM in
all simulation conditions (the RMD ranged from 0.042 to 0.126 at level 1 and ranged from
0.106 and 0.281 atlevel 2 in GAMM,; it from 0.082 to 0.301 at level 1 and ranged from 0.250
and 0.410 at level 2 in MLM-Logistic). This result indicates that a logistic form of the level-
specific TRT X MOD interactions can be recovered better using smooth functions in
GAMM than using nonlinear fitting in MLM. Regarding patterns in the RMD by the levels of
simulation conditions, the following is observed. First, in MLM-Logistic, the RMD
decreased with increasing number of clusters (/) and decreasing cluster size (7)) at level 1
RMD, whereas it decreased with decreasing number of clusters (J) and increasing cluster
size (1)) at level 2 RMD. In the GAMM, the RMD decreased with increasing number of
clusters (/) and cluster size (712)) at bothlevels. Second, the RMD decreased with increasing
ICCsatlevel 1 and atlevel 2 (from ICC = .1 to ICC = .3) in MLM-Logistic, and it decreased
with decreasing ICCs at level 2 in GAMM; in GAMM, ICC had no effect on RMD at level 1.

Effects of modelling linear TRT X MOD on predictions for level-specific TRT X MOD
interactions. Under MLM-Logistic as the data-generating model, the RMDs in MLM with
linear TRT X MOD are larger than the RMDs in MLM-Logistic or in GAMM in all simulation
conditions (the RMD ranged from 0.499 to 0.597 at level 1 and from 0.512 and 0.663 at
level 2 in MLM). In the MLM, there were small differences (to two decimal places) in RMDs
across simulation conditions. These results suggest that misspecifying the functional
forms for TRT X MOD interactions in MLM leads to biased predictions of the interactions in
all multilevel designs we considered.

Random effects comparisons. Overall, the bias and RMSE of [%00, T11, 62} ' were smaller
in GAMM than in MLM-Logistic. For T, smaller bias was observed in GAMM than in MLM-
Logistic, while larger RMSE was found in GAMM than MLM-Logistic. In addition, the bias
and RMSE of [too, 11,6 " in MLM were similar to those in GAMM because
misspecification in MLM is not for these variances but for the level-specific TRT X MOD
interactions. With respect to simulation conditions, the bias and RMSE of ['i'oo, T11, 62],
tended to decrease as the number of clusters (/) and cluster size (12)) increased in all three
models, except for a few cases: the bias and RMSE of 7, in MLM-Logistic regarding 7;; the
bias of t;, and 67 regarding n;in MLM-Logistic; and the bias of 6% with respect to J and n;in
MLM. As noticeable patterns regarding ICCs, the bias and RMSE of 7, tended to decrease
with decreasing ICCs in MLM-Logistic and GAMM. And the bias and RMSE of 7;; decreased
with increasing ICCs in MLM-Logistic and those of Ty; decreased with increasing ICCs
mainly in GAMM.

4.3.2. Results for GAMM as a data-generating model

The averaged bias, RMSE, and the ratio of M(SE) to SD by levels of simulation conditions are
reported in Table 5 for fixed and random effects of GAMM and MLM, and in Table 6 for
averaged basis coefficients across nine basis coefficients of each smooth function in
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Table 4. Simulation study: Results for predictions of level-specific TRT x MOD interactions (top)
and for random effects (bottom) of MLM-Logistic, GAMM, and MLM under MLM-Logistic as a data-
generating model

