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Partitions
Definition
A partition of nis a nonincreasing sequence of positive integers
whose sum is n.

The number of partitions of nis p(n).

Example
The partitions of 4:

4
3+1

242
24141
1T+14+141

Therefore p(4) = 5.
)
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Colored Partitions
Definition
An r-colored partition of nis a partition in which each term is assigned
one of r colors. The number of r-colored partitions of nis p,(n).

Example
The two colored partitions of 2:

1. 2

2.2

3. 1+1

4. 1 +1
5.1+1
So py(2) = 5.
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Congruences
A congruence for (r-colored) partitions is a property of the form

pr(An+1t)=0 (mod ¢)

for all integers n, where A, t are fixed integers.
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Congruences

A congruence for (r-colored) partitions is a property of the form
pr(An+1t)=0 (mod ¢)

for all integers n, where A, t are fixed integers.

In this talk ¢ is prime.

S
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The Ramanujan Congruences

Ramanujan (1921)
For all n,

p(5n+4)=0 (mod 5),

p(7n+5)=0 (mod 7),
p(11n+6)=0 (mod 11).
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The Ramanujan Congruences

Ramanujan (1921)
For all n,

p(5n+4)=0 (mod 5),
p(7n+5)=0 (mod 7),
p(11n+6)=0 (mod 11).

» Proved by Ramanujan using the Eisenstein series E,, E4, Eg and
their derivatives.
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The Ramanujan Congruences

Ramanujan (1921)
For all n,

p(5n+4)=0 (mod 5),
p(7n+5)=0 (mod 7),
p(11n+6)=0 (mod 11).

» Proved by Ramanujan using the Eisenstein series E,, E4, Eg and
their derivatives.

» Later explained combinatorially via the “rank" function of Dyson
(1944) and the “crank" function of Andrews and Garvan (1988).
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Other congruences?

Question

Other than Ramanujan’s three congruences, are there any primes /¢
and integers t such that p,(¢n+t) =0 (mod ¢) for all n?
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Other congruences?

Question

Other than Ramanujan’s three congruences, are there any primes /¢
and integers t such that p,(¢n+t) =0 (mod ¢) for all n?

» r =1: No, by work of Ahlgren and Boylan (2003).



Partition Congruences
[e]e]e]e] Telele]

Other congruences?

Question

Other than Ramanujan’s three congruences, are there any primes /¢
and integers t such that p,(¢n+t) =0 (mod ¢) for all n?

» r =1: No, by work of Ahlgren and Boylan (2003).

» r > 1: Many examples are known.
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Other congruences?

Question
Other than Ramanujan’s three congruences, are there any primes /¢

and integers t such that p,(¢n+t) =0 (mod ¢) for all n?
» r =1: No, by work of Ahlgren and Boylan (2003).
» r > 1: Many examples are known.
» We call a congruence of this form a Ramanujan-type

congruence.

A
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Ramanujan-type congruences

» Kiming-Olsson (1992): There are Ramanujan-type
congruences when £|r, r = —1 (mod £), or r = —3 (mod ¥).
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Ramanujan-type congruences

» Kiming-Olsson (1992): There are Ramanujan-type
congruences when £|r, r = —1 (mod £), or r = —3 (mod ¥).

» Boylan (2000) and Dawsey-Wagner (2016): Found more
Ramanujan-type congruences using CM modular forms.
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Ramanujan-type congruences

» Kiming-Olsson (1992): There are Ramanujan-type
congruences when £|r, r = —1 (mod £), or r = —3 (mod ¥).

» Boylan (2000) and Dawsey-Wagner (2016): Found more
Ramanujan-type congruences using CM modular forms.

» Rolen-Tripp-Wagner (2022): Generalized the crank function to
combinatorially explain many of these congruences.
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Non-Ramanujan-type congruences?

» Atkin (1967): Found congruences for small ¢ of the form
p(f@Q3n+t) =0 (mod ¢).
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Non-Ramanujan-type congruences?

» Atkin (1967): Found congruences for small ¢ of the form
p(f@Q3n+t) =0 (mod ¢).

» Ono (2000): For any ¢ > 5, there are infinitely many primes Q
and integers t with (:=24) = 0 and p(¢Q*n+t) =0 (mod ¢).
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Non-Ramanujan-type congruences?

