Distributions on integer partitions

Michael Griffin (with K. Ono, L. Rolen, and W.-L. Tsai)

The Partition function p(n)

Definition

A partition of an integer n is any nonincreasing sequence

$$\Lambda := \{\lambda_1, \lambda_2, \dots, \lambda_t\}$$

of positive integers which sum to n.

The Partition function p(n)

Definition

A partition of an integer n is any nonincreasing sequence

$$\Lambda := \{\lambda_1, \lambda_2, \dots, \lambda_t\}$$

of positive integers which sum to n.

Notation

The partition function

$$p(n) := \#$$
 partitions of n .

The Partition function p(n)

Definition

A partition of an integer n is any nonincreasing sequence

$$\Lambda := \{\lambda_1, \lambda_2, \dots, \lambda_t\}$$

of positive integers which sum to n.

Notation

The partition function

$$p(n) := \#$$
 partitions of n .

$$4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 \implies p(4) = 5.$$

General Problem

Let $\{Y(n)\}\$ be a sequence of discrete distributions on $\{\lambda: \lambda \vdash n\}$.

General Problem

Let $\{Y(n)\}\$ be a sequence of discrete distributions on $\{\lambda : \lambda \vdash n\}$. Can we have

$$\lim_{n\to+\infty}Y(n)=\text{``Distribution independent of }n\text{''}?$$

General Problem

Let $\{Y(n)\}$ be a sequence of discrete distributions on $\{\lambda : \lambda \vdash n\}$. Can we have

$$\lim_{n\to+\infty}Y(n)=\text{``Distribution independent of }n\text{''}?$$

Questions

(1) Are there any nice natural examples?

General Problem

Let $\{Y(n)\}$ be a sequence of discrete distributions on $\{\lambda : \lambda \vdash n\}$. Can we have

$$\lim_{n\to+\infty}Y(n)=\text{``Distribution independent of }n\text{''}?$$

Questions

- (1) Are there any nice natural examples?
- (2)examples with normalized limits independent of n?

Dyson's Rank

Definition

The rank of a partition is its largest part minus its number of parts.

$$N(m, n) := \#\{\text{partitions of } n \text{ with rank } m\}.$$

Dyson's Rank

Definition

The rank of a partition is its largest part minus its number of parts.

$$N(m, n) := \#\{\text{partitions of } n \text{ with rank } m\}.$$

Example

The ranks of the partitions of 4:

<u>Partition</u>	Largest Part	# Parts	$\underline{\hspace{1cm}}$ Rank
4	4	1	$3 \equiv 3 \pmod{5}$
3 + 1	3	2	$1 \equiv 1 \pmod{5}$
2 + 2	2	2	$0 \equiv 0 \pmod{5}$
2 + 1 + 1	2	3	$-1 \equiv 4 \pmod{5}$
1 + 1 + 1 + 1	1	4	$-3 \equiv 2 \pmod{5}$

Theorem (Atkin and Swinnerton-Dyer, 1954)

If $0 \le a < b$ are integers and

 $N(a, b; n) := \#\{\text{partitions of } n \text{ with rank } \equiv a \mod b\},$

Theorem (Atkin and Swinnerton-Dyer, 1954)

If $0 \le a < b$ are integers and

$$N(a, b; n) := \#\{\text{partitions of } n \text{ with rank } \equiv a \mod b\},$$

then for every n and every a, we have

$$N(a,5;5n+4) = p(5n+4)/5,$$

 $N(a,7;7n+5) = p(7n+5)/7.$

Theorem (Atkin and Swinnerton-Dyer, 1954)

If $0 \le a < b$ are integers and

$$N(a, b; n) := \#\{\text{partitions of } n \text{ with rank } \equiv a \mod b\},$$

then for every n and every a, we have

$$N(a,5;5n+4) = p(5n+4)/5,$$

 $N(a,7;7n+5) = p(7n+5)/7.$

This "explains" Ramanujan's congruences modulo 5 and 7.

Theorem (Atkin and Swinnerton-Dyer, 1954)

If $0 \le a < b$ are integers and

$$N(a, b; n) := \#\{\text{partitions of } n \text{ with rank } \equiv a \mod b\},$$

then for every n and every a, we have

$$N(a,5;5n+4) = p(5n+4)/5,$$

 $N(a,7;7n+5) = p(7n+5)/7.$

This "explains" Ramanujan's congruences modulo 5 and 7.

