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This talk

Part I: q-series (identities) from graphs and commutative algebras.

Part II: q-series from Schur’s indices of 4d N = 2 SCFTs.
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Graph Series

Definition (Graph series)

Given an undirected simple graph Γ with r nodes. Let E (Γ)
denotes the set of edges of Γ. The q-series

HΓ(q) =
∑

n1,...,nr≥0

qn1+···+nr+ 1
2

nCnT

(q)n1 · · · (q)nr
,

where C is the adjacency matrix of Γ, is called graph q-series of Γ.
If (i , j) ∈ E (Γ) then 1

2 nCnT contributes with ninj in the exponent.
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Examples

(i) • (single node and no edges):

HΓ(q) =
∑
n≥0

qn

(q)n

Euler
=

1

(q)∞
.

(ii) • − •

HΓ(q) =
∑

n1,n2≥0

qn1+n2+n1n2

(q)n1(q)n2

(iii) 3-cycle

HΓ(q) =
∑

n1,n2,n3≥0

qn1+n2+n3+n1n2+n2n3+n3n1

(q)n1(q)n2(q)n3
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Convergence

Observe that for many graphs (e.g. simple graphs)

∑
n1,...,nr≥0

q
1
2

nCnT

(q)n1 · · · (q)nr
,

doesn’t converge inside |q| < 1. So it is important to shift

HΓ(q) =
∑

n1,...,nr≥0

q
1
2

nCnT +n1+···+nr

(q)n1 · · · (q)nr
,

now convergent for all Γ. Instead, we can consider

HΓ(q, x) =
∑

n1,...,nr≥0

q
1
2

nCnT
xn

(q)n1 · · · (q)nr
.
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Graphs series vs. Nahm’s sums

Given positive definite r × r integral matrix A, and B ∈ Zr

(Nahm sum):

fA,B(q) =
∑

n1,...,nr≥0

q
1
2
nAnT +B·n

(q)n1 · · · (q)nr

These series are often associated to ADE type Dynkin diagrams  
famous ADE q-series identities entering various combinatorial
identities (e.g. Rogers-Ramanujan identities). But the quadratic
form does not come from the incidence matrix but instead from
(Euler/Tits quadratic form):

A := 2Ir − C

Example. Nahm sum associated to A2 Dynkin diagram • − • is∑
n1,n2≥0

qn
2
1+n2

2−n1n2

(q)n1(q)n2
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Graph series from geometry

Consider

R =
C[x1, x2, . . . , xn]

(f1, f2, . . . , fk)

where fi are homogeneous.Then R is also graded, R = ⊕n≥0R(n). We
can define its Hilbert series HR(t) =

∑
n≥0 dim(R(n))tn.

With standard grading deg(xi ) = 1, we have

HR(t) =
p(t)

(1− t)n
=

h(t)

(1− t)k

k , dimension of R and h(t), h(1) 6= 0 is so called h-polynomial .

Example
R = k[x , y ]/(xy).

HR(t) =
1− t2

(1− t)2
=

1 + t

1− t

0→ k[x , y ]
·xy−−→ k[x , y ]→ k[x , y ]/(xy)→ 0
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m-Jet algebras/schemes and arc algebras

Let fi be polynomials. Consider

R =
C[x1, x2, . . . , xn]

(f1, f2, . . . , fk)
.

Jm(R) :=
C[xj ,(i) | 0 ≤ i ≤ m, 1 ≤ j ≤ n]

(D j fi |i = 1, . . . k , j ∈ N)
,

D(xj ,(i)) :=

{
xj ,(i+1) for 0 ≤ i ≤ m − 1

0 for i = m.

called the algebra of m-jets of R. Let Xm = Spec(Rm).
X∞ = lim

←
m

Xm is called the arc space of X = Spec(R).