» Atkin (1967): Found congruences for small ¢ of the form
p(f@Q3n+t) =0 (mod ¢).

» Ono (2000): For any ¢ > 5, there are infinitely many primes Q
and integers t with (:=24) = 0 and p(¢Q*n+t) =0 (mod ¢).

> Ahigren-Ono (2001): Generalized this for (1:=24) = —1.
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Non-Ramanujan-type congruences?

» Atkin (1967): Found congruences for small ¢ of the form
p(f@Q3n+t) =0 (mod ¢).

» Ono (2000): For any ¢ > 5, there are infinitely many primes Q
and integers t with (:=24) = 0 and p(¢Q*n+t) =0 (mod ¢).

> Ahigren-Ono (2001): Generalized this for (1:=24) = —1.

» Treneer (2006): Feneralized Ono and Ahigren’s work to other
modular forms.
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Non-Ramanujan-type congruences?

» Atkin (1967): Found congruences for small ¢ of the form
p(f@Q3n+t) =0 (mod ¢).

» Ono (2000): For any ¢ > 5, there are infinitely many primes Q
and integers t with (:=24) = 0 and p(¢Q*n+t) =0 (mod ¢).

> Ahigren-Ono (2001): Generalized this for (1:=24) = —1.

» Treneer (2006): Feneralized Ono and Ahigren’s work to other
modular forms.

» These works used the Shimura correspondence and Galois
representations associated to modular forms of integral weight.
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Non-Ramanujan-type congruences?

» Atkin (1967): Found congruences for small ¢ of the form
p(f@Q3n+t) =0 (mod ¢).

» Ono (2000): For any ¢ > 5, there are infinitely many primes Q
and integers t with (:=24) = 0 and p(¢Q*n+t) =0 (mod ¢).

> Ahigren-Ono (2001): Generalized this for (1:=24) = —1.

» Treneer (2006): Feneralized Ono and Ahigren’s work to other
modular forms.

» These works used the Shimura correspondence and Galois
representations associated to modular forms of integral weight.

» Ahlgren-Allen-Tang (2022): provide examples similar to Atkin’s
using different properties of these Galois representations.

O
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pr(An+1) =0 (mod ¢) for all n?
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» Radu (2012): If r =1, then ¢ £ 2, 3.
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Classifying congruences

What restrictions are there on the values A, t, r, ¢ for which
pr(An+1) =0 (mod ¢) for all n?

» Radu (2012): If r =1, then ¢ £ 2, 3.

» We have two useful restrictions that were conjectured by Ahlgren
and Ono for p(n) (2001), proved by Radu (2013), and
generalized to other eta-quotients by Andersen (2014):
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Classifying congruences

What restrictions are there on the values A, t, r, ¢ for which
pr(An+1) =0 (mod ¢) for all n?

» Radu (2012): If r =1, then ¢ £ 2, 3.

» We have two useful restrictions that were conjectured by Ahlgren
and Ono for p(n) (2001), proved by Radu (2013), and
generalized to other eta-quotients by Andersen (2014):
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Classifying congruences

What restrictions are there on the values A, t, r, ¢ for which
pr(An+1) =0 (mod ¢) for all n?

» Radu (2012): If r =1, then ¢ £ 2, 3.

» We have two useful restrictions that were conjectured by Ahlgren
and Ono for p(n) (2001), proved by Radu (2013), and
generalized to other eta-quotients by Andersen (2014):

> (|A.
> ( r24t>7é1

D7
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Theta-type congruences

» In all known non-Ramanujan-type congruences with a maximal
arithmetic progression {An+ t}, one has A= /- Q", where Q is
prime and n > 3.
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Theta-type congruences

» In all known non-Ramanujan-type congruences with a maximal
arithmetic progression {An+ t}, one has A= /- Q", where Q is
prime and n > 3.

Question
Do there exist distinct primes Q, ¢ > 5 and integers t such that

pr({@Qn+1t)=0 (mod ¥). (1)

for all n?
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Theta-type congruences

» In all known non-Ramanujan-type congruences with a maximal
arithmetic progression {An+ t}, one has A= /- Q", where Q is
prime and n > 3.