Theorem (Bringmann, 2008)

For all $0 \le a < b$ we have

$$\lim_{n \to +\infty} \frac{N(a, b; n)}{p(n)} = \frac{1}{b}$$

Number of Parts

Number of Parts

Notation

The "number of parts" polynomials $P_{\#}(n;T)$ are defined by

$$\sum_{n=0}^{\infty} P_{\#}(n;T)q^{n} := \prod_{n=1}^{\infty} \frac{1}{(1-Tq^{n})}.$$

Number of Parts

Notation

The "number of parts" polynomials $P_{\#}(n; T)$ are defined by

$$\sum_{n=0}^{\infty} P_{\#}(n;T)q^{n} := \prod_{n=1}^{\infty} \frac{1}{(1-Tq^{n})}.$$

Example (Asymmetry)

$$P_{\#}(4;T) = T + 2T^{2} + T^{3} + T^{4}$$

$$P_{\#}(5;T) = T + 2T^{2} + 2T^{3} + T^{4} + T^{5}$$

$$P_{\#}(6;T) = T + 3T^{2} + 3T^{3} + 2T^{4} + T^{5} + T^{6}$$

$$\vdots$$

$$P_{\#}(15;T) = T + 7T^{2} + 19T^{3} + 27T^{4} + 30T^{5} + \dots + 2T^{13} + T^{14} + T^{15}$$

Theorem of Erdös and Lehner

Notation

If k is a positive integer, then let

$$p_{\leq k}(n) := \#\{\text{partitions of } n \text{ with } \leq k \text{ parts}\}.$$

Theorem of Erdös and Lehner

Notation

If k is a positive integer, then let

$$p_{\leq k}(n) := \#\{\text{partitions of } n \text{ with } \leq k \text{ parts}\}.$$

Theorem (Erdös and Lehner (1941))

If
$$C := \pi \sqrt{2/3}$$
 and $k_n(x) := C^{-1} \sqrt{n} \log n + \sqrt{nx}$,

Theorem of Erdös and Lehner

Notation

If k is a positive integer, then let

$$p_{\leq k}(n) := \#\{\text{partitions of } n \text{ with } \leq k \text{ parts}\}.$$

Theorem (Erdös and Lehner (1941))

If $C := \pi \sqrt{2/3}$ and $k_n(x) := C^{-1} \sqrt{n} \log n + \sqrt{nx}$, then as a function in x we have

$$\lim_{n\to+\infty}\frac{p_{\leq k_n(x)}(n)}{p(n)}=\exp\left(-\frac{2}{C}\cdot e^{-\frac{1}{2}Cx}\right).$$

Remarks

(1) Normal order for the number of parts is

$$\frac{\sqrt{n}\log n}{C} = \frac{\sqrt{3n}\log n}{\sqrt{2}\pi}.$$

Remarks

(1) Normal order for the number of parts is

$$\frac{\sqrt{n}\log n}{C} = \frac{\sqrt{3n}\log n}{\sqrt{2}\pi}.$$

(2) The graph of the "Gumbel cumulative distribution function"

Numerics

$$k_n(x) := C^{-1} \sqrt{n} \log n + \sqrt{nx}$$

Numerics

$$k_n(x) := C^{-1} \sqrt{n} \log n + \sqrt{nx}$$

$$\delta_{k_n}(x) := \frac{\#\{\text{partitions of } n \text{ with } \le k_n(x) \text{ parts}\}}{p(n)}$$

Numerics

$$k_n(x) := C^{-1} \sqrt{n} \log n + \sqrt{nx}$$

$$\delta_{k_n}(x) := \frac{\#\{\text{partitions of } n \text{ with } \le k_n(x) \text{ parts}\}}{p(n)}$$

$$\text{Gumbel}(x) := \exp\left(-\frac{2}{C} \cdot e^{-\frac{1}{2}Cx}\right).$$

Partitions of n = 750

X	$\lfloor k_{750}(x) \rfloor$	$\delta_{k_{750}}(x)$	Gumbel(x)
0.5	84	0.656	0.663
1.0	98	0.814	0.805
1.5	111	0.899	0.892
2.0	125	0.949	0.941
2.5	139	0.975	0.969
3.0	152	0.987	0.983

Question

How "many" multiples of A are parts in size n partitions?