J∞(R) := R∞, the arc algebra of R.
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Hilbert series
Assuming (f1, ..., fk) is homogeneous, letting

deg(xi ,(j)) = j + 1

then Jm(R) and J∞(R) are also graded and we can define
Hilbert-Poincaré series

Hq(J∞(R)) =
∑
j≥0

dim(J∞(R))jq
j

Example

R = k[x1, ..., xn].

Then
J∞(R) = k[x1,(0), x1,(1), ..., x2,(0), x2,(1), ...., xn,(0), xn,(1), ...].

Hq(J∞(R)) =
1

(q)n∞
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hΓ-series

Again, it is convenient to consider two representations

Hq(J∞(R)) =
PΓ(q)

(q)n∞
=

hΓ(q)

(q)k∞

where k is the dimension of R.
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Graph series and arc algebras

Let Γ = (V ,E ) be a graph with no double edges and loops  edge
ideal:

RΓ = C[x1, ..., xn]/〈xixj : (i , j) ∈ E (Γ)〉.

Example

Node: R = C[x , y ]/(xy). Then

J∞(R) = C[x0, x1, ..., y0, y1, ...]/(x0y0, x1y0+x0y1, x2y0+2x1y1+x0y2, ....)

Hq(J∞(RΓ)) =
∑

n1,n2≥0

qn1+n2+n1n2

(q)n1(q)n2

=

1
(1−q)

(q)∞
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An old result

A reformulation of our old result with M. Penn (2011,2012):

Theorem
For any graph Γ without multiple edges

HΓ(q) = Hq(J∞(RΓ)).

Moreover, this agrees with the character of a certain ”principal”
vertex algebra.

14 / 45
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q-series identities from graph series

Many interesting identities. For instance, for path graphs An,
1 ≤ n ≤ 9 we are able to simplify HΓAn

(q) up to a single
summation.

• − − • − − · · · − −•

Proposition

HA7 (q) =

∑
m≥1(−3m + 1)(−1)mq

3m2+m
2 +

∑
m≤−1(3m + 2)(−1)mq

3m2+m
2

(1− q)(q)4
∞
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5th order mock theta functions

•

••
C3

HC3 (q) =
1

(q)∞

∑
n≥0

qn

(qn+1)n+1︸ ︷︷ ︸
=χ1(q)

There is also formula for χ0(q). By Zwegers (2009)

1

(q)∞

∑
n≥0

qn

(qn+1)n+1

=
1

(q)3
∞

 ∑
k,`,m≥0

−
∑

k,`,m<0

 (−1)k+`+mq
1
2 k

2+ 1
2 `

2+ 1
2 m

2+2k`+2`m+2km+ 3
2 (k+`+m)

With a PhD student we were able to interpret the RHS using
algebra.
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More complicated graphs

•

••

• •
C5

HC5(q) =
q−1

(q)2
∞

∑
n≥1

nqn

1− qn

This is the first example in an infinite family of graphs with 3k + 2
vertices, k ≥ 1 for which we can express hΓ as the generating series
of certain sums of power of divisors.
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Further q-series identities: D series

Theorem (Bringmann-Jennings-Shaffer-A.M.)

We have

HD4(q) =

∑
n,m≥0(−1)m+n(2n + 1)q

3
2
m2+ 5

2
m+ 1

2
n2+ 3

2
n+2mn

(q)4
∞

HD5(q) =

(∑
n,m≥0−

∑
n,m<0

)
(−1)n(n + 1)2q

n2+3n
2

+3mn+3m2+4m

(q)5
∞

Both numerators are indefinite theta series of signature (1, 1).
They are both mixed mock modular forms.
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Multiple edges

B2 graph:
• === •

HB2(q) =
∑

n1,n2≥0

qn1+n2+2n1n2

(q)n1(q)n2

Proposition

HB2(q) =
1

(q)∞

∑
n≥1

χ(n)q
n2−49

120

where χ(n) = (−1)[ n
30

] if n2 ≡ 49 mod 120 and zero otherwise.