MLM-Logistic GAMM MLM
Conditions RMD RMD RMD
Prediction of interactions
Level 1 J =30 0.205 0.107 0.519
J=70 0.170 0.073 0.526
J =200 0.162 0.050 0.528
n; =15 0.173 0.089 0.522
n; = 30 0.187 0.070 0.527
ICC = .05 0.190 0.080 0.531
ICC=.1 0.189 0.079 0.526
ICC=.3 0.159 0.081 0.517
Level 2 J =30 0.312 0.208 0.554
J=70 0.318 0.161 0.546
J =200 0.323 0.127 0.554
n; =15 0.347 0.180 0.554
n; = 30 0.286 0.156 0.548
ICC = .05 0.329 0.150 0.547
ICC=.1 0.333 0.156 0.574
ICC=.3 0.290 0.196 0.532
MLM-Logistic GAMM MLM
Random effects Conditions Bias RMSE Bias RMSE Bias RMSE
Too J =30 0.131 0.155 -0.018 0.041 -0.007 0.038
J=70 0.116 0.126 -0.006 0.026 0.002 0.026
J =200 0.101 0.105 -0.001 0.016 0.006 0.018
n; =15 0.109 0.122 -0.011 0.031 0.001 0.029
n; = 30 0.123 0.134 -0.006 0.025 0.000 0.025
ICC = .05 0.099 0.104 -0.002 0.011 0.005 0.013
ICC=.1 0.105 0.112 -0.005 0.018 0.002 0.018
ICC=.3 0.143 0.169 -0.017 0.054 -0.006 0.051
711 J =30 0.044 0.068 -0.007 0.034 -0.007 0.034
J =70 0.045 0.056 -0.001 0.023 -0.001 0.023
J =200 0.042 0.046 0.000 0.014 0.000 0.014
n; =15 0.043 0.058 -0.004 0.026 -0.003 0.026
n; = 30 0.045 0.056 -0.002 0.021 -0.002 0.021
ICC = .05 0.052 0.063 -0.003 0.024 -0.002 0.024
ICC=.1 0.047 0.059 -0.002 0.024 -0.002 0.024
ICC=.3 0.032 0.048 -0.004 0.024 -0.004 0.024
To1 J =30 0.074 0.086 0.019 0.348 0.022 0.295
J=70 0.070 0.074 0.004 0.189 0.004 0.174
J =200 0.063 0.064 0.003 0.105 0.001 0.100
n; =15 0.068 0.075 0.009 0.256 0.014 0.216
n; =30 0.070 0.075 0.008 0.173 0.004 0.163
ICC = .05 0.071 0.074 0.023 0.260 0.019 0.214
ICC=.1 0.070 0.074 -0.003 0.208 0.001 0.188

Continued



514  Sun-Joo Cho et al.

Table 4. (Continued)

MLM-Logistic GAMM MLM
Random effects Conditions Bias RMSE Bias RMSE Bias RMSE
ICC=.3 0.067 0.077 0.006 0.174 0.006 0.167
o? J =30 0.003 0.036 -0.004 0.036 0.001 0.036
J =70 0.003 0.023 -0.002 0.023 0.001 0.023
J =200 0.004 0.015 0.000 0.014 0.003 0.014
n; =15 0.003 0.029 -0.003 0.029 0.000 0.029
n; = 30 0.004 0.020 -0.002 0.020 0.003 0.020
ICC = .05 0.004 0.025 -0.002 0.024 0.002 0.024
ICC=.1 0.004 0.024 -0.002 0.023 0.002 0.024
ICC=.3 0.002 0.025 -0.003 0.025 0.001 0.025

Note. RMD is the mean the root mean squared difference between predicted values and true values
across 500 replications.

GAMM. The results of all 18 simulation conditions are presented in the figures of
Appendix S6.

Accuracy of parameter estimates and precision of GAMM. As shown in the GAMM
columnsin Table 5and the figures of Appendix S6, the bias of the intercept estimate (),
the TRT estimate (Y,,), the variance and covariance estimates of random intercept and
slope (Tgg, T11,To1), and the variance estimate of random residuals (6% was close to 0
(ranging from —0.086 to 0.109 for all fixed and random estimates in all 18 conditions).
Overall, the bias and RMSE of these estimates decreased with increasing number of
clusters (J) and cluster size (12)). For ¥, Y92, and Tgo, the bias and RMSE of the estimates
decreased with smaller ICCs. However, this pattern was not observed for the other
parameter estimates. Except for two of the conditions with the smallest number of
clusters and smallest cluster size (J = 30, n; = 15,1CC = .05; and J = 30, n; = 15,ICC =
.1), the ratios of M(SE) to SD for both Y, and y,, were close to 1 (ranging from 0.950 to
1.067 and from 0.964 to 1.024 across 16 conditions, respectively). The ratio approached 1
as the number of clusters and cluster size increased and as ICC decreased.

As presented in Table 6, the bias of the average basis coefficient estimate (across nine
basis coefficient estimates) for each smooth function was relatively small (ranging from
—0.012 to 0.278 across 18 conditions and four smooth functions). For all level-1
2 (xg = x5) (7 = )i/ 2 (x5 —x;) (77 = 1)y and level:2 (f, (x;) (2 = 0): /1 (%) (77 = 1))
smooth functions, the bias and RMSE decreased with increasing the number of clusters
and cluster size. However, different patterns were found regarding ICCs at level 1 and
level 2. The bias and RMSE decreased with increasing ICCs for the smooth functions at
level 1, whereas they decreased with decreasing ICCs for the smooth functions at level 2.
Because a larger ICC corresponds with greater between-cluster variability, the pattern at
level 2 indicates that the accuracy of basis coefficients for level-2 smooth functions can
decrease when there is greater between-cluster variability. The ratio of M(SE) to SD for
level-1 smooth functions ranged from 0.900 to 1.003 and the ratio of M(SE) to SD for level-2
smooth functions ranged from 0.920 to 1.033. In addition, as shown in Table 6, the mean
RMDs across 500 replications are close to 0 (ranged from 0.037 to 0.326) across all
simulation conditions, indicating that the predicted smooth functions are close to the true
smooth functions. The RMDs decreased with increasing number of clusters (/) and cluster
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Table 5. Simulation study: Results for fixed and random effects of GAMM (‘true’ model) and MLM
(misspecified model) under GAMM as a data-generating model

