Olivia Beckwith, Tulane

Joint works with S. Ahlgren, M. Raum; A. Caione, J. Chen, M. Diluia, O. Gonzalez, J. Su

May 23, 2022

•0000000

Partition Congruences

Definition

Delimitio

A partition of n is a nonincreasing sequence of positive integers whose sum is n.

The number of partitions of n is p(n).

Example

The partitions of 4:

$$3 + 1$$

$$2 + 2$$

$$2 + 1 + 1$$

$$1 + 1 + 1 + 1$$

Therefore p(4) = 5.

Colored Partitions

Definition

Partition Congruences

0000000

An *r*-colored partition of *n* is a partition in which each term is assigned one of *r* colors. The number of *r*-colored partitions of *n* is $p_r(n)$.

Example

The two colored partitions of 2:

- 1. 2
- **2**. 2
- 3.1 + 1
- 4. 1 + 1
- 5. 1 + 1

So
$$p_2(2) = 5$$
.

Congruences

Partition Congruences

0000000

A congruence for (r-colored) partitions is a property of the form

$$p_r(An+t) \equiv 0 \pmod{\ell}$$

for all integers *n*, where *A*, *t* are fixed integers.

Congruences

Partition Congruences

0000000

A *congruence* for (*r*-colored) partitions is a property of the form

$$p_r(An+t) \equiv 0 \pmod{\ell}$$

for all integers n, where A, t are fixed integers.

In this talk ℓ is prime.

The Ramanujan Congruences

Ramanujan (1921)

For all *n*,

$$p(5n+4) \equiv 0 \pmod{5},$$

 $p(7n+5) \equiv 0 \pmod{7},$
 $p(11n+6) \equiv 0 \pmod{11}.$

The Ramanujan Congruences

Ramanujan (1921)

For all *n*.

Partition Congruences

00000000

$$p(5n+4) \equiv 0 \pmod{5},$$

 $p(7n+5) \equiv 0 \pmod{7},$
 $p(11n+6) \equiv 0 \pmod{11}.$

▶ Proved by Ramanujan using the Eisenstein series E_2 , E_4 , E_6 and their derivatives.

Ramanujan (1921)

For all *n*.

Partition Congruences

00000000

$$p(5n+4) \equiv 0 \pmod{5},$$

 $p(7n+5) \equiv 0 \pmod{7},$
 $p(11n+6) \equiv 0 \pmod{11}.$

Modular forms

- ▶ Proved by Ramanujan using the Eisenstein series E_2 , E_4 , E_6 and their derivatives.
- ► Later explained combinatorially via the "rank" function of Dyson (1944) and the "crank" function of Andrews and Garvan (1988).

Other congruences?

Question

Partition Congruences

00000000

Other than Ramanujan's three congruences, are there any primes ℓ and integers t such that $p_r(\ell n + t) \equiv 0 \pmod{\ell}$ for all n?

Question

Partition Congruences

00000000

Other than Ramanujan's three congruences, are there any primes ℓ and integers t such that $p_r(\ell n + t) \equiv 0 \pmod{\ell}$ for all n?

ightharpoonup r = 1: No, by work of Ahlgren and Boylan (2003).

Question

Partition Congruences

00000000

Other than Ramanujan's three congruences, are there any primes ℓ and integers t such that $p_r(\ell n + t) \equiv 0 \pmod{\ell}$ for all n?

Modular forms

- ightharpoonup r = 1: No, by work of Ahlgren and Boylan (2003).
- ightharpoonup r > 1: Many examples are known.

Question

Partition Congruences

00000000

Other than Ramanujan's three congruences, are there any primes ℓ and integers t such that $p_r(\ell n + t) \equiv 0 \pmod{\ell}$ for all n?

- ightharpoonup r = 1: No, by work of Ahlgren and Boylan (2003).
- ightharpoonup r > 1: Many examples are known.
- We call a congruence of this form a Ramanujan-type congruence.

Ramanujan-type congruences

Partition Congruences

00000000

▶ **Kiming-Olsson (1992):** There are Ramanujan-type congruences when $\ell \mid r, r \equiv -1 \pmod{\ell}$, or $r \equiv -3 \pmod{\ell}$.

Ramanujan-type congruences

Partition Congruences

00000000

- Kiming-Olsson (1992): There are Ramanujan-type congruences when $\ell | r, r \equiv -1 \pmod{\ell}$, or $r \equiv -3 \pmod{\ell}$.
- Boylan (2000) and Dawsey-Wagner (2016): Found more Ramanujan-type congruences using CM modular forms.

00000000

- ▶ **Kiming-Olsson (1992):** There are Ramanujan-type congruences when $\ell | r, r \equiv -1 \pmod{\ell}$, or $r \equiv -3 \pmod{\ell}$.
- ► Boylan (2000) and Dawsey-Wagner (2016): Found more Ramanujan-type congruences using CM modular forms.
- ► Rolen-Tripp-Wagner (2022): Generalized the crank function to combinatorially explain many of these congruences.

00000000

▶ Atkin (1967): Found congruences for small ℓ of the form $p(\ell Q^3 n + t) \equiv 0 \pmod{\ell}$.

00000000

- ▶ **Atkin (1967):** Found congruences for small ℓ of the form $p(\ell Q^3 n + t) \equiv 0 \pmod{\ell}$.
- ▶ Ono (2000): For any $\ell \ge 5$, there are infinitely many primes Q and integers t with $\left(\frac{1-24t}{\ell}\right)=0$ and $p(\ell Q^4n+t)\equiv 0\pmod{\ell}$.

00000000

- ▶ **Atkin (1967):** Found congruences for small ℓ of the form $p(\ell Q^3 n + t) \equiv 0 \pmod{\ell}$.
- ▶ Ono (2000): For any $\ell \ge 5$, there are infinitely many primes Q and integers t with $\left(\frac{1-24t}{\ell}\right)=0$ and $p(\ell Q^4n+t)\equiv 0\pmod{\ell}$.
- ▶ **Ahlgren-Ono (2001):** Generalized this for $\left(\frac{1-24t}{\ell}\right) = -1$.

Non-Ramanujan-type congruences?