This is a famous q-series appearing in Lawrence-Zagier’s work on
WRT invariants of Σ(2, 3, 5).
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Modular properties of graph series
What kind of q-series can we get out of qaHΓ(q)?
- (mixed) quantum modular forms
- inside QM := Q[E2,E4,E6]
- (mixed) mock theta functions
- modular? asymptotic behavior?

Example
Some graph series (modulo Euler products) whose modularity
properties are unknown:∑

n≥1

qn(q)3
n∑

n,m≥1

qmn+m+n(q)m(q)n

∑
n,m≥1

qmn

(q)m+n+1

20 / 45
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- modular? asymptotic behavior?

Example
Some graph series (modulo Euler products) whose modularity
properties are unknown:∑

n≥1

qn(q)3
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∑
n,m≥1

qmn

(q)m+n+1

20 / 45



Introduction q-series from graphs Graph series and jet algebras Double pole series Multiple q-zeta values

Generalizations

Graphs with loops:
Single node with loops  ”fat” point R = C[x ]/(xn)  J∞(R)  
Andrews-Gordon series:

Feigin-Stoyanovsky, Feigin-Frenkel 1993

Capparelli-Lepowsky-A.M. 2005., Bruschek-Mourtada-Schepers 2011

More complicated ideals (not coming from graphs): Very few
examples are known

Heluani-van Ekeren 2018, Andrews-Heluani-van Ekeren 2021

Li 2020 Li. A.M 2020
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Part II
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4d/2d dualities and Schur’s index
Physics:

4d N = 2 QFT is connected with many important developments in
mathematics. If QFT is SCFT  superconformal index.

Connection with q-series and vertex algebras:

4d N = 2 SCFT  superconformal index  Schur’s index I(q)
4d/2d
! character (Hilbert series) of a vertex algebra.

Beem-Lemost-Liendo-Peelaers-Rastelli-van Rees 2013
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Quantum dilogarithm

Physicists proposed computation of I(q) using wall-crossing
technology (after Kontsevich and Soibelman 2010, and
Ceccotti-Neitzke-Vafa 2009). This computation is based on
quantum dilogarithm:

Eq(Xi ) =
∏
i≥1

(1 + qi−1/2Xi )
−1

(here Xi are non-commutative variables!)

Conjecture: Very roughly speaking:
Quiver (oriented graph) Γ  product of quantum dilogarithms  
constant term  q-series representation for I(q)

Cordova, Shao, Gaiotto 2016,2018
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Toy case

• (single node and no edges). There is only one variable X so
everything is commutative.

We have (after Ramanujan, Rogers,...)

IΓ(q) := CTXEq(X )Eq(X−1) = CTX
1∏

n≥1(1 + Xqn−1/2)(1 + X−1qn−1/2)

=
∑
n≥0

qn

(q)2
n

=

∑
n∈Z sgn(n)q2n2+n

(q)2
∞
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Double graph series

For certain quivers same type of computation (with
non-commutative variables!) gives

Definition (Graph series with ”double poles”)

Everything as before but with double poles

∑
n1,...,nr≥0

qn1+···+nr+ 1
2

nCnT

(q)2
n1
· · · (q)2

nr

,

where C is the adjacency matrix of the underlying graph. Up to
Euler’s factors this is supposed to agree with the Schur’s index (or
character) I(q).
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Basic identity

Pentagon identity :
With X1X2 = qX2X1, we have

Eq(X1)Eq(X2) = Eq(X2)Eq(X1X2)Eq(X1)

27 / 45
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Quiver theories

ADE quiver diagram with orientation: ← and → (sink and
sources).