GAMM MLM
Parameters Conditions Bias RMSE Ratio Bias RMSE Ratio
Fixed effects
Yoo J =30 -0.004 0.094 1.091 -0.028 0.137 1.721
J =70 -0.005 0.070 0.980 0.054 0.112 1.633
J =200 -0.002 0.033 1.009 0.075 0.105 1.612
n; =15 -0.005 0.079 1.045 0.022 0.144 1.546
n; =30 -0.002 0.053 1.008 0.045 0.092 1.765
ICC = .05 -0.002 0.048 1.016 0.011 0.114 1.951
ICC=.1 0.004 0.058 1.056 0.026 0.105 1.687
ICC=.3 -0.013 0.093 1.009 0.064 0.136 1.328
Yo2 J =30 0.031 0.113 1.109 -0.011 0.145 1.429
J =70 0.014 0.077 0.981 0.024 0.066 1.151
J =200 0.006 0.043 0.979 0.030 0.058 1.250
n; =15 0.031 0.107 1.054 0.012 0.125 1.381
n; = 30 0.003 0.049 0.992 0.017 0.055 1.173
ICC = .05 0.014 0.063 1.026 0.056 0.091 1.397
ICC=.1 0.016 0.076 1.051 -0.015 0.085 1.272
ICC=.3 0.020 0.095 0.992 0.001 0.092 1.161
Random effects
Too J =30 0.031 0.074 0.218 0.233
J =70 0.005 0.034 0.253 0.259
J =200 -0.002 0.016 0.257 0.259
n; =15 0.022 0.052 0.209 0.218
n; = 30 0.000 0.030 0.276 0.283
ICC = .05 0.004 0.018 0.260 0.262
ICC=.1 0.018 0.038 0.239 0.243
ICC=.3 0.011 0.067 0.229 0.246
T11 J =30 -0.003 0.035 0.001 0.038
J=70 -0.002 0.023 0.005 0.026
J =200 0.000 0.014 0.006 0.016
n; =15 -0.002 0.026 0.003 0.028
n; = 30 -0.001 0.022 0.005 0.025
ICC = .05 -0.001 0.023 0.005 0.027
ICC=.1 -0.002 0.024 0.004 0.026
ICC= .3 -0.001 0.025 0.004 0.027
To1 J =30 -0.011 0.261 -0.094 0.278
J =70 0.009 0.115 -0.035 0.155
J =200 0.002 0.097 -0.058 0.106
n; =15 -0.001 0.164 -0.040 0.185
n; = 30 0.000 0.151 -0.084 0.174
ICC = .05 0.003 0.167 -0.075 0.184
ICC=.1 -0.008 0.159 -0.065 0.179
ICC=.3 0.004 0.147 -0.047 0.175
o> J =30 0.008 0.039 0.191 0.198
J =70 0.004 0.025 0.132 0.136
J =200 0.000 0.014 0.133 0.134

Continued
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Table 5. (Continued)

GAMM MLM
Parameters Conditions Bias RMSE Ratio Bias RMSE Ratio
n; =15 0.005 0.031 0.111 0.117
n; = 30 0.002 0.021 0.194 0.196
ICC = .05 0.004 0.026 0.175 0.178
ICC=.1 0.004 0.026 0.146 0.151
ICC=.3 0.004 0.026 0.135 0.140

Note. Ratio of M(SE) to SD was considered for fixed effects; J is the number of clusters; 7; is the
cluster size; ICC is the intraclass correlation coefficient.

size (ny) for all smooth functions. They decreased with decreasing ICC for the level-2
smooth functions, whereas they were not affected by ICC for the level-1 smooth
functions.