Question
Do there exist distinct primes Q, ¢ > 5 and integers t such that

pr({@Qn+1t)=0 (mod ¥). (1)
for all n?

» When r =1 and ¢ = 2, 3, the answer is no by work of Radu.
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Theta-type congruences

» In all known non-Ramanujan-type congruences with a maximal
arithmetic progression {An+ t}, one has A= /- Q", where Q is
prime and n > 3.

Question
Do there exist distinct primes Q, ¢ > 5 and integers t such that

pr({@Qn+1t)=0 (mod ¥). (1)
for all n?

» When r =1 and ¢ = 2, 3, the answer is no by work of Radu.

» We know that (1) holds trivially if p,(¢n+t) =0 (mod ¢) is a
Ramanujan-type congruence.
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Theta-type congruences

» In all known non-Ramanujan-type congruences with a maximal
arithmetic progression {An+ t}, one has A= /- Q", where Q is
prime and n > 3.

Question
Do there exist distinct primes Q, ¢ > 5 and integers t such that

pr({@Qn+1t)=0 (mod ¥). (1)
for all n?

» When r =1 and ¢ = 2, 3, the answer is no by work of Radu.

» We know that (1) holds trivially if p,(¢n+t) =0 (mod ¢) is a
Ramanujan-type congruence.

» We call congruences of the form of (1) that do not follow trivially
from Ramanujan-type congruences theta-type congruences.
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Do theta-type congruences exist?
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Theta-type congruences

Do theta-type congruences exist?

» r =1: Work of Ahlgren-B-Raum implies that the answer is
probably not, based on numerical data and a result that such
congruences are expected to be “scarce". These results will be
described in the "Scarcity" section of the talk.



Theta-type congruences
oce

Theta-type congruences

Do theta-type congruences exist?

» r =1: Work of Ahlgren-B-Raum implies that the answer is
probably not, based on numerical data and a result that such
congruences are expected to be “scarce". These results will be
described in the "Scarcity" section of the talk.

» r > 1: Work of BCCDGS: infinitely many theta-type congruences
exist. This will be described in the "Examples" section.
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The Dedekind Eta Function
q:=€"7 wherezc H:={x+iy:x,y €R,y > 0}.

77(2) — q1/24 H(1 _ qn)

n>1
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The Dedekind Eta Function
q:=€"7 wherezc H:={x+iy:x,y €R,y > 0}.

q'/2 H(1

n>1
Transformation Law

For all y (i 2) € SLa(2),
. az+b
! cz+d

e(2 (a+ d)c — bd(c? 71)730)) 2¢c,
(2‘7 (a+ d)c — bd(c? 71)+3d73730d)), 2|c,

vp(7)(cz + d)'/?n(2).

Here

(@ 9)-{fE

with e(x) = ™.
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Generating function

> pnmg" =10 -a") "
=q"%77(2)
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Modular forms with the »,, multiplier system
Letk € 3Z.

Mk (v,)) is the space of f : H — C such that
1. fis holomorphic,
2. f(z) is bounded as Im(z) — oo, and

3. forally = (i 2) € SLy(Z), we have

az+b
cz+d

(flv) (2) = (cz + d)~kf ( > = v (Vf(2).
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Modular forms with the »,, multiplier system
Letk € 3Z.

Mk (v,)) is the space of f : H — C such that
1. fis holomorphic,
2. f(z) is bounded as Im(z) — oo, and

3. forally = (i 2) € SLy(Z), we have

az+b
cz+d

(f"y) (2) = (cz+d)~Kf ( > = v (Vf(2).

The f € Mx(vy)) are weight k modular forms with respect to v, .

A1
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Cusp forms with multiplier system

Sk(v,) is the space of f € M(v;)) such that

lim  f(r) = 0.

Im(7)— o0

AD
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Cusp forms with multiplier system

Sk(v,) is the space of f € M(v;)) such that

lim  f(r) = 0.