Question

How "many" multiples of A are parts in size n partitions?

Question (Precise Form)

If A > 2, then let

$$p_{\leq k}(A; n) := \#\{\lambda \vdash n \text{ with } \leq k \text{ parts in } A\mathbb{N}\}.$$

Question

How "many" multiples of A are parts in size n partitions?

Question (Precise Form)

If A > 2, then let

$$p_{\leq k}(A; n) := \#\{\lambda \vdash n \text{ with } \leq k \text{ parts in } A\mathbb{N}\}.$$

What is the cumulative distribution function for

$$\frac{p_{\leq k}(A;n)}{p(n)} ?$$

Theorem (G, Ono, Rolen, Tsai (2021))

If
$$C := \pi \sqrt{2/3}$$
 and $k_n = k_n(x) := \frac{1}{AC} \sqrt{n} \log n + \sqrt{nx}$,

Theorem (G, Ono, Rolen, Tsai (2021))

If $C:=\pi\sqrt{2/3}$ and $k_n=k_n(x):=\frac{1}{AC}\sqrt{n}\log n+\sqrt{n}x$, then as a function in x

$$\lim_{n\to+\infty}\frac{p_{\leq k_n}(A;n)}{p(n)}=\exp\left(-\frac{2}{AC}\cdot e^{-\frac{1}{2}ACx}\right).$$

Theorem (G, Ono, Rolen, Tsai (2021))

If $C:=\pi\sqrt{2/3}$ and $k_n=k_n(x):=\frac{1}{AC}\sqrt{n}\log n+\sqrt{nx}$, then as a function in x

$$\lim_{n\to+\infty}\frac{p_{\leq k_n}(A;n)}{p(n)}=\exp\left(-\frac{2}{AC}\cdot e^{-\frac{1}{2}ACx}\right).$$

Remarks

(1) These are Gumbel distributions.

Theorem (G, Ono, Rolen, Tsai (2021))

If $C := \pi \sqrt{2/3}$ and $k_n = k_n(x) := \frac{1}{AC} \sqrt{n} \log n + \sqrt{nx}$, then as a function in x

$$\lim_{n\to+\infty}\frac{p_{\leq \mathbf{k}_n}(A;n)}{p(n)}=\exp\left(-\frac{2}{AC}\cdot e^{-\frac{1}{2}AC\mathbf{x}}\right).$$

Remarks

- (1) These are Gumbel distributions.
- (2) The mean and variance of the limiting distribution are:

$$\begin{aligned} \text{Mean} \; &:= \; \frac{2}{AC} \left(\log \left(\frac{2}{AC} \right) + \gamma_{Euler} \right), \\ \text{Variance} \; &:= \; 1/A^2. \end{aligned}$$

Numerics when A = 2

$$k_n(x) := \frac{1}{2C} \sqrt{n} \log n + \sqrt{nx}$$

Numerics when A=2

$$k_n(x) := \frac{1}{2C}\sqrt{n}\log n + \sqrt{nx}$$

$$\delta_{k_n}(x) := \frac{\#\{\lambda \vdash n \text{ with } \le k_n(x) \text{ even } \text{parts}\}}{p(n)}.$$

Numerics when A=2

Notation

$$k_n(x) := rac{1}{2C}\sqrt{n}\log n + \sqrt{nx}$$
 $\delta_{k_n}(x) := rac{\#\{\lambda \vdash n ext{ with } \le k_n(x) ext{ even parts}\}}{p(n)}.$ Gumbel $(x) := \exp\left(-rac{1}{C} \cdot e^{-Cx}\right).$

Distribution of even parts for n = 600

X	$\lfloor k_{600}(x) \rfloor$	$\delta_{k_{600}}(x)$	$\operatorname{Gumbel}(x)$
-0.1	28	0.597	0.604
0.0	30	0.663	0.677
0.1	32	0.721	0.739
0.2	35	0.791	0.792
0.3	37	0.830	0.835
:	:	:	:
1.5	67	0.994	0.992
2.0	79	0.998	0.998

Theorem (G, Ono, Rolen, Tsai (2021))