- ▶ **Atkin (1967):** Found congruences for small ℓ of the form $p(\ell Q^3 n + t) \equiv 0 \pmod{\ell}$.
- ▶ Ono (2000): For any $\ell \ge 5$, there are infinitely many primes Q and integers t with $\left(\frac{1-24t}{\ell}\right)=0$ and $p(\ell Q^4n+t)\equiv 0\pmod{\ell}$.
- ▶ **Ahlgren-Ono (2001):** Generalized this for $\left(\frac{1-24t}{\ell}\right) = -1$.
- Treneer (2006): Feneralized Ono and Ahlgren's work to other modular forms.

Non-Ramanujan-type congruences?

- ▶ Atkin (1967): Found congruences for small ℓ of the form $p(\ell Q^3 n + t) \equiv 0 \pmod{\ell}$.
- ▶ Ono (2000): For any $\ell \ge 5$, there are infinitely many primes Q and integers t with $\left(\frac{1-24t}{\ell}\right) = 0$ and $p(\ell Q^4 n + t) \equiv 0 \pmod{\ell}$.
- ▶ **Ahlgren-Ono (2001):** Generalized this for $\left(\frac{1-24t}{\ell}\right) = -1$.
- Treneer (2006): Feneralized Ono and Ahlgren's work to other modular forms.
- These works used the Shimura correspondence and Galois representations associated to modular forms of integral weight.

Non-Ramanujan-type congruences?

- ▶ **Atkin (1967):** Found congruences for small ℓ of the form $p(\ell Q^3 n + t) \equiv 0 \pmod{\ell}$.
- ▶ Ono (2000): For any $\ell \ge 5$, there are infinitely many primes Q and integers t with $\left(\frac{1-24t}{\ell}\right) = 0$ and $p(\ell Q^4 n + t) \equiv 0 \pmod{\ell}$.
- ▶ **Ahlgren-Ono (2001):** Generalized this for $\left(\frac{1-24t}{\ell}\right) = -1$.
- ► Treneer (2006): Feneralized Ono and Ahlgren's work to other modular forms.
- These works used the Shimura correspondence and Galois representations associated to modular forms of integral weight.
- ► Ahlgren-Allen-Tang (2022): provide examples similar to Atkin's using different properties of these Galois representations.

Classifying congruences

0000000

Classifying congruences

Partition Congruences

0000000

What restrictions are there on the values A, t, r, ℓ for which $p_r(An+t) \equiv 0 \pmod{\ell}$ for all n?

0000000

What restrictions are there on the values A, t, r, ℓ for which $p_r(An + t) \equiv 0 \pmod{\ell}$ for all n?

▶ **Radu (2012):** If r = 1, then $\ell \neq 2, 3$.

0000000

What restrictions are there on the values A, t, r, ℓ for which $p_r(An + t) \equiv 0 \pmod{\ell}$ for all n?

- ▶ **Radu (2012):** If r = 1, then $\ell \neq 2, 3$.
- ▶ We have two useful restrictions that were conjectured by Ahlgren and Ono for p(n) (2001), proved by Radu (2013), and generalized to other eta-quotients by Andersen (2014):

Classifying congruences

Partition Congruences

0000000

What restrictions are there on the values A, t, r, ℓ for which $p_r(An+t) \equiv 0 \pmod{\ell}$ for all n?

- **Radu (2012):** If r = 1, then $\ell \neq 2, 3$.
- ▶ We have two useful restrictions that were conjectured by Ahlgren and Ono for p(n) (2001), proved by Radu (2013), and generalized to other eta-quotients by Andersen (2014):
 - \triangleright $\ell | A$.

Classifying congruences

Partition Congruences

00000000

What restrictions are there on the values A, t, r, ℓ for which $p_r(An+t) \equiv 0 \pmod{\ell}$ for all n?

- ▶ **Radu (2012):** If r = 1, then $\ell \neq 2, 3$.
- We have two useful restrictions that were conjectured by Ahlgren and Ono for p(n) (2001), proved by Radu (2013), and generalized to other eta-quotients by Andersen (2014):
 - \triangleright $\ell | A$.
 - $\qquad \qquad \left(\frac{r(r-24t)}{\ell}\right) \neq 1.$

Theta-type congruences

▶ In all known non-Ramanujan-type congruences with a maximal arithmetic progression $\{An + t\}$, one has $A = \ell \cdot Q^n$, where Q is prime and $n \ge 3$.

Theta-type congruences

► In all known non-Ramanujan-type congruences with a maximal arithmetic progression $\{An+t\}$, one has $A=\ell\cdot Q^n$, where Q is prime and n > 3.

Question

Partition Congruences

Do there exist distinct primes $Q, \ell > 5$ and integers t such that

$$p_r(\ell Q n + t) \equiv 0 \pmod{\ell}. \tag{1}$$

for all n?

Scarcity for r = 1

Theta-type congruences

► In all known non-Ramanujan-type congruences with a maximal arithmetic progression $\{An+t\}$, one has $A=\ell\cdot Q^n$, where Q is prime and n > 3.

Question

Do there exist distinct primes $Q, \ell > 5$ and integers t such that

$$p_r(\ell Q n + t) \equiv 0 \pmod{\ell}. \tag{1}$$

for all n?

▶ When r = 1 and $\ell = 2, 3$, the answer is no by work of Radu.

▶ In all known non-Ramanujan-type congruences with a maximal arithmetic progression $\{An + t\}$, one has $A = \ell \cdot Q^n$, where Q is prime and $n \ge 3$.

Question

Do there exist distinct primes $Q, \ell \geq 5$ and integers t such that

$$p_r(\ell Q n + t) \equiv 0 \pmod{\ell}. \tag{1}$$

for all n?

- ▶ When r = 1 and $\ell = 2, 3$, the answer is no by work of Radu.
- ▶ We know that (1) holds trivially if $p_r(\ell n + t) \equiv 0 \pmod{\ell}$ is a Ramanujan-type congruence.

▶ In all known non-Ramanujan-type congruences with a maximal arithmetic progression $\{An + t\}$, one has $A = \ell \cdot Q^n$, where Q is prime and $n \ge 3$.