Im(7)— o0

The functions f € Si(v,) are weight k cusp forms with respect to v,.
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Fourier series
Any f € Mk(v,) has a Fourier expansion of the form

f(z) = i a(n)q"/?.

n=0

AAd
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Fourier series
Any f € Mk(v,) has a Fourier expansion of the form

_ Z a(n)qn/24.
n=0

The following linear maps act nicely on modular forms:

(Z q24> |Um = Z a(mn)qﬁ and (Z a(n)qzn‘*) ’Vm = Z a(n)c

n n n

(Z a(n q24>®x =Y x(ma(n)q?.

n

where x is a Dirichlet character.
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Fourier series
Any f € Mk(v,) has a Fourier expansion of the form

_ Z a(n)qn/24.
n=0

The following linear maps act nicely on modular forms:

(Z q24> |Um = Z a(mn)qﬁ and (Z a(n)qzn‘*) ’Vm = Z a(n)c

n n n n

(Z a(n q24>®x =Y x(ma(n)q?.

n

where x is a Dirichlet character.

» These are useful for restricting to nin an arithmetic progression.
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Hecke Operators
For Q > 5 prime and (r,24) = 1, we have the index Q® Hecke

operator
Toe : Myj2(vy) — Mij2(vy).
given by

(> a(n)g”?)| Tee =

n

S (a(@Pn) + Q- ((—Q1)> %(12,7) alm) + G %a (2 ))q

n
1

—1\*72 /12
= f|Uge + @ () (Q) f & xq + QP 2f| Ve

47




Modular forms
000000800000

Modular forms modulo ¢

Let ¢ > 5 be prime and let k € Z.

Mi(Fe) := Mi(1) NFe[[q]]
= {reduction modulo ¢ of all f € M (1) with ¢-integral coefficients. }
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Modular forms modulo ¢

Let ¢ > 5 be prime and let k € Z.

Mi(Fe) := Mi(1) NFe[[q]]
= {reduction modulo ¢ of all f € M (1) with ¢-integral coefficients. }

Swinnerton-Dyer (1973)

Fi[Ea, Bsl/(Eo—1 — 1) =Y Mk(Fy)

keZ

= Dacz/(0—1)z (Ukza  (mod t—1)Mk(Fe)) -




Modular forms
000000080000

Filtrations

Definition (Serre)
Let ¢ > 5 be prime, k € Z. For f € Mk(F,), the filtration of f is given by

w(f) =inf{r e Z:fe M(F,)}.
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Filtrations

Definition (Serre)
Let ¢ > 5 be prime, k € Z. For f € Mk(F,), the filtration of f is given by

w(f) =inf{r e Z:fe M(F,)}.

» Example: Since E,_1 =1 (mod ¢), we have w(E,_1) = 0.
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Filtrations and linear maps

» Serre used properties of filtrations to define ¢-adic
modular forms.
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Filtrations and linear maps

» Serre used properties of filtrations to define ¢-adic
modular forms.

Serre (1972)
For ¢ > 5,

> w(f|Uy) < ¢+ YO
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Filtrations and linear maps

» Serre used properties of filtrations to define ¢-adic
modular forms.

Serre (1972)
For ¢ > 5,

> w(f|Uy) < ¢+ YO

» Let © be the Ramanujan Theta operator, i.e. © = q%.
Then
w(f|l©) < w(f)+(+1

with equality if and only if £ 1 w(f).
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The g-expansion principle

Deligne and Rapoport (1973)

Let ¢ be prime and k, N € N. Let = be a prime ideal above ¢ in a
number field F which contains all Nth roots of unity.

Suppose that f € Mi('(N)) has w-integral coefficients and

~v € [o(£™M), where ¢™ is the highest power of ¢ dividing N.

Then f|y has w-integral coefficients, and

f=0 (modw) <= fly=0 (mod 7).

-3
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Generating functions

2
Let k,r7g70 = % and k,7g,_1 = %
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Generating functions

2
Let k,r7g70 = % and k,7g,_1 = %

fr,£,0 = Z pr( )ng‘zr~

(rrl24n) 0

and

fres1:= > p(ng =

>y
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Generating functions

Let k,r7g70 = % and k,7g,_1 = Eszrq
24n—r
fo=" Y plmg=r.
(rr (24n ) 0
and 24n—r
fros—1:= Z pr(ng = .
( (r—[24n)):_1

» By aforementioned work of Andersen, we don’t need to consider
a generating function with (W) —1.

