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Aim 1: CenteringBackground
• Categorical predictors are used 

ubiquitously in multilevel models across the 
fields of psychology, education, medicine, 
and organizational research.

• The topic of centering has been discussed 
at great length in the methodological 
literature concerning multilevel 
modeling.1,2,3

Ø The effects of using uncentered, 
grand-mean-centered (CGM), and 
cluster-mean-centered (CWC) 
predictors are well-known, regarding 
parameter estimates and their 
corresponding interpretations.4

Ø Problematically, this work has focused 
almost exclusively on continuous 
predictors.

Current Aims
1. Centering: to clarify how and why 

categorical predictors should be 
centered in multilevel models, and to 
demonstrate that, when categorical 
predictors are centered incorrectly, 
models will yield biased/inaccurate 
estimates. 

2. Parameter interpretation: to explain 
how MLM coefficients resulting from 
centered categorical predictors should 
be interpreted. Namely slopes, as these 
have not been previously addressed, 
and with particular attention paid to 
multi-categorical predictors. 

Literature Review
• We began by conducting a literature review 

to clarify whether and how categorical 
predictors are centered by applied 
researchers employing multilevel models. 

• We observed inconsistency, a lack of 
rationale for centering decisions, and most 
commonly, no mention at all of centering 
categorical predictors.

• This suggests a need for a comprehensive 
resource that explicates how categorical 
predictors should be treated. 

Aim 2: Parameter Interpretation
Logic and Algebra

Simulation Study

• A three-group categorical predictor represented by two dummy codes can be partitioned into its ‘pure’ 
within-cluster part and its ‘pure’ between-cluster part by the typical method of subtracting, and then 
reintroducing, each cluster mean:1 and

• Of note, cluster means now represent proportions of people in cluster j that belong to group 1 and 
group 2 of the multi-group predictor, and both the original dummy code and the CWC dummy code can 
take on just two possible values. 

• Despite these differences, given that the within- and between-cluster components of a multi-categorical 
predictor are preserved, it follows that the consequences of various centering decisions should remain. 

x1ij = (x1ij − x1 j )+ x1 j x2ij = (x2ij − x2 j )+ x2 j

Logic and Algebra

Model 1: 
yij = γ 00 + γ 10x1ij + γ 20x2ij + u0 j + eij

Model 2: 
yij = γ 00 + γ 10(x1ij − x1 j )+ γ 20(x2ij − x2 j )+ γ 01x1 j + γ 02x2 j + u0 j + eij

• We generated multilevel datasets with a three-group categorical predictor and continuous outcome, fit 
two models, and recorded point estimates. 

• Factors varied included cluster size and ICC(Y).
• Results for coefficients associated with the first dummy code are shown below; population-level within-

cluster effect = 2 and between-cluster effect = -1.

• Model 1, which contained only uncentered dummy codes representing a three-group categorical predictor, 
yielded conflated slope estimates that were a meaningless blend of true within- and between-cluster effects. 

• Model 2, which contained CWC dummy codes alongside cluster means as predictors, recovered unbiased 
estimates of the true within- and between-cluster effects. 

• It appears that centering guidelines in place for continuous predictors should be implemented analogously 
for categorical predictors.

• Of note, the simulation study showed that the degree of conflation observed in Model 1 was dependent 
upon extraneous characteristics of the data, including cluster size, ICC(Y), and ICC of the categorical 
predictor.

• We conducted expected-value derivations, a method drawn from the 
single-level regression literature. We began with Model 2 because, as 
shown, it elucidates ‘pure’ within- and between-cluster effects.

• Our goal was to derive the expected value of Y, separately for each 
group of the categorical predictor, in order to elucidate the relationship 
between slope coefficients and group mean differences on Y.

• Using a three-group categorical predictor represented by two dummy 
codes as our example, derivations yielded the following: 

ØWhen there is no between-cluster variability with respect to the 
categorical predictor (i.e., ICC of all dummy codes = 0), group mean 
differences are equal to the within-cluster effects of the predictor: 

ØWhen there is no within-cluster variability with respect to the 
categorical predictor (i.e., ICC of all dummy codes = 1), group mean 
differences are equal to the between-cluster effects of the predictor: 

E( yij ) |g1 −E( yij ) |g0= γ 01

E( yij ) |g1 −E( yij ) |g0= γ 10 E( yij ) |g2 −E( yij ) |g0= γ 20

E( yij ) |g2 −E( yij ) |g0= γ 02

Conclusions
• Direct correspondences between coefficients and group mean 

differences under certain conditions serves to illuminate what the 
coefficients represent, and therefore how they should be correctly 
interpreted. 

• The within-cluster effect of a dummy-coded categorical predictor should 
be interpreted as the mean difference on Y between members of group 
k and members of the reference group, within clusters, on average. 

• The between-cluster effect should be interpreted as the mean 
difference on Y upon moving from a cluster composed entirely of 
reference group members to a cluster composed entirely of group k 
members.

• In practice, researchers often utilize uncentered dummy codes but 
interpret their effects as a “pure” within-cluster effect.

• In reality, such coefficients are meaningless blends of within- and 
between-cluster effects and therefore cannot be interpreted; the 
categorical predictor and its corresponding effects must be 
appropriately partitioned into level-specific parts before such 
interpretation is warranted. 

Results and Conclusions
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