Question

Do there exist distinct primes $Q, \ell \geq 5$ and integers t such that

$$p_r(\ell Q n + t) \equiv 0 \pmod{\ell}. \tag{1}$$

for all n?

- ▶ When r = 1 and $\ell = 2, 3$, the answer is no by work of Radu.
- ▶ We know that (1) holds trivially if $p_r(\ell n + t) \equiv 0 \pmod{\ell}$ is a Ramanujan-type congruence.
- We call congruences of the form of (1) that do not follow trivially from Ramanujan-type congruences theta-type congruences.

Theta-type congruences

Do theta-type congruences exist?

Do theta-type congruences exist?

▶ r = 1: Work of Ahlgren-B-Raum implies that the answer is probably not, based on numerical data and a result that such congruences are expected to be "scarce". These results will be described in the "Scarcity" section of the talk.

Theta-type congruences

Do theta-type congruences exist?

- r = 1: Work of Ahlgren-B-Raum implies that the answer is probably not, based on numerical data and a result that such congruences are expected to be "scarce". These results will be described in the "Scarcity" section of the talk.
- ► r > 1: Work of BCCDGS: infinitely many theta-type congruences exist. This will be described in the "Examples" section.

The Dedekind Eta Function

$$q:=e^{2\pi iz},$$
 where $z\in\mathbb{H}:=\{x+iy:x,y\in\mathbb{R},y>0\}.$

$$q:=e^{2\pi iz}$$
, where $z\in\mathbb{H}:=\{x+iy:x,y\in\mathbb{R},y>0\}.$

$$\eta(z) := q^{1/24} \prod_{n \ge 1} (1 - q^n)$$

$$q := e^{2\pi i z}$$
, where $z \in \mathbb{H} := \{x + iy : x, y \in \mathbb{R}, y > 0\}$.

$$\eta(z) := q^{1/24} \prod_{n \geq 1} (1 - q^n)$$

Transformation Law

For all
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$$
,

$$\eta\left(\frac{az+b}{cz+d}\right)=
u_{\eta}(\gamma)(cz+d)^{1/2}\eta(z).$$

Here

Partition Congruences

$$\nu_{\eta}\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \begin{cases} \left(\frac{d}{|c|}\right) e\left(\frac{1}{24}\left((a+d)c - bd(c^2 - 1) - 3c\right)\right), & 2 \nmid c \\ \left(\frac{c}{d}\right) e\left(\frac{1}{24}\left((a+d)c - bd(c^2 - 1) + 3d - 3 - 3cd\right)\right), & 2|c, \\ equiv (a + b) equiv (b + b) equiv (b$$

with $e(x) = e^{2\pi ix}$.

Generating function

$$\sum_{n=0}^{\infty} p_r(n)q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-r}$$
$$= q^{r/24} \eta^{-r}(z)$$

Let $k \in \frac{1}{2}\mathbb{Z}$.

Partition Congruences

 $M_k(\nu_n^n)$ is the space of $f: \mathbb{H} \to \mathbb{C}$ such that

- **1.** *f* is holomorphic,
- **2.** f(z) is bounded as $Im(z) \to \infty$, and
- **3.** for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, we have

$$(f|\gamma)(z) := (cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right) = \nu_{\eta}^{n}(\gamma) f(z).$$

Modular forms with the u_{η} multiplier system

Let $k \in \frac{1}{2}\mathbb{Z}$.

 $M_k(\nu_n^n)$ is the space of $f: \mathbb{H} \to \mathbb{C}$ such that

- 1. f is holomorphic,
- **2.** f(z) is bounded as $Im(z) \to \infty$, and
- **3.** for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, we have

$$(f|\gamma)(z) := (cz+d)^{-k}f\left(\frac{az+b}{cz+d}\right) = \nu_{\eta}^{n}(\gamma)f(z).$$

The $f \in M_k(\nu_\eta^n)$ are weight k modular forms with respect to ν_η^n .

Cusp forms with multiplier system

 $S_k(\nu_{\eta}^n)$ is the space of $f \in M_k(\nu_{\eta}^n)$ such that

$$\lim_{\operatorname{Im}(\tau)\to\infty}f(\tau)=0.$$

 $S_k(\nu_n^n)$ is the space of $f \in M_k(\nu_n^n)$ such that

$$\lim_{\mathrm{Im}(\tau)\to\infty}f(\tau)=0.$$

The functions $f \in S_k(\nu_\eta^n)$ are weight k cusp forms with respect to ν_η^n .

Any $f \in M_k(\nu_n^n)$ has a Fourier expansion of the form

$$f(z)=\sum_{n=0}^{\infty}a(n)q^{n/24}.$$

Any $f \in M_k(\nu_n^n)$ has a Fourier expansion of the form

$$f(z) = \sum_{n=0}^{\infty} a(n)q^{n/24}.$$

The following linear maps act nicely on modular forms:

$$\left(\sum_{n}a(n)q^{\frac{n}{24}}\right)\left|U_{m}:=\sum_{n}a(mn)q^{\frac{n}{24}}\quad\text{and}\quad\left(\sum_{n}a(n)q^{\frac{n}{24}}\right)\left|V_{m}:=\sum_{n}a(n)q^{\frac{n}{24}}\right|$$

$$\left(\sum_{n} a(n)q^{\frac{n}{24}}\right) \otimes \chi := \sum_{n} \chi(n)a(n)q^{\frac{n}{24}}.$$

where χ is a Dirichlet character.

Any $f \in M_k(\nu_n^n)$ has a Fourier expansion of the form

$$f(z) = \sum_{n=0}^{\infty} a(n)q^{n/24}.$$

The following linear maps act nicely on modular forms:

$$\left(\sum_{n}a(n)q^{\frac{n}{24}}\right)\left|U_{m}:=\sum_{n}a(mn)q^{\frac{n}{24}}\quad\text{and}\quad\left(\sum_{n}a(n)q^{\frac{n}{24}}\right)\left|V_{m}:=\sum_{n}a(n)q^{\frac{n}{24}}\right|$$

$$\left(\sum_{n} a(n)q^{\frac{n}{24}}\right) \otimes \chi := \sum_{n} \chi(n)a(n)q^{\frac{n}{24}}.$$

where χ is a Dirichlet character.