» fre0=0 (mod ¢) when we have a Ramanujan-type congruence
pr(¢n — (51)) =0 (mod ).
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Holomorphic generating functions
Fact (Ahlgren, B, Raum)

Let ¢ > 5 be prime, § € {0, —1}.

There is a modular form Y- a,,5(n)g"/2* € Sy, , , (v, ') such that

fies =Y ans(ng”®*  (mod ¢).
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Holomorphic generating functions
Fact (Ahlgren, B, Raum)

Let ¢ > 5 be prime, § € {0, —1}.

There is a modular form Y- a,,5(n)g"/2* € Sy, , , (v, ') such that

fies =Y ans(ng”®*  (mod ¢).

» This is generalized to r > 1 for f; ; s with a modified weight for
t<r.
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Consequences of the g-expansion principle
Theorem B (Ahlgren, B, Raum)

1. There are no theta-type congruences with (25=) = 0.
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Consequences of the g-expansion principle
Theorem B (Ahlgren, B, Raum)

1. There are no theta-type congruences with (25=) = 0.

2. Fix§ € {0,—1} and € € {£1}. If there is a theta-type
congruence with

1 — 24t 24t —1
( 7 )_5and< Q >—e,

f1@5|UQ——€< Q >Q fg(;’VQ modé). (2)

then
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Consequences of the g-expansion principle
Theorem B (Ahlgren, B, Raum)

1. There are no theta-type congruences with (25=) = 0.

2. Fix§ € {0,—1} and € € {£1}. If there is a theta-type
congruence with

1 — 24t 24t —1
( 7 )_5and< Q >—e,

f1@5|UQ——€< Q >Q fg(;’VQ modé). (2)

then

» (2) holds for theta functions.
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Consequences of the g-expansion principle
Theorem B (Ahlgren, B, Raum)

1. There are no theta-type congruences with (25=) = 0.

2. Fix§ € {0,—1} and € € {£1}. If there is a theta-type
congruence with

1 — 24t 24t —1
( 7 )_5and< Q >—e,

f1@5|UQ——€< Q >Q fg(;’VQ modé). (2)

then

» (2) holds for theta functions.
» We use a g-expansion formula of Radu (2013) at the cusp 16.
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Scarcity Result

Theorem C (Ahigren, B, Raum)

Suppose that ¢ > 5 is prime, and fix 6 € {0, —1}. Let S be the set of
primes Q for which we have a theta-type congruence with
(524 =3
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Scarcity Result

Theorem C (Ahigren, B, Raum)

Suppose that ¢ > 5 is prime, and fix 6 € {0, —1}. Let S be the set of
primes Q for which we have a theta-type congruence with
(1=24) = 4. One of the following is true.

1. S has density zero, or

2. we have
#{n<X :a;5(n)#0 (mod ()} < vVXlogX 3)
and

f1’g’5|T02 =0 (mod/¢) forall primes Q=—-1 (mod¥¢). (4)
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Scarcity Result

Theorem C (Ahigren, B, Raum)

Suppose that ¢ > 5 is prime, and fix 6 € {0, —1}. Let S be the set of
primes Q for which we have a theta-type congruence with
(1=24) = 4. One of the following is true.

1. S has density zero, or

2. we have
#{n<X :a;5(n)#0 (mod ()} < vVXlogX 3)
and

f1’g’5|T02 =0 (mod/¢) forall primes Q=—-1 (mod¥¢). (4)

> The LHS of (3) is ~ VX if f; 4 5 is a theta function.
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Some cases

We use (4) to rule out the second possibility for specific Q:

Theorem (Ahigren, B, Raum)
For 17 < ¢ < 10,000, S has density 0.
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Some cases

We use (4) to rule out the second possibility for specific Q:

Theorem (Ahigren, B, Raum)
For 17 < ¢ < 10,000, S has density 0.

¢=13?

Barrier:
work of Atkin —- f1’13’,1|T02 =0 (mod 13) for Q = —1 (mod 13)
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Arithmetic Large Sieve

Montgomery (1968)

Let R be a nonempty set of Z positive integers in [1, N + 1]. Let w(p)
be the number of residue classes mod p which contain no element of

R.
For X > 1,
7 < (N'/2 4- X)?
T b)
where

T=> w@]] o w(p) iv(p)

<X pla w(p))
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Square class structure

Radu (2012)

Suppose p,(An+t) =0 (mod ¢) for all n, where (A,24) = 1.
If 1 — 24t = (1 — 24t) - h? (mod A) where (h, A) = 1, then
p(An+t) =0 (mod ¢) for all n.