If $A \ge 2$ and k is fixed, then as $n \to +\infty$ we have

$$\begin{split} p_{\leq k}(A;n) &\sim \frac{24^{\frac{k}{2} - \frac{1}{4}} n^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right) n}}, \\ p_{k}(A;n) &\sim \frac{24^{\frac{k}{2} - \frac{1}{4}} (n - Ak)^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right) (n - Ak)}}. \end{split}$$

Theorem (G, Ono, Rolen, Tsai (2021))

If $A \ge 2$ and k is fixed, then as $n \to +\infty$ we have

$$\begin{split} & p_{\leq k}(A;n) \sim \frac{24^{\frac{k}{2} - \frac{1}{4}} n^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right)^{n}}}, \\ & p_{k}(A;n) \sim \frac{24^{\frac{k}{2} - \frac{1}{4}} (n - Ak)^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right)(n - Ak)}}. \end{split}$$

Remarks

(1) This theorem is proved by Wright's "circle method."

Theorem (G, Ono, Rolen, Tsai (2021))

If $A \ge 2$ and k is fixed, then as $n \to +\infty$ we have

$$\begin{split} p_{\leq k}(A;n) &\sim \frac{24^{\frac{k}{2} - \frac{1}{4}} n^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right) n}}, \\ p_{k}(A;n) &\sim \frac{24^{\frac{k}{2} - \frac{1}{4}} (n - Ak)^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right) (n - Ak)}}. \end{split}$$

Remarks

- (1) This theorem is proved by Wright's "circle method."
- (2) Error terms are too large to imply the Gumbel distributions.

Example A = 3 and k = 1

The previous theorem gives

$$p_1(3;n) \sim \frac{1}{6\pi(n-3)^{\frac{1}{4}}} \cdot e^{\frac{2\pi\sqrt{n-3}}{3}}.$$

Example A = 3 and k = 1

The previous theorem gives

$$p_1(3;n) \sim \frac{1}{6\pi(n-3)^{\frac{1}{4}}} \cdot e^{\frac{2\pi\sqrt{n-3}}{3}}.$$

Let $p_1^*(3; n)$ be the asymptotic in the theorem.

Example A=3 and k=1

The previous theorem gives

$$p_1(3;n) \sim \frac{1}{6\pi(n-3)^{\frac{1}{4}}} \cdot e^{\frac{2\pi\sqrt{n-3}}{3}}.$$

Let $p_1^*(3; n)$ be the asymptotic in the theorem.

n	$p_1(3; n)$	$p_1^*(3; n)$	$p_1(3; n)/p_1^*(3; n)$	
200	93125823847	≈ 82738081118	≈ 1.126	
400	$pprox 1.718 imes 10^{16}$	$pprox 1.579 imes 10^{16}$	pprox 1.088	
600	$pprox 1.928 imes 10^{20}$	$pprox 1.799 imes 10^{20}$	pprox 1.071	
800	$pprox 5.058 imes 10^{23}$	$pprox 4.764 imes 10^{23}$	pprox 1.062	
1000	$\approx 5.232 \times 10^{26}$	$pprox 4.959 imes 10^{26}$	pprox 1.055	

Problem 2: t-hooks

Example (Hook lengths)

7	5	4	3	1
5	3	2	1	
1				

Figure: Hook lengths for $\lambda = (5, 4, 1)$

Problem 2: t-hooks

Example (Hook lengths)

7	5	4	3	1
5	3	2	1	
1				

Figure: Hook lengths for $\lambda = (5, 4, 1)$

Problem

Does the sequence $\{Y_t(n)\}$ of distributions of the number of t-hooks in the partitions of integers n have a limiting behavior?

Example t = 2 and n = 5000

$$\sum_{\lambda \vdash 5000} T^{\#\{2 \in \mathcal{H}(\lambda)\}} = 704T + 9211712T^2 + \dots + 1805943379138T^{98} + 2T^{99}.$$

Figure: $Y_2(5000)$

Theorem (G, Ono, Tsai (2022))

(1) The sequence $\{Y_t(n)\}$ is asymptotically normal with mean

$$\mu_t(n) \sim rac{\sqrt{6n}}{\pi} - rac{t}{2}$$
 and variance $\sigma_t^2(n) \sim rac{(\pi^2 - 6)\sqrt{6n}}{2\pi^3}$.