Effects of modelling linear TRT X MOD on estimates of MLM and on prediction for
level-specific TRT X MOD interactions. As presented in Table 5, a larger bias, RMSE, and
ratio of M(SE) to SD were observed in MLM estimates than in GAMM estimates. First, for all
parameter estimates reported in Table 5, the bias decreased with decreasing number of
clusters and cluster sizes, except for To; and 62 regarding the number of clusters. Second,
for all parameter estimates, the RMSE decreased with increasing number of clusters and
cluster sizes, with a few exceptions for Ty with respect to the number of clusters and
cluster sizes, and for 6° with respect to cluster sizes. Third, bias tended to be larger with
decreasing levels of ICCs for all parameter estimates except §,,. Fourth, To, 711, and Zo;
from MLM were overestimated. Fifth, the ratio of M(SE) to SD in MLM ranged from 1.210 to
2.241 for ¥y, and from 1.110 to 2.233 for ¥, across 18 simulation conditions, indicating
that standard errors of §,, and j,, were overestimated. The degree of overestimation of
standard errors increased mainly with decreasing number of clusters and ICCs. To
conclude, these results suggest that misspecifying the functional forms for TRT X MOD
interactions leads to biased estimates of MLM parameters. In addition, as shown in
Table 6, larger RMDs were found in MLM than in GAMM across all simulation conditions,
indicating that modelling linear TRT X MOD interactions leads to biased predictions of the
interactions in the presence of nonlinear interactions.

5. Summary and discussion

In this paper we presented a GAMM specification to model a nonlinear multilevel TRT X
MOD interaction with unconflated effects in intervention studies from C-RCT designs.
The nonlinear multilevel TRT X MOD interaction was modelled using smooth functions in
GAMM. Maximum likelihood estimation was implemented using the gamm function in
the mgcv package. Because the smooth functions are reformulated as random effects in
the gamm function, it may be challenging for researchers in the social and behavioural
sciences to interpret results from the software output. Thus, core derivations from the
statistical literature were explained.

The GAMM specification and its estimation were illustrated using instructional
intervention data from a C-RCT. We provided the R code to visualize the nonlinear
multilevel TRT X MOD interaction with unconflated effects. Because MLM is a dominant
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Table 6. Simulation study: Results (bias, RMSE, and ratio) of basis coefficient estimates in GAMM,
and RMD in GAMM and MLM under GAMM as a data-generating model

GAMM MLM
Smooth functions Conditions Bias RMSE Ratio RMD RMD
Sa(xg —x;)(z;=0) J =30 0.155 0.511 0.938 0.126 0.398
J=70 0.147 0.397 0.945 0.084 0.361
J =200 0.032 0.192 0.980 0.045 0.439
n; =15 0.154 0.405 0.940 0.110 0.365
n; = 30 0.069 0.329 0.968 0.071 0.433
ICC = .05 0.116 0.381 0.964 0.089 0.380
ICC = .1 0.110 0.369 0.952 0.095 0.410
ICC =3 0.108 0.350 0.945 0.095 0.408
falxy—x;)(z=1) J =30 0.177 0.444 0.936 0.130 0.326
J=70 0.133 0.348 0.991 0.084 0.297
J =200 0.037 0.207 0.985 0.045 0.359
n; =15 0.157 0.396 0.966 0.110 0.305
n; = 30 0.074 0.270 0.976 0.077 0.350
ICC = .05 0.123 0.344 0.980 0.095 0.308
ICC = .1 0.115 0.334 0.967 0.095 0.334
ICC =3 0.109 0.320 0.965 0.095 0.340
S1(x;)(z =0) J =30 0.105 0.355 0.953 0.217 0.676
J=70 0.101 0.278 0.967 0.126 0.555
J =200 0.075 0.236 0.983 0.071 0.633
n; =15 0.142 0.389 0.962 0.179 0.589
n; = 30 0.045 0.191 0.974 0.118 0.654
ICC = .05 0.067 0.223 0.996 0.095 0.689
ICC = .1 0.081 0.293 0.960 0.158 0.578
ICC =3 0.133 0.353 0.947 0.184 0.597
Fi(xy)(z=1) J =30 0.083 0.387 0.977 0.217 0.536
J=70 0.051 0.322 0.992 0.138 0.416
J =200 0.003 0.169 0.996 0.077 0.430
n; =15 0.084 0.380 0.985 0.173 0.464
n; = 30 0.007 0.205 0.992 0.134 0.457
ICC = .05 0.036 0.231 0.998 0.118 0.465
ICC = .1 0.043 0.272 0.990 0.138 0.487
ICC =3 0.058 0.375 0.978 0.195 0.430