A
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Square class structure

Radu (2012)

Suppose p,(An+t) =0 (mod ¢) for all n, where (A,24) = 1.
If 1 — 24t = (1 — 24t) - h? (mod A) where (h, A) = 1, then
p(An+t) =0 (mod ¢) for all n.

Consequence: given a theta-type congruence p,(¢/Qn+t) =0
(mod ¢), we must have
pr(n)=0 (mod ¢)

for any n such that (©=2%7) = (=24) and (=5*) = (=5%).

/22
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Sketch of proof of Theorem C

Let fip5 =3 a,s(n)g"?* (mod () be as above, Q € S, eq = (54).
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Sketch of proof of Theorem C

Let fip5 =3 a,s(n)g"?* (mod () be as above, Q € S, eq = (54).

fg’g = Z a&(g(n)q”/z“ + Z 35’5(02n)qn/24.
(8

TA
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Sketch of proof of Theorem C
Let fi o5 = > ar,s(n)q™2* (mod ¢) be as above, Q € S, eq = (124).

fg’g = Z a&(g(n)q”/z“ + Z 35’5(02n)qn/24.
(8

Each Q € Simposes a quadratic condition on the n € Z with

é'f a&g(n):
(g) = cor @Q?|n.
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Sketch of proof of Theorem C
Let fi o5 = > ar,s(n)q™2* (mod ¢) be as above, Q € S, eq = (124).

fro= Y. ans(ng”®+>_ ans(@Pn)g"?.
(8)=—<a

Each Q € Simposes a quadratic condition on the n € Z with
E'f a&g(n): n
(5> = cor @Q?|n.

If S has positive density, the arithmetic large sieve bounds the
number of n that satisfy all the quadratic conditions, establishing (3).
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For every prime Q, there is an ng that produces a square class
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Sketch of proof of Theorem C

For every prime Q, there is an ng that produces a square class
restriction on the Q in S, or a strong version of the Ug — V(g relation.

If the first case occurs infinitely often, then there are infinitely many
quadratic restrictions and S has density 0. So if S has positive
density, then the stronger version of the Ug — Vg relation holds for all
but finitely many Q.
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For every prime Q, there is an ng that produces a square class
restriction on the Q in S, or a strong version of the Ug — V(g relation.

If the first case occurs infinitely often, then there are infinitely many
quadratic restrictions and S has density 0. So if S has positive
density, then the stronger version of the Ug — Vg relation holds for all
but finitely many Q.

From the strong Uq — Vg relation, a g-expansion principle calculation
shows fi 15| Tge =0 (mod ¢) if Q= —1 (mod ¢).
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Sketch of proof of Theorem C

For every prime Q, there is an ng that produces a square class
restriction on the Q in S, or a strong version of the Ug — V(g relation.

If the first case occurs infinitely often, then there are infinitely many
quadratic restrictions and S has density 0. So if S has positive
density, then the stronger version of the Ug — Vg relation holds for all
but finitely many Q.

From the strong Uq — Vg relation, a g-expansion principle calculation
shows fi 15| Tge =0 (mod ¢) if Q= —1 (mod ¢).

The theory of Galois representations associated to modular forms in
Shy(fi r,¢) implies that f; 4 5| Tge = 0 (mod ¢) for every Q = —1
(mod ¢). This establishes (4).
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Ahlgren, B, Raum

Apart from the Ramanujan Congruences, there are no theta-type
congruences for ¢ < 103 and Q < 10" or ¢ < 10* and Q < 10°.
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Numerical data for r = 1

Ahlgren, B, Raum

Apart from the Ramanujan Congruences, there are no theta-type
congruences for ¢ < 103 and Q < 10" or ¢ < 10* and Q < 10°.

It seems like there are no theta-type congruences when r = 1, but a
barrier to proving is this is that all the conditions on f; ; 5 that we
derive are satisfied by theta functions.
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r=3,{=7

In this case there is a theta-type congruence for every Q. The table
below shows the f-values for several values of Q.