Theorem (G, Ono, Tsai (2022))

- (1) The sequence $\{Y_t(n)\}$ is asymptotically **normal** with mean $\mu_t(n) \sim \frac{\sqrt{6n}}{\pi} \frac{t}{2}$ and variance $\sigma_t^2(n) \sim \frac{(\pi^2 6)\sqrt{6n}}{2\pi^3}$.
- (2) If $k_{t,n}(x) := \mu_t(n) + \sigma_t(n)x$, then we have

$$\lim_{n\to+\infty} D_t(k_{t,n}(\mathbf{x});n) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\mathbf{x}} e^{-\frac{y^2}{2}} dy =: E(x).$$

Example t = 2 and n = 5000 continued

Illustration of the cumulative distribution approximation

$$D_2(k_{2,5000}(x);5000) \approx E(x).$$

Example t = 2 and n = 5000 continued

Illustration of the cumulative distribution approximation

$$D_2(k_{2,5000}(x);5000)\approx E(x).$$

x	$D_2(k_{2,5000}(x),5000)$	E(x)	$D_2(k_{2,5000}(x),5000)/E(x)$
-1.5	0.0658	0.0668	0.9849
	: :	:	<u>.</u>
0.0	0.5055	0.5000	1.0011
1.0	0.8246	0.8413	0.9802
2.0	0.9685	0.9772	0.9911

Problem 3: Hook lengths in $t\mathbb{N}$

Problem

Does the sequence $\{\widehat{Y}_2(n)\}$ of distributions of the number of even hooks in the partitions of n have a limiting behavior?

Problem 3: Hook lengths in $t\mathbb{N}$

Problem

Does the sequence $\{\widehat{Y}_2(n)\}$ of distributions of the number of even hooks in the partitions of n have a limiting behavior?

Problem

Does the sequence $\{\widehat{Y}_t(n)\}$ of distributions of the number of hooks in $t\mathbb{N}$ in the partitions of n have a limiting behavior?

Example t = 11 and n = 1000

$$\sum_{\lambda \vdash 1000} T^{\#\mathcal{H}_{11}(\lambda)}$$

$$= 811275879 + 7892635410T + \dots + 29672185525213602280791828408T^{90}.$$

Example t = 11 and n = 1000

$$\begin{split} & \sum_{\lambda \vdash 1000} T^{\#\mathcal{H}_{11}(\lambda)} \\ &= 811275879 + 7892635410T + \dots + 29672185525213602280791828408T^{90}. \end{split}$$


```
"Theorem" (G, Ono, Tsai (2022))
```

If $t \geq 4$, then $\widehat{Y}_t(n)$ is a shifted Gamma distribution.

"Theorem" (G, Ono, Tsai (2022))

If $t \geq 4$, then $\widehat{Y}_t(n)$ is a shifted Gamma distribution.

Definition

A random variable $X_{k,\theta}$ is **Gamma distributed with parameter** k>0 **and scale** $\theta>0$ if its probability distribution function is

$$F_{k,\theta}(x) := \frac{1}{\Gamma(k)\theta^k} \cdot x^{k-1} e^{-\frac{x}{\theta}}.$$

Theorem (G, Ono, Tsai (2022))

(1) If t > 4, then

$$\widehat{Y}_t(n) \sim \frac{n}{t} - \frac{\sqrt{3(t-1)n}}{\pi t} \cdot X_{\frac{t-1}{2},\sqrt{\frac{2}{t-1}}}$$

and has mean $\widehat{\mu}_t(n)\sim rac{n}{t}-rac{(t-1)\sqrt{6n}}{2\pi t}$ and variance $\widehat{\sigma}_t^2(n)\sim rac{3(t-1)n}{\pi^2+2}$.

Theorem (G, Ono, Tsai (2022))

(1) If t > 4, then

$$\widehat{Y}_t(n) \sim \frac{n}{t} - \frac{\sqrt{3(t-1)n}}{\pi t} \cdot X_{\frac{t-1}{2},\sqrt{\frac{2}{t-1}}}$$

and has mean $\widehat{\mu}_t(n) \sim \frac{n}{t} - \frac{(t-1)\sqrt{6n}}{2\pi t}$ and variance $\widehat{\sigma}_t^2(n) \sim \frac{3(t-1)n}{\pi^{2+2}}$.