Note. For each smooth function, the bias, RMSE, and ratio reported are averaged across nine basis
coefficient estimates; RMD is the mean RMD across 500 replications; J is the number of clusters; #; is
the cluster size; ICC is the intraclass correlation coefficient.

analytic method to detect a multilevel TRT X MOD interaction in education, the GAMM
results were contrasted with MLM results. In GAMM, TRT effects were different
depending on the values of MOD (pretest scores). However, this pattern was obscured
when the linear multilevel TRT X MOD interaction was modelled in MLM. In addition,
simulation studies were implemented to evaluate the performance of GAMM in
recovering the level-specific logistic (parametric) form of the TRT X MOD interaction,
compared with MLM-Logistic as an alternative approach and MLM as a misspecification
approach. We found that GAMM outperformed MLM-Logistic to recover the level-specific
logistic form of TRT X MOD interaction and MLM led to incorrect prediction of the
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interaction. Simulation studies were also conducted to evaluate parameter recovery in
GAMM and to show consequences of modelling a nonlinear multilevel TRT X MOD as a
linear multilevel TRT X MOD. The parameter recovery in GAMM was relatively satisfactory
in most multilevel designs typical of educational intervention studies except designs with
small number of clusters, small cluster size, and small ICC. When ignoring the nonlinear
multilevel TRT X MOD interaction, biased estimates such as overestimated standard errors
and overestimated variance estimates of random effects were found. These bias patterns
were also observed in the empirical study.

The following methodological limitations remain because this paper is the first attempt
to apply the GAMM to model a nonlinear multilevel TRT X MOD interaction with
unconflated effects for educational intervention studies. First, we presented the GAMM
specification for two groups (control and treatment groups) in a two-level nested design.
Asin Fuchs et al. (2021), there can be three groups (control, treatment 1, and treatment 2
groups). In this example, the two contrasts (e.g., between control and treatment 1 +
treatment 2; and between treatment 1 and treatment 2) can be created for the nonlinear
multilevel TRT X MOD interaction with unconflated effects. In addition, there are more
complex multilevel designs than the two-level nested design, such as three levels with
cross-classified units, for example, student (level 1) nested in a cross-classification of rater
and classroom (both level 2) nested in school (level 3). Further studies are needed to apply
the GAMM to detect a nonlinear multilevel TRT X MOD interaction with unconflated
effects for more than two groups and in more complex multilevel designs. Second, the
simulation study results are limited to the selected simulation conditions and the selected
parameters and nonlinear functions in this study. More extensive simulations that vary
these limited conditions should be conducted to make solid generalizations. Third, when
newly specified GAMMs are presented to researchers in substantive areas, it is important
to plan sample sizes to ensure high power for detecting hypothesized magnitudes of ATEs
and variability in treatment effects. In a C-RCT design, it is important to have a large
number of clusters for inferences about the ATE and to have a large number of clusters and
large cluster size for inferences about TRT X MOD (Raudenbush & Liu, 2000). Equations
for power calculation have been provided for TRT X MOD. For example, Raudenbush and
Liu (2000) derived a non-central F-statistic for the conflated fixed effects and variances of
random effects of site-level TRT X MOD in a multisite randomized trial (MRT) in which
individuals are randomly assigned within sites. Dong, Kelcey, and Spybrook (2020)
provided power calculation formulas for level-1 TRT X binary and continuous MOD in
MRTs. Bloom (2005) presented power calculation formulas for TRT X binary level-1 or
level-2 MOD in two-level C-RCTs. Spybrook, Kelcey, and Dong (2016) provided power
calculation formulas for level-2 TRT X Level-1 binary MOD and in C-RCTs. Dong, Kelcey,
and Spybrook (2018) presented power calculation formulas for level-3 TRT X level-1
binary and continuous MOD in C-RCTs. However, existing formulas for power calculation
have not been designed for detecting unconflated fixed and variances of random effects
for TRT X MOD in the C-RCT design. Further studies are needed to provide equations of
power calculations to detect such effects.

MLM is frequently used to detect a linear multilevel TRT X MOD interaction with
conflated effects in educational intervention studies. However, conflation results in
insensitivity to theoretically meaningful interactions, and estimates a weighted average of
within- and between-cluster effects in the presence of level-specific interaction effects. In
addition, a linear interaction is a misspecification in the presence of a more complex
nonlinear interaction. The main goal of this study is to illustrate the applicability of the
GAMM to detect a nonlinear multilevel TRT X MOD interaction with unconflated effects.
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‘We hope that this paper can serve as an example of modelling nonlinear effects using
smooth functions in the GAMM for educational intervention research.
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