”Non-commutative Jacobi form”:

∏
J′∈Sou

Eq(X−γJ′ )
∏

I ′∈Sink
Eq(X−γJ )

∏
J∈Sou

Eq(XγJ )
∏

I∈Sink
Eq(XγI )
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Quivers of type A2k

2k...21

It is known that the index IA2k
(q) is given by∏

i≥1
i 6≡0,±1 (2k+3)

1

(1− qi )

Famous product side in (one of) the Andrews-Gordon identities. In
particular for k = 1,
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Quiver of type A2: Rogers-Ramanujan series

21

Example

I(q)
?
= (q)4

∞CT[Eq(X−γ1)Eq(X−γ2)Eq(Xγ1)Eq(Xγ2)]

= (q)4
∞

∑
n1,n2≥0

qn1+n2+n1n2

(q)2
n1

(q)2
n2

It is not hard to see that the RHS is 1∏
n≥1(1−q5n+2)(1−q5n+3)

.
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Quivers of type A2k

2k...21

Similar computation gives

IA2k
(q)

?
= (q)2k

∞
∑

n1,n2,...,n2k≥0

q
∑2k−1

i=1 nini+1+
∑2k

i=1 ni

(q)2
n1

(q)2
n2
· · · (q)2

n2k

Cordova-Shao 2016
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General case

Of course, physicists are always right.

Theorem
For k ≥ 1,

∏
i≥1

i 6≡0,±1 (2k+1)

1

(1− qi )
= (q)2k

∞
∑

n1,n2,...,n2k≥0

q
∑2k−1

i=1 nini+1+
∑2k

i=1 ni

(q)2
n1

(q)2
n2
· · · (q)2

n2k

This is very different compared to Andrews-Gordon identities.

32 / 45



Introduction q-series from graphs Graph series and jet algebras Double pole series Multiple q-zeta values

Quivers of A2k+1 type

Theorem (Jennings-Shaffer-A.M.)

For k ≥ 1,∑
n∈Z sgn(n)q(k+1)n2+kn

(q)∞

= (q)2k−1
∞

∑
n1,n2,...,n2k−1≥0

q
∑2k−2

i=1 nini+1+
∑2k−1

i=1 ni

(q)2
n1

(q)2
n2
· · · (q)2

n2k−1

For k = 1 this gives Ramanujan’s formula discussed earlier.
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Quivers of D type

k + 1

k

k − 1...21

The relevant double pole q-series is:

∑
n1,n2,...,nk+1≥0

q
∑k−1

i=1 nini+1+nk−1nk+1+
∑k+1

i=1 ni

(q)2
n1

(q)2
n2
· · · (q)2

nk+1

.

This again alternates between modular and rank two false theta
series (with some extra Euler factors).
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Multiple edges

Quivers with multiple edges, e.g

21

∑
n1,n2≥0

qn1+n2+2n1n2

(q)2
n1

(q)2
n2

=

∑
n≥0 q

n2+n

(q)2
∞
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Half-characteristic theta q-series

New examples:

Theorem (Jennings-Shaffer-A.M.)

For k ≥ 2,

(q)k∞
∑

n1,n2,...,nk≥0

qn1n2+n2n3+···+nk−1nk+n1+n2+···+nk (−q
1
2 )n1

(q)2
n1

(q)2
n2
· · · (q)2

nk

=
(−q

1
2 )∞

(q)∞

∑
n≥0

+(−1)k
∑
n<0

 (−1)(k+1)nq
(k+2)n2+(k+1)n

2 .

This again alternates between false and modular identities
(essentially Andrews-Bressoud series).
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What about other ABG-type series?

There are double pole identities for all AB and AG series and all
related false theta series, but formulas are more complicated. For
instance, for AG series

Theorem (Kanade, A.M., Russell)

For k ≥ 1, and 1 ≤ i ≤ k

∏
n≥1

n 6≡0,±i (2k+1)

1

(1− qi )
= (q)2k

∞
∑

n1,n2,...,n2k≥0

ai (q)q
∑2k−1

i=1 nini+1+
∑2k

i=1 ni

(q)2
n1

(q)2
n2
· · · (q)2

n2k

where
a1 = 1, a2 = 2− qn1 , a3 = 2− 2qn1 + qn2 , ...