(2) If $\hat{k}_{t,n}(x) := \hat{\mu}_t(n) + \hat{\sigma}_t(n)x$, then in the lower incomplete γ -function

$$\lim_{n\to+\infty}\widehat{D}_t(\widehat{k}_{t,n}(x);n)=\frac{\gamma\left(\frac{t-1}{2};\sqrt{\frac{t-1}{2}x+\frac{t-1}{2}}\right)}{\Gamma\left(\frac{t-1}{2}\right)}.$$

Theorem (G, Ono, Tsai (2022))

(1) If $t \geq 4$, then

$$\widehat{Y}_t(n) \sim \frac{n}{t} - \frac{\sqrt{3(t-1)n}}{\pi t} \cdot \mathbf{X}_{\frac{t-1}{2},\sqrt{\frac{2}{t-1}}}$$

and has mean $\widehat{\mu}_t(n)\sim rac{n}{t}-rac{(t-1)\sqrt{6n}}{2\pi t}$ and variance $\widehat{\sigma}_t^2(n)\sim rac{3(t-1)n}{\pi^2t^2}$.

(2) If $\hat{k}_{t,n}(x) := \hat{\mu}_t(n) + \hat{\sigma}_t(n)x$, then in the lower incomplete γ -function

$$\lim_{n\to+\infty}\widehat{D}_t(\widehat{k}_{t,n}(x);n)=\frac{\gamma\left(\frac{t-1}{2};\sqrt{\frac{t-1}{2}x+\frac{t-1}{2}}\right)}{\Gamma\left(\frac{t-1}{2}\right)}.$$

Remark

No continuous limit for $t \in \{2,3\}$ as there are always vanishing terms as in

$$\sum T^{\#\mathcal{H}_t(\lambda)} = 300 T^9 + 185 T^8 + 0 T^7 + 0 T^6 + 0 T^5 + 0 T^4 + 0 T^3 + 5 T^2.$$

Example t = 11 and n = 1000

We illustrates the approximation

$$\widehat{D}_{11}(k(x);1000)\approx \frac{\gamma\left(5;\sqrt{5}x+5\right)}{24}=:\widehat{E}_{11}(x).$$

Example t = 11 and n = 1000

We illustrates the approximation

$$\widehat{D}_{11}(k(x);1000)\approx \frac{\gamma\left(5;\sqrt{5}x+5\right)}{24}=:\widehat{E}_{11}(x).$$

X	$\widehat{D}_{11}(k(x);1000)$	$\widehat{E}_{11}(x)$	$\widehat{D}_{11}(k(x);1000)/\widehat{E}_{11}(x)$
-1.00	0.1319	0.1467	0.8993
:	:	:	:
0.75	0.7410	0.7954	0.9315
1.00	0.8226	0.8474	0.9707
1.25	0.8872	0.8880	0.9991

Proposition

If $A \ge 2$, then for every positive integer n we have

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\text{reg}}(A;n-Aj),$$

Proposition

If $A \ge 2$, then for every positive integer n we have

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\text{reg}}(A;n-Aj),$$

where $p_{reg}(A; \cdot)$ is the A-regular partition function.

Proposition

If $A \ge 2$, then for every positive integer n we have

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\text{reg}}(A;n-Aj),$$

where $p_{reg}(A; \cdot)$ is the A-regular partition function.

Proof.

• Suppose λ is counted by $p_{\leq k}(A; n)$.

Proposition

If $A \ge 2$, then for every positive integer n we have

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\text{reg}}(A;n-Aj),$$

where $p_{reg}(A; \cdot)$ is the A-regular partition function.

Proof.

- Suppose λ is counted by $p_{\leq k}(A; n)$.
- Then we have

$$\lambda = \lambda_{\rm reg} \oplus A\lambda',$$

Proposition

If $A \ge 2$, then for every positive integer n we have

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\text{reg}}(A;n-Aj),$$

where $p_{reg}(A; \cdot)$ is the A-regular partition function.

Proof.

- Suppose λ is counted by $p_{\leq k}(A; n)$.
- Then we have

$$\lambda = \lambda_{\rm reg} \oplus A\lambda'$$

where $|A\lambda'| = Aj$ and λ' is counted by $p_{\leq k}(j)$.