▶ These are useful for restricting to *n* in an arithmetic progression.

Hecke Operators

For $Q \ge 5$ prime and (r, 24) = 1, we have the index Q^2 Hecke operator

$$T_{Q^2}: M_{k/2}(\nu_{\eta}^r) \to M_{k/2}(\nu_{\eta}^r).$$

given by

$$\begin{split} & (\sum_{n} a(n)q^{n/24}) \big| T_{Q^{2}} = \\ & \sum_{n} (a(Q^{2}n) + Q^{k-\frac{3}{2}} \left(\frac{(-1)}{Q}\right)^{k-\frac{1}{2}} \left(\frac{12n}{Q}\right) a(n) + Q^{2k-2} a\left(\frac{n}{Q^{2}}\right)) q^{\frac{n}{24}} \\ & = f \big| U_{Q^{2}} + Q^{k-\frac{3}{2}} \left(\frac{-1}{Q}\right)^{k-\frac{1}{2}} \left(\frac{12}{Q}\right) f \otimes \chi_{Q} + Q^{2k-2} f \big| V_{Q^{2}} \end{split}$$

Let $\ell \geq 5$ be prime and let $k \in \mathbb{Z}$.

$$\begin{aligned} \mathit{M}_{\mathit{k}}(\mathbb{F}_{\ell}) &:= \mathit{M}_{\mathit{k}}(1) \cap \mathbb{F}_{\ell}[[q]] \\ &= \{ \text{reduction modulo } \ell \text{ of all } \mathit{f} \in \mathit{M}_{\mathit{k}}(1) \text{ with } \ell \text{-integral coefficients. } \} \end{aligned}$$

Modular forms modulo ℓ

Let $\ell \geq 5$ be prime and let $k \in \mathbb{Z}$.

$$egin{aligned} M_k(\mathbb{F}_\ell) &:= M_k(1) \cap \mathbb{F}_\ell[[q]] \ &= \{ \text{reduction modulo ℓ of all $f \in M_k(1)$ with ℓ-integral coefficients. } \} \end{aligned}$$

Swinnerton-Dyer (1973)

$$\begin{split} \mathbb{F}_{\ell}[E_4,E_6]/(E_{\ell-1}-1) &= \sum_{k \in \mathbb{Z}} M_k(\mathbb{F}_{\ell}) \\ &= \oplus_{a \in \mathbb{Z}/(\ell-1)\mathbb{Z}} \left(\cup_{k \equiv a \pmod{\ell-1}} M_k(\mathbb{F}_{\ell}) \right). \end{split}$$

Definition (Serre)

Let $\ell \geq 5$ be prime, $k \in \mathbb{Z}$. For $f \in M_k(\mathbb{F}_\ell)$, the filtration of f is given by

$$w(f) = \inf\{r \in \mathbb{Z} : f \in M_r(\mathbb{F}_\ell)\}.$$

Definition (Serre)

Let $\ell \geq 5$ be prime, $k \in \mathbb{Z}$. For $f \in M_k(\mathbb{F}_\ell)$, the filtration of f is given by

$$w(f) = \inf\{r \in \mathbb{Z} : f \in M_r(\mathbb{F}_\ell)\}.$$

Example: Since $E_{\ell-1} \equiv 1 \pmod{\ell}$, we have $w(E_{\ell-1}) = 0$.

▶ Serre used properties of filtrations to define ℓ-adic modular forms.

Serre used properties of filtrations to define ℓ-adic modular forms.

Serre (1972)

For $\ell \geq 5$,

Partition Congruences

 $\blacktriangleright w(f|U_{\ell}) \leq \ell + \frac{w(f)-1}{\ell},$

Filtrations and linear maps

Serre used properties of filtrations to define ℓ-adic modular forms.

Serre (1972)

For $\ell \geq 5$,

- $W(f|U_{\ell}) \leq \ell + \frac{w(f)-1}{\ell},$
- Let Θ be the Ramanujan Theta operator, i.e. $\Theta = q \frac{d}{dq}$. Then

$$w(f|\Theta) \leq w(f) + \ell + 1$$

with equality if and only if $\ell \nmid w(f)$.

Scarcity for r=1

The *q*-expansion principle

Deligne and Rapoport (1973)

Let ℓ be prime and $k, N \in \mathbb{N}$. Let π be a prime ideal above ℓ in a number field \mathbb{F} which contains all Nth roots of unity. Suppose that $f \in M_k(\Gamma(N))$ has π -integral coefficients and $\gamma \in \Gamma_0(\ell^m)$, where ℓ^m is the highest power of ℓ dividing N. Then $f|\gamma$ has π -integral coefficients, and

$$f \equiv 0 \pmod{\pi} \iff f|\gamma \equiv 0 \pmod{\pi}.$$

Generating functions

Let
$$k_{r,\ell,0} := \frac{\ell-r-1}{2}$$
 and $k_{r,\ell,-1} := \frac{\ell^2-r-1}{2}$.

Generating functions

Let
$$k_{r,\ell,0} := \frac{\ell-r-1}{2}$$
 and $k_{r,\ell,-1} := \frac{\ell^2-r-1}{2}$.

$$f_{r,\ell,0}:=\sum_{\left(\frac{r(r-24n)}{\ell}\right)=0}p_r(n)q^{\frac{24n-r}{24\ell}}.$$

and

Partition Congruences

$$f_{r,\ell,\delta,-1} := \sum_{\left(\frac{r(r-24n)}{\ell}\right)=-1} p_r(n)q^{\frac{24n-r}{24}}.$$

Generating functions

Let
$$k_{r,\ell,0} := \frac{\ell-r-1}{2}$$
 and $k_{r,\ell,-1} := \frac{\ell^2-r-1}{2}$.

$$f_{r,\ell,0} := \sum_{\left(\frac{r(r-24n)}{\ell}\right)=0} p_r(n) q^{\frac{24n-r}{24\ell}}.$$

and

$$f_{r,\ell,\delta,-1} := \sum_{\substack{\left(\frac{r(r-24n)}{\ell}\right) = -1}} p_r(n)q^{\frac{24n-r}{24}}.$$

- ▶ By aforementioned work of Andersen, we don't need to consider a generating function with $\left(\frac{r(r-24n)}{\ell}\right) = 1$.
- ▶ $f_{r,\ell,0} \equiv 0 \pmod{\ell}$ when we have a Ramanujan-type congruence $p_r(\ell n (\frac{\ell^2 1}{24})) \equiv 0 \pmod{\ell}$.