Q

t

5
11
13
17
19
23
29
31
37
M
43
47

15,29
15,36,50,57,64
29,36,50,64,78,85
36,50,57,64,85,92,99,113
29,36,57,78,85,92,99,113,127
15,29,50,57,78,85,99,113,120,127,134
15,36,64,78,85,92,99,120,134,155,162,169,176,190
15,50,57,64,78,92,120,127,134,141,155,162,176,183,211
15,50,78,85,92,99,113,134,141,155,169,183,190,211,225,232,239,246
15,57,78,85,113,120,127,134,141,155,169,190,204,218,225,232,239,246,274,281
29,57,64,78,92,99,120,141,155,176,183,190,204,211,218,225,232,260,274,281,288
29,36,50,64,92,99,113,120,141,162,169,176,190,204,225,232,239,246,260,267,274, 281,323
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In this case there is a theta-type congruence for every Q. The table
below shows the f-values for several values of Q.

Q t

5 15,29

11 15,36,50,57,64

13 29,36,50,64,78,85

17 36,50,57,64,85,92,99,113

19 29,36,57,78,85,92,99,113,127

23 15,29,50,57,78,85,99,113,120,127,134

29 15,36,64,78,85,92,99,120,134,155,162,169,176,190

31 15,50,57,64,78,92,120,127,134,141,155,162,176,183,211

37 15,50,78,85,92,99,113,134,141,155,169,183,190,211,225,232,239,246

41 15,57,78,85,113,120,127,134,141,155,169,190,204,218,225,232,239,246,274,281

43 29,57,64,78,92,99,120,141,155,176,183,190,204,211,218,225,232,260,274,281,288

47 29,36,50,64,92,99,113,120,141,162,169,176,190,204,225,232,239,246,260,267,274, 281,323
» The number of t’s is % because of the square class property.
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r=3,{=7

In this case there is a theta-type congruence for every Q. The table
below shows the f-values for several values of Q.

Q t

5 15,29

11 15,36,50,57,64

13 29,36,50,64,78,85

17 36,50,57,64,85,92,99,113

19 29,36,57,78,85,92,99,113,127

23 15,29,50,57,78,85,99,113,120,127,134

29 15,36,64,78,85,92,99,120,134,155,162,169,176,190

31 15,50,57,64,78,92,120,127,134,141,155,162,176,183,211

37 15,50,78,85,92,99,113,134,141,155,169,183,190,211,225,232,239,246

41 15,57,78,85,113,120,127,134,141,155,169,190,204,218,225,232,239,246,274,281

43 29,57,64,78,92,99,120,141,155,176,183,190,204,211,218,225,232,260,274,281,288

47 29,36,50,64,92,99,113,120,141,162,169,176,190,204,225,232,239,246,260,267,274, 281,323
» The number of t’s is % because of the square class property.
> Every Q appears because f3 7 is a theta function.
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Theta functions

We say that f € Mi(v;) is a theta function if the Fourier expansion of f

is of the form .
f— Z a(n)qcn2/24
n=0

for some integer c.
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Theta functions

We say that f € Mi(v;) is a theta function if the Fourier expansion of f

is of the form .
f— Z a(n)qcn2/24
n=0

for some integer c.

Examples:

7]3 _ Z <_n4) nqn2/24
02 =3 (1) e
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Conjectures

Conjecture (B, Caione, Chen, Diluia, Gonzalez, Su)

All theta-type congruences come from a congruence
between f,, s and a theta function.
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Conjectures

Conjecture (B, Caione, Chen, Diluia, Gonzalez, Su)

All theta-type congruences come from a congruence
between f,, s and a theta function.

So if you have one theta-type congruence, you have one
for every Q.
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Small r

r ] 3 9 i5 17 79 21 23
[ (©3) [ 70 (0,30 _(190) _(70) (0] __(6-1) __(5.0and-1),(70and 1) |

Theorem (B, Caione, Chen, Diluia, Gonzalez, Su)

For odd r such that 1 < r < 24, there are no theta-type congruences
with ¢ and Q in the range [5,6133] such that ¢ { r except when (r,¢) is
in the table.
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Theorem (B, Caione, Chen, Diluia, Gonzalez, Su)

For odd r such that 1 < r < 24, there are no theta-type congruences
with ¢ and Q in the range [5,6133] such that ¢ { r except when (r,¢) is
in the table.