Erdös-Lehner Formula for $p_{\leq k}(j)$

Proposition (Erdös-Lehner (1941))

If k and j are positive integers, then

$$p_{\leq k}(j) = p(j) - \sum_{m=1}^{\infty} (-1)^m S_k(m; j),$$

Erdös-Lehner Formula for $p_{\leq k}(j)$

Proposition (Erdös-Lehner (1941))

If k and j are positive integers, then

$$p_{\leq k}(j) = \frac{p(j)}{p(j)} - \sum_{m=1}^{\infty} (-1)^m S_k(m; j),$$

where

$$S_k(m;j) := \sum_{\substack{1 \le r_1 < r_2 < \dots < r_m \\ T_m < r_1 + r_2 + \dots + r_m < j - mk}} p\left(j - \sum_{i=1}^m (k+r_i)\right)$$

and
$$T_m := m(m+1)/2$$
.

Proof of the formula

• Conjugacy implies $p_{\leq k}(j) = \#\{\lambda \vdash j : \text{no parts} \geq k+1\}.$

- Conjugacy implies $p_{\leq k}(j) = \#\{\lambda \vdash j : \text{no parts} \geq k+1\}.$
- We have $p(j (k + r)) = \#\{\lambda \vdash j : \text{ with a part of size } k + r.\}.$

- Conjugacy implies $p_{< k}(j) = \#\{\lambda \vdash j : \text{no parts} \ge k + 1\}.$
- We have $p(j (k + r)) = \#\{\lambda \vdash j : \text{ with a part of size } k + r.\}.$
- Therefore, we have $p(j) S_k(1,j) \le p_{\le k}(j)$.

- Conjugacy implies $p_{\leq k}(j) = \#\{\lambda \vdash j : \text{no parts} \geq k+1\}.$
- We have $p(j (k + r)) = \#\{\lambda \vdash j : \text{ with a part of size } k + r.\}.$
- Therefore, we have $p(j) S_k(1,j) \le p_{\le k}(j)$.
- By overcounting, we have

$$p(j) - S_k(1;j) \le p_{\le k}(j) \le p(j) - S_k(1;j) + S_k(2;j).$$

- Conjugacy implies $p_{\leq k}(j) = \#\{\lambda \vdash j : \text{no parts} \geq k+1\}.$
- We have $p(j (k + r)) = \#\{\lambda \vdash j : \text{ with a part of size } k + r.\}.$
- Therefore, we have $p(j) S_k(1,j) \le p_{< k}(j)$.
- By overcounting, we have

$$p(j) - S_k(1;j) \le p_{\le k}(j) \le p(j) - S_k(1;j) + S_k(2;j).$$

• Inclusion-Exclusion

• We start with the elementary formula

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\text{reg}}(A;n-Aj),$$

• We start with the elementary formula

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\text{reg}}(A;n-Aj),$$

• By Erdös-Lehner formula for $p_{\leq k}(j)$, we have

• We start with the elementary formula

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\text{reg}}(A;n-Aj),$$

• By Erdös-Lehner formula for $p_{\leq k}(j)$, we have

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k(m;j) \right) p_{\text{reg}}(A;n-Aj).$$

• We start with the elementary formula

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\text{reg}}(A;n-Aj),$$

• By Erdös-Lehner formula for $p_{\leq k}(j)$, we have

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k(m;j) \right) p_{\text{reg}}(A;n-Aj).$$

• Dividing by p(n) we get

$$\frac{p_{\leq k}(A;n)}{p(n)} = \frac{\sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k(m;j) \right) p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

• Counterintuitively let $S_k^*(m;j) := S_k(m;j)/p(j)$.

- Counterintuitively let $S_k^*(m;j) := S_k(m;j)/p(j)$.
- Therefore, we get

$$\frac{p_{\leq k}(A;n)}{p(n)} = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k^*(m;j) \right) \cdot \frac{p(j) p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

- Counterintuitively let $S_k^*(m;j) := S_k(m;j)/p(j)$.
- Therefore, we get

$$\frac{p_{\leq k}(A;n)}{p(n)} = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k^*(m;j) \right) \cdot \frac{p(j) p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

• Erdös and Lehner proved

$$S_k^*(m;j) \sim \frac{1}{m!} \left(\frac{2}{C} \sqrt{j} \exp\left(-\frac{Ck}{2\sqrt{j}}\right) \right)^m.$$

- Counterintuitively let $S_k^*(m;j) := S_k(m;j)/p(j)$.
- Therefore, we get

$$\frac{p_{\leq k}(A;n)}{p(n)} = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k^*(m;j) \right) \cdot \frac{p(j)p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