Holomorphic generating functions

Fact (Ahlgren, B, Raum)

Let $\ell > 5$ be prime, $\delta \in \{0, -1\}$.

There is a modular form $\sum a_{\ell,\delta}(n)q^{n/24} \in S_{k_1,\ell,\delta}(\nu_n^{-1})$ such that

$$f_{1,\ell,\delta} \equiv \sum a_{\ell,\delta}(n)q^{n/24} \pmod{\ell}.$$

Holomorphic generating functions

Fact (Ahlgren, B, Raum)

Let $\ell > 5$ be prime, $\delta \in \{0, -1\}$.

There is a modular form $\sum a_{\ell,\delta}(n)q^{n/24} \in S_{k_1,\ell,\delta}(\nu_n^{-1})$ such that

$$f_{1,\ell,\delta} \equiv \sum a_{\ell,\delta}(n) q^{n/24} \pmod{\ell}.$$

▶ This is generalized to r > 1 for $f_{r,\ell,\delta}$ with a modified weight for $\ell < r$.

Theorem B (Ahlgren, B, Raum)

1. There are no theta-type congruences with $\left(\frac{24t-1}{Q}\right)=0$.

Consequences of the q-expansion principle

Theorem B (Ahlgren, B, Raum)

- 1. There are no theta-type congruences with $\left(\frac{24t-1}{Q}\right)=0$.
- 2. Fix $\delta \in \{0, -1\}$ and $\epsilon \in \{\pm 1\}$. If there is a theta-type congruence with

$$\left(\frac{1-24t}{\ell}\right) = \delta \ \ \text{and} \ \left(\frac{24t-1}{Q}\right) = \epsilon,$$

then

$$f_{1,\ell,\delta} | U_Q \equiv -\epsilon \left(\frac{-12}{Q} \right) Q^{-1} f_{\ell,\delta} | V_Q \pmod{\ell}.$$
 (2)

Consequences of the q-expansion principle

Theorem B (Ahlgren, B, Raum)

- 1. There are no theta-type congruences with $\left(\frac{24t-1}{Q}\right)=0$.
- 2. Fix $\delta \in \{0, -1\}$ and $\epsilon \in \{\pm 1\}$. If there is a theta-type congruence with

$$\left(\frac{1-24t}{\ell}\right) = \delta \ \ \text{and} \ \left(\frac{24t-1}{Q}\right) = \epsilon,$$

then

$$f_{1,\ell,\delta} | U_Q \equiv -\epsilon \left(\frac{-12}{Q} \right) Q^{-1} f_{\ell,\delta} | V_Q \pmod{\ell}.$$
 (2)

(2) holds for theta functions.

Consequences of the q-expansion principle

Theorem B (Ahlgren, B, Raum)

- 1. There are no theta-type congruences with $\left(\frac{24t-1}{Q}\right)=0$.
- 2. Fix $\delta \in \{0, -1\}$ and $\epsilon \in \{\pm 1\}$. If there is a theta-type congruence with

$$\left(\frac{1-24t}{\ell}\right) = \delta \text{ and } \left(\frac{24t-1}{Q}\right) = \epsilon,$$

then

$$f_{1,\ell,\delta} | U_Q \equiv -\epsilon \left(\frac{-12}{Q} \right) Q^{-1} f_{\ell,\delta} | V_Q \pmod{\ell}.$$
 (2)

- (2) holds for theta functions.
- ▶ We use a q-expansion formula of Radu (2013) at the cusp $\frac{1}{Q}$.

Scarcity Result

Partition Congruences

Theorem C (Ahlgren, B, Raum)

Suppose that $\ell \geq 5$ is prime, and fix $\delta \in \{0, -1\}$. Let $\mathcal S$ be the set of primes $\mathcal Q$ for which we have a theta-type congruence with $\left(\frac{1-24t}{\ell}\right) = \delta$.

Scarcity Result

Theorem C (Ahlgren, B, Raum)

Suppose that $\ell \geq 5$ is prime, and fix $\delta \in \{0, -1\}$. Let S be the set of primes Q for which we have a theta-type congruence with $\left(\frac{1-24t}{\ell}\right) = \delta$. One of the following is true.

- 1. S has density zero, or
- 2. we have

$$\#\{n \leq X : a_{\ell,\delta}(n) \not\equiv 0 \pmod{\ell}\} \ll \sqrt{X} \log X \tag{3}$$

and

$$f_{1,\ell,\delta} | T_{Q^2} \equiv 0 \pmod{\ell}$$
 for all primes $Q \equiv -1 \pmod{\ell}$. (4)

Theorem C (Ahlgren, B, Raum)

Suppose that $\ell \geq 5$ is prime, and fix $\delta \in \{0, -1\}$. Let S be the set of primes Q for which we have a theta-type congruence with $\left(\frac{1-24t}{\ell}\right) = \delta$. One of the following is true.

- 1. S has density zero, or
- 2. we have

$$\#\{n \le X : a_{\ell,\delta}(n) \not\equiv 0 \pmod{\ell}\} \ll \sqrt{X} \log X \tag{3}$$

and

$$f_{1,\ell,\delta} | T_{Q^2} \equiv 0 \pmod{\ell}$$
 for all primes $Q \equiv -1 \pmod{\ell}$. (4)

▶ The LHS of (3) is $\sim \sqrt{X}$ if $f_{1,\ell,\delta}$ is a theta function.

Scarcity for r = 1

0000000

Some cases

We use (4) to rule out the second possibility for specific Q:

Theorem (Ahlgren, B, Raum)

For $17 \le \ell \le 10,000$, S has density 0.