For the (r, ¢, 6) in the table, f, ;5 is congruent to 1, 3, 7, or n* — 1.
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Small r

r ] 3 9 i5 17 79 21 23
[ (©3) [ 70 (0,30 _(190) _(70) (0] __(6-1) __(5.0and-1),(70and 1) |

Theorem (B, Caione, Chen, Diluia, Gonzalez, Su)

For odd r such that 1 < r < 24, there are no theta-type congruences

with ¢ and Q in the range [5,6133] such that ¢ { r except when (r,¢) is
in the table.

For the (r, ¢, 6) in the table, f, ;5 is congruent to 1, 3, 7, or n* — 1.
This is true of all the theta-type congruences we’ve found.
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Nonvanishing condition

d = 0: We say that Condition C is satisfied by (r, ¢, ) if the Fourier
expansion of f, ; 5 is supported on positive indices.
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Nonvanishing condition

d = 0: We say that Condition C is satisfied by (r, ¢, ) if the Fourier
expansion of f, ; 5 is supported on positive indices.

» For § = 0, this is true whenever [’“224;1)] > HLort>r.

» For 6 = —1, thisis true if r < 23.
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Weight bound

Set

b(r, 0) :=(€—1)L£%1 (u W)J _ g

» This is the weight of f; ; o computed by examining the filtration of
Ar(z2—1)/24|Ue_
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Some classes of examples
Theorem (B-C-C-D-G-S)

For r, ¢, 6 satisfying Condition A in the table below, f, ; 5 is congruent
modulo ¢ to a multiple of the corresponding function on the right.
Unless Condition B holds, f; ;s = 0 (mod ¢).

Type S Condition A Condition B Function
1a 0 (=r+4 ¢ =1 (mod 6) 03
1b 0 Condition C r= —3¢ (mod 24) n°

3
b(r, £) < 2
r¢ = —3 (mod 2(¢ — 1))
1c —1 P=r+4 r= —3 (mod 24) n°
fr.e,0 =0 (mod £)
Condition C
2 0 Condition C r= —£ (mod 24) n
b(r,0) < 1/2
r=+¢—2 (mod 2(£ — 1))
3 0 Condition C r=—1 (mod 24) n?
£ <53
r=—1 (mod 2(¢ — 1))
2
4 —1 P =r+20rr+26 r=—1 (mod 24) E—
fre0 = anz (mod ¢)
Condition C
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Type 2 Examples
For odd r < 501, ¢ < 1223, we have 86 Type 2 examples.

ell

[ ]
°
150 - .
[ ]
°
°
100 - ° °
[ ] [ ]
[ ]
[ ]
[ ] [ ]
.
. .
50|- °
. ° °
. . . . °
[ ] ° L ] ° [ ]
[ ]
® o L ° ) ® o
e o o g o o o q o o
L § © o
L r
100 200 300 400 500
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Type 2 Data

—r (mod ¢) | # of Type 2 examples found with ¢ > 20
4 20
6 12
8 3
10 1
12 4
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Future work

» Show there are no theta-type congruences when r = 1.
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» Prove our conjecture for r > 1.

» Find alternative descriptions of these families that offer
explanations for some of the patterns we’ve observed.
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Future work

» Show there are no theta-type congruences when r = 1.
» Prove our conjecture for r > 1.

» Find alternative descriptions of these families that offer
explanations for some of the patterns we’ve observed.

» Determine whether there are theta-type congruences other than
those in our table.
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Future work

» Show there are no theta-type congruences when r = 1.
» Prove our conjecture for r > 1.

» Find alternative descriptions of these families that offer
explanations for some of the patterns we’ve observed.

» Determine whether there are theta-type congruences other than
those in our table.

» [s there another way to prove these congruences?
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Generalizations?

» Other eta-quotients and weakly holomorphic modular
forms.
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Generalizations?

» Other eta-quotients and weakly holomorphic modular
forms.

» Mock theta functions and other mock modular forms.
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The End

Thanks for listening!
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