In the simplest case this was conjectured by Cordova, Gaiotto and
Shao.
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Circles, Triangles and Squares...

k-cycle quiver (k ≥ 3):

3

2

1

k

Conjecture

For k ≥ 3,∑
n≥0(−1)nkq

k
2
n(n+1)

(q)k∞
=

∑
n1,n2,...,nk≥0

q
∑k−1

i=1 nini+1+nkn1+
∑k

i=1 ni

(q)2
n1

(q)2
n2
· · · (q)2

nk

,
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Part III
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q-MZVs

In its ”standard” form, the q-MZV is usually defined as

ζq(a1, ..., ak) :=
∑

n1>n2>···>nk≥1

q(a1−1)n1+···+(ak−1)nk

(1− qn1)a1 · · · (1− qnk )ak
,

where ai ∈ N and a1 ≥ 2.

ζ∗q(a1, ..., ak) :=
∑

n1≥n2≥···≥nk≥1

q(a1−1)n1+···+(ak−1)nk

(1− qn1)a1 · · · (1− qnk )ak
,

The star symbol indicates that the summation is over non-strict
summation variables.
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Another model of q-MZVs

zq(a1, ..., ak) :=
∑

n1>n2>···>nk≥1

qn1

(1− qn1)a1 · · · (1− qnk )ak
.

z∗q(a1, ..., ak) :=
∑

n1≥n2≥···≥nk≥1

qn1

(1− qn1)a1 · · · (1− qnk )ak
.

Very active area of research.

Bradley, Hoffman, Zhao, Schlesinger, Okounkov, Zudilin, Ohno,...

limq→1− ”recovers” ζ(a1, ..., ak)
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Graphs series and q-MZVs

Theorem (A.M.)

For every choice of positive integers a1, ..., ak there is a simple
graph Za1,...,ak such that

HZa1,...,ak
(q) =

q−1z∗q(a1, ..., ak)

(q)k+a1+···+ak∞
.

One can also engineer graph series involving certain generalized
q-MZV type sums called brackets.

Bachmann-Kühn
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q-MZVs associated to simple Lie algebras

Denote by ∆ a root system of ADE type (for simplicity), ∆+ the set of
positive roots and 〈·, ·〉 denotes inner product normalized such that
〈α, α〉 = 2 for every root α. Then we let for kα ≥ 1,

ζg,q(k1, .., k|∆+|) :=
∑
λ∈P+

q
1
2

∑
α∈∆+

kα〈λ+ρ,α〉∏
α∈∆+

(1− q〈λ,α+ρ〉)kα
,

where the summation is over the cone of positive dominant integral

weights.

Example
For g = sl2 and g = sl3, and k ≥ 2,

∑
n≥1

q
k
2 n

(1− qn)k

∑
n1,n2≥1

q
k1
2 n1+

k2
2 n2+

k3
2 (n1+n2)

(1− qn1 )k1 (1− qn2 )k2 (1− qn1+n2 )k3
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∑
n1,n2≥1

q
k1
2 n1+

k2
2 n2+

k3
2 (n1+n2)

(1− qn1 )k1 (1− qn2 )k2 (1− qn1+n2 )k3
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q-MZVs and quasi-modularity

In parallel with standard q-MZVs, we expect

Conjecture

ζg,q(2k) := ζg,q(2k, 2k , ..., 2k) ∈ Q[E2,E4,E6].

A closely related q-series appeared recently in connection to
Schur’s indices:

Ig,k(q) :=
∑
λ∈P+

Pk(λ)
q

1
2

∑
α∈∆+

k〈λ+ρ,α〉∏
α∈∆+

(1− q〈λ,α+ρ〉)k
,

It is expected that for k even Ig,k(q) ∈ QM.

Beem-Rastelli 2018, Arakawa 2018, A.M. 2022

This is known in many special cases.
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Thank You!
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