We use (4) to rule out the second possibility for specific Q:

Theorem (Ahlgren, B, Raum)

For $17 \le \ell \le 10,000$, *S* has density 0.

 $\ell = 13$?

Barrier:

work of Atkin $\implies f_{1,13,-1}|T_{Q^2}\equiv 0\pmod{13}$ for $Q\equiv -1\pmod{13}$.

Arithmetic Large Sieve

Montgomery (1968)

Let R be a nonempty set of Z positive integers in [1, N+1]. Let w(p) be the number of residue classes mod p which contain no element of R.

For
$$X \ge 1$$
,

$$Z \leq \frac{(N^{1/2} + X)^2}{T},$$

where

$$T = \sum_{q \le X} \mu^2(q) \prod_{p \mid q} \frac{w(p)}{(p - w(p))}.$$

Radu (2012)

Partition Congruences

Suppose $p_r(An+t) \equiv 0 \pmod{\ell}$ for all n, where (A,24)=1. If $1-24t' \equiv (1-24t) \cdot h^2 \pmod{A}$ where (h,A)=1, then $p(An+t') \equiv 0 \pmod{\ell}$ for all n.

Radu (2012)

Partition Congruences

Suppose $p_r(An+t) \equiv 0 \pmod{\ell}$ for all n, where (A,24)=1. If $1-24t' \equiv (1-24t) \cdot h^2 \pmod{A}$ where (h,A)=1, then $p(An+t') \equiv 0 \pmod{\ell}$ for all n.

Consequence: given a theta-type congruence $p_r(\ell Qn + t) \equiv 0 \pmod{\ell}$, we must have

$$p_r(n) \equiv 0 \pmod{\ell}$$

for any n such that $\left(\frac{r-24n}{\ell}\right)=\left(\frac{r-24t}{\ell}\right)$ and $\left(\frac{r-24n}{Q}\right)=\left(\frac{r-24t}{Q}\right)$.

Sketch of proof of Theorem C

Let $f_{1,\ell,\delta} \equiv \sum a_{\ell,\delta}(n)q^{n/24} \pmod{\ell}$ be as above, $Q \in S$, $\epsilon_Q = (\frac{1-24t}{Q})$.

Sketch of proof of Theorem C

Partition Congruences

Let $f_{1,\ell,\delta} \equiv \sum a_{\ell,\delta}(n)q^{n/24} \pmod{\ell}$ be as above, $Q \in S$, $\epsilon_Q = (\frac{1-24t}{Q})$.

$$f_{\ell,\delta} \equiv \sum_{\left(rac{n}{Q}
ight)=-\epsilon_Q} a_{\ell,\delta}(n) q^{n/24} + \sum a_{\ell,\delta}(Q^2 n) q^{n/24}.$$

Let $f_{1,\ell,\delta} \equiv \sum a_{\ell,\delta}(n)q^{n/24} \pmod{\ell}$ be as above, $Q \in S$, $\epsilon_Q = \left(\frac{1-24t}{Q}\right)$.

$$f_{\ell,\delta} \equiv \sum_{\left(rac{n}{O}
ight) = -\epsilon_{Q}} a_{\ell,\delta}(n) q^{n/24} + \sum_{\ell,\delta} a_{\ell,\delta}(Q^{2}n) q^{n/24}.$$

Each $Q \in S$ imposes a quadratic condition on the $n \in \mathbb{Z}$ with $\ell \nmid a_{\ell,\delta}(n)$:

$$\left(\frac{n}{Q}\right) = \epsilon \text{ or } Q^2 | n.$$

Partition Congruences

Let $f_{1,\ell,\delta} \equiv \sum a_{\ell,\delta}(n)q^{n/24} \pmod{\ell}$ be as above, $Q \in S$, $\epsilon_Q = \left(\frac{1-24t}{Q}\right)$.

$$f_{\ell,\delta} \equiv \sum_{\left(\frac{n}{Q}\right) = -\epsilon_Q} a_{\ell,\delta}(n) q^{n/24} + \sum_{\ell=0}^{\infty} a_{\ell,\delta}(Q^2 n) q^{n/24}.$$

Each $Q \in S$ imposes a quadratic condition on the $n \in \mathbb{Z}$ with $\ell \nmid a_{\ell,\delta}(n)$:

$$\left(\frac{n}{Q}\right) = \epsilon \text{ or } Q^2 | n.$$

If S has positive density, the arithmetic large sieve bounds the number of n that satisfy all the quadratic conditions, establishing (3).

Sketch of proof of Theorem C

For every prime Q, there is an n_Q that produces a square class restriction on the Q in S, or a strong version of the $U_Q - V_Q$ relation.

Sketch of proof of Theorem C

Partition Congruences

For every prime Q, there is an n_Q that produces a square class restriction on the Q in S, or a strong version of the $U_Q - V_Q$ relation.

If the first case occurs infinitely often, then there are infinitely many quadratic restrictions and S has density 0. So if S has positive density, then the stronger version of the $U_O - V_O$ relation holds for all but finitely many Q.

Partition Congruences

For every prime Q, there is an n_Q that produces a square class restriction on the Q in S, or a strong version of the $U_Q - V_Q$ relation.

If the first case occurs infinitely often, then there are infinitely many quadratic restrictions and S has density 0. So if S has positive density, then the stronger version of the $U_O - V_O$ relation holds for all but finitely many Q.

From the strong $U_Q - V_Q$ relation, a *q*-expansion principle calculation shows $f_{1,\ell,\delta}|T_{Q^2} \equiv 0 \pmod{\ell}$ if $Q \equiv -1 \pmod{\ell}$.

Sketch of proof of Theorem C

For every prime Q, there is an n_Q that produces a square class restriction on the Q in S, or a strong version of the $U_Q - V_Q$ relation.

If the first case occurs infinitely often, then there are infinitely many quadratic restrictions and S has density 0. So if S has positive density, then the stronger version of the $U_Q - V_Q$ relation holds for all but finitely many Q.

From the strong $U_Q - V_Q$ relation, a q-expansion principle calculation shows $f_{1,\ell,\delta} \big| T_{Q^2} \equiv 0 \pmod{\ell}$ if $Q \equiv -1 \pmod{\ell}$.

The theory of Galois representations associated to modular forms in $\operatorname{Sh}_t(f_{1,r,\ell})$ implies that $f_{1,\ell,\delta}\big|T_{Q^2}\equiv 0\pmod{\ell}$ for every $Q\equiv -1\pmod{\ell}$. This establishes (4).

Numerical data for r=1

Partition Congruences

Ahlgren, B, Raum

Apart from the Ramanujan Congruences, there are no theta-type congruences for $\ell < 10^3$ and $Q < 10^{13}$ or $\ell < 10^4$ and $Q < 10^9$.

Ahlgren, B, Raum

Apart from the Ramanujan Congruences, there are no theta-type congruences for $\ell < 10^3$ and $Q < 10^{13}$ or $\ell < 10^4$ and $Q < 10^9$.

It seems like there are no theta-type congruences when r=1, but a barrier to proving is this is that all the conditions on $f_{1,r,\delta}$ that we derive are satisfied by theta functions.

```
r = 3, \ell = 7
```

In this case there is a theta-type congruence for every Q. The table below shows the t-values for several values of Q.

Q	t
5	15,29
11	15,36,50,57,64
13	29,36,50,64,78,85
17	36,50,57,64,85,92,99,113
19	29,36,57,78,85,92,99,113,127
23	15,29,50,57,78,85,99,113,120,127,134
29	15,36,64,78,85,92,99,120,134,155,162,169,176,190
31	15,50,57,64,78,92,120,127,134,141,155,162,176,183,211
37	15,50,78,85,92,99,113,134,141,155,169,183,190,211,225,232,239,246
41	15,57,78,85,113,120,127,134,141,155,169,190,204,218,225,232,239,246,274,281
43	29,57,64,78,92,99,120,141,155,176,183,190,204,211,218,225,232,260,274,281,288
47	29,36,50,64,92,99,113,120,141,162,169,176,190,204,225,232,239,246,260,267,274, 281,323

Partition Congruences

In this case there is a theta-type congruence for every
$$Q$$
. The table below shows the t -values for several values of Q .

Q	t
5	15,29
11	15,36,50,57,64
13	29,36,50,64,78,85
17	36,50,57,64,85,92,99,113
19	29,36,57,78,85,92,99,113,127
23	15,29,50,57,78,85,99,113,120,127,134
29	15,36,64,78,85,92,99,120,134,155,162,169,176,190
31	15,50,57,64,78,92,120,127,134,141,155,162,176,183,211
37	15,50,78,85,92,99,113,134,141,155,169,183,190,211,225,232,239,246
41	15,57,78,85,113,120,127,134,141,155,169,190,204,218,225,232,239,246,274,281
43	29,57,64,78,92,99,120,141,155,176,183,190,204,211,218,225,232,260,274,281,288
47	29,36,50,64,92,99,113,120,141,162,169,176,190,204,225,232,239,246,260,267,274, 281,323

▶ The number of *t*'s is $\frac{Q-1}{2}$ because of the square class property.

$$r = 3$$
, $\ell = 7$

Partition Congruences

In this case there is a theta-type congruence for every Q. The table below shows the t-values for several values of Q.

Modular forms

Q	t
5	15,29
11	15,36,50,57,64
13	29,36,50,64,78,85
17	36,50,57,64,85,92,99,113
19	29,36,57,78,85,92,99,113,127
23	15,29,50,57,78,85,99,113,120,127,134
29	15,36,64,78,85,92,99,120,134,155,162,169,176,190
31	15,50,57,64,78,92,120,127,134,141,155,162,176,183,211
37	15,50,78,85,92,99,113,134,141,155,169,183,190,211,225,232,239,246
41	15,57,78,85,113,120,127,134,141,155,169,190,204,218,225,232,239,246,274,281
43	29,57,64,78,92,99,120,141,155,176,183,190,204,211,218,225,232,260,274,281,288
47	29,36,50,64,92,99,113,120,141,162,169,176,190,204,225,232,239,246,260,267,274, 281,323

- ▶ The number of t's is $\frac{Q-1}{2}$ because of the square class property.
- ▶ Every Q appears because $f_{3,7,0}$ is a theta function.

neta functions

We say that $f \in M_k(\nu_\eta^r)$ is a *theta function* if the Fourier expansion of f is of the form

$$f = \sum_{n=0}^{\infty} a(n) q^{cn^2/24}$$

for some integer *c*.

Theta functions

Partition Congruences

We say that $f \in M_k(\nu_n^r)$ is a *theta function* if the Fourier expansion of fis of the form

$$f = \sum_{n=0}^{\infty} a(n)q^{cn^2/24}$$

for some integer c.

Examples:

$$\eta^3 = \sum_{n>1} \left(\frac{-4}{n}\right) nq^{n^2/24}$$

Theta functions

We say that $f \in M_k(\nu_\eta^r)$ is a *theta function* if the Fourier expansion of f is of the form

$$f = \sum_{n=0}^{\infty} a(n)q^{cn^2/24}$$

for some integer c.

Examples:

$$\eta^3 = \sum_{n \ge 1} \left(\frac{-4}{n}\right) nq^{n^2/24}$$

$$\eta(z) = \sum_{n=1}^{\infty} \left(\frac{12}{n}\right) q^{n^2/24}.$$

Scarcity for r = 1

Conjectures

Partition Congruences

Conjecture (B, Caione, Chen, Diluia, Gonzalez, Su)

All theta-type congruences come from a congruence between $f_{r,\ell,\delta}$ and a theta function.

Conjecture (B, Caione, Chen, Diluia, Gonzalez, Su)

All theta-type congruences come from a congruence between $f_{r,\ell,\delta}$ and a theta function.

So if you have one theta-type congruence, you have one for every Q.

Small r

Partition Congruences

r	3	9	15	17	19	21	23
(ℓ, δ)	(7,0)	(5,0), (13,0)	(19,0)	(7,0)	(5,0)	(5,-1)	(5, 0 and -1), (7,0 and -1)

Theorem (B, Caione, Chen, Diluia, Gonzalez, Su)

For odd r such that $1 \le r < 24$, there are no theta-type congruences with ℓ and Q in the range [5,6133] such that $\ell \nmid r$ except when (r,ℓ) is in the table.

Partition Congruences

r	3	9	15	17	19	21	23
(ℓ, δ)	(7,0)	(5,0), (13,0)	(19,0)	(7,0)	(5,0)	(5,-1)	(5, 0 and -1), (7,0 and -1)

Theorem (B, Caione, Chen, Diluia, Gonzalez, Su)

For odd r such that $1 \le r < 24$, there are no theta-type congruences with ℓ and Q in the range [5,6133] such that $\ell \nmid r$ except when (r,ℓ) is in the table.

For the (r, ℓ, δ) in the table, $f_{r,\ell,\delta}$ is congruent to η, η^3, η^ℓ , or $\eta^{\ell^2} - \eta$.

r 3 9 15 17 19 21 23 (ℓ, δ) (7,0) (5,0) (13,0) (19,0) (7,0) (5,0) (5,-1) (5,0) and -1)

Theorem (B, Caione, Chen, Diluia, Gonzalez, Su)

For odd r such that $1 \le r < 24$, there are no theta-type congruences with ℓ and Q in the range [5,6133] such that $\ell \nmid r$ except when (r,ℓ) is in the table.

For the (r, ℓ, δ) in the table, $f_{r,\ell,\delta}$ is congruent to η, η^3, η^ℓ , or $\eta^{\ell^2} - \eta$. This is true of all the theta-type congruences we've found.

Nonvanishing condition

 $\delta=0$: We say that Condition C is satisfied by (r,ℓ,δ) if the Fourier expansion of $f_{r,\ell,\delta}$ is supported on positive indices.

Nonvanishing condition

 $\delta=0$: We say that Condition C is satisfied by (r,ℓ,δ) if the Fourier expansion of $f_{r,\ell,\delta}$ is supported on positive indices.

- ▶ For $\delta = 0$, this is true whenever $\lceil \frac{r(\ell^2 1)}{24\ell} \rceil > \frac{r\ell}{24}$ or $\ell > r$.
- ▶ For $\delta = -1$, this is true if r < 23.

Partition Congruences

Set

$$b(r,\ell) := (\ell-1) \lfloor \frac{1}{\ell-1} \left(\ell + \frac{r(\ell^2-1)-2}{2\ell} \right) \rfloor - \frac{r\ell}{2}.$$

▶ This is the weight of $f_{r,\ell,0}$ computed by examining the filtration of $\Delta^{r(\ell^2-1)/24}|U_\ell$.

Some classes of examples

Partition Congruences

Theorem (B-C-C-D-G-S)

For r, ℓ, δ satisfying Condition A in the table below, $f_{r,\ell,\delta}$ is congruent modulo ℓ to a multiple of the corresponding function on the right. Unless Condition B holds, $f_{r,\ell,\delta} \equiv 0 \pmod{\ell}$.

δ	Condition A	Condition B	Function
0	$\ell = r + 4$	$\ell \equiv 1 \pmod{6}$	η^3
0	Condition C	$r \equiv -3\ell \pmod{24}$	η^3
	$b(r,\ell) \leq \frac{3}{2}$		
	$r\ell \equiv -3 \pmod{2(\ell-1)}$		
-1	$\ell^2 = r + 4$	$r \equiv -3 \pmod{24}$	η^3
	$f_{r,\ell,0} \equiv 0 \pmod{\ell}$ Condition C		
0	Condition C	$r \equiv -\ell \pmod{24}$	η
	$b(r,\ell) \le 1/2$ $r \equiv \ell - 2 \pmod{2(\ell-1)}$		
0	Condition C	$r \equiv -1 \pmod{24}$	η^{ℓ}
	$\ell \leq 53$		
	$r \equiv -1 \pmod{2(\ell-1)}$		
-1	$\ell^2 = r + 2 \text{ or } r + 26$	$r \equiv -1 \pmod{24}$	$\eta^{\ell^2} - \eta$
	0 0 0 0 0	$\begin{array}{c c} 0 & \ell = r + 4 \\ 0 & \operatorname{Condition} C \\ b(r,\ell) \leq \frac{3}{2} \\ r\ell \equiv -3 \pmod{2(\ell-1)} \\ -1 & \ell^2 = r + 4 \\ f_{r,\ell,0} \equiv 0 \pmod{\ell} \\ \operatorname{Condition} C \\ 0 & \operatorname{Condition} C \\ b(r,\ell) \leq 1/2 \\ r \equiv \ell - 2 \pmod{2(\ell-1)} \\ 0 & \operatorname{Condition} C \\ \ell \leq 53 \\ r \equiv -1 \pmod{2(\ell-1)} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Type 2 Examples

For odd r < 501, $\ell \le 1223$, we have 86 Type 2 examples.

$-r \pmod{\ell}$	# of Type 2 examples found with $\ell \geq 20$
4	20
6	12
8	3
10	1
12	4

▶ Show there are no theta-type congruences when r = 1.

- ▶ Show there are no theta-type congruences when r = 1.
- ▶ Prove our conjecture for r > 1.

- ▶ Show there are no theta-type congruences when r = 1.
- ▶ Prove our conjecture for r > 1.
- Find alternative descriptions of these families that offer explanations for some of the patterns we've observed.

Partition Congruences

- ▶ Show there are no theta-type congruences when r = 1.
- ▶ Prove our conjecture for r > 1.
- Find alternative descriptions of these families that offer explanations for some of the patterns we've observed.
- ▶ Determine whether there are theta-type congruences other than those in our table.

Partition Congruences

- ▶ Show there are no theta-type congruences when r = 1.
- ▶ Prove our conjecture for r > 1.
- Find alternative descriptions of these families that offer explanations for some of the patterns we've observed.
- Determine whether there are theta-type congruences other than those in our table.
- Is there another way to prove these congruences?

Generalizations?

Other eta-quotients and weakly holomorphic modular forms.

- Other eta-quotients and weakly holomorphic modular forms.
- ▶ Mock theta functions and other mock modular forms.

The End

Thanks for listening!