• Erdös and Lehner proved

$$S_k^*(m;j) \sim \frac{1}{m!} \left(\frac{2}{C} \sqrt{j} \exp\left(-\frac{Ck}{2\sqrt{j}}\right) \right)^m.$$

ullet For every m this means $S_k^*(m;j)\sim rac{1}{m!}\cdot S_k^*(1;j)^m,$

- Counterintuitively let $S_k^*(m;j) := S_k(m;j)/p(j)$.
- Therefore, we get

$$\frac{p_{\leq k}(A;n)}{p(n)} = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k^*(m;j) \right) \cdot \frac{p(j)p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

• Erdös and Lehner proved

$$S_k^*(m;j) \sim \frac{1}{m!} \left(\frac{2}{C} \sqrt{j} \exp\left(-\frac{Ck}{2\sqrt{j}}\right) \right)^m.$$

• For every m this means $S_k^*(m;j) \sim \frac{1}{m!} \cdot S_k^*(1;j)^m$, giving

$$\sum_{m=0}^{\infty} (-1)^m S_{k_n}^*(m;j) \sim \exp(-S_{k_n}^*(1;j)).$$

• Therefore, as a sum in j we have

$$\frac{p_{\leq k}(A;n)}{p(n)} \sim \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \exp(-S_{k_n}^*(1;j)) \cdot \frac{p(j)p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

• Therefore, as a sum in j we have

$$\frac{p_{\leq k}(A;n)}{p(n)} \sim \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \exp(-S_{k_n}^*(1;j)) \cdot \frac{p(j)p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

• Hardy-Ramanujan proved

$$p(n) \sim \frac{1}{4n\sqrt{3}} \cdot e^{\pi\sqrt{\frac{2n}{3}}}.$$

 \bullet Therefore, as a sum in j we have

$$\frac{p_{\leq k}(A;n)}{p(n)} \sim \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \exp(-S_{k_n}^*(1;j)) \cdot \frac{p(j)p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

• Hardy-Ramanujan proved

$$p(n) \sim \frac{1}{4n\sqrt{3}} \cdot e^{\pi\sqrt{\frac{2n}{3}}}.$$

Hagis proved that

$$p_{\text{reg}}(A; n) \sim C_A (24n - 1 + A)^{-\frac{3}{4}} \exp \left(C \sqrt{\frac{A-1}{A} \left(n + \frac{A-1}{24} \right)} \right).$$

• Therefore, each jth summand has the "factor"

$$\begin{split} & \frac{p(j)p_{\text{reg}}(A; n - Aj)}{p(n)} \\ & = \frac{C_A}{\left(24n - 24Aj - 1 + A\right)^{\frac{3}{4}}} \frac{n}{j} \exp\left(C\left(\sqrt{j} - \sqrt{n} + \sqrt{\frac{A - 1}{A}\left(n - Aj + \frac{A - 1}{24}\right)}\right)\right) \cdot \left(1 + O_j(n^{-\frac{1}{2}})\right) \end{split}$$

• Therefore, each jth summand has the "factor"

$$\begin{split} & \frac{p(j)p_{\text{reg}}(A; n - Aj)}{p(n)} \\ & = \frac{C_A}{(24n - 24Aj - 1 + A)^{\frac{3}{4}}} \frac{n}{j} \exp\left(C\left(\sqrt{j} - \sqrt{n} + \sqrt{\frac{A - 1}{A}\left(n - Aj + \frac{A - 1}{24}\right)}\right)\right) \cdot \left(1 + O_j(n^{-\frac{1}{2}})\right) \end{split}$$

• The convenient change of variable $j = \lfloor n/A^2 \rfloor + y$ gives

$$= \frac{C_A}{(24n - 24n/A - 24Ay - 1 + A)^{\frac{3}{4}}} \frac{A^2n}{n + A^2y} \times \exp\left(C\left(\sqrt{n/A^2 + y} - \sqrt{n} + \sqrt{\frac{A - 1}{A}\left(n - n/A - Ay + \frac{A - 1}{24}\right)}\right)\right) \cdot \left(1 + O_y(n^{-\frac{1}{2}})\right).$$

• In the limit the sum is supported on $|y| \le n^{3/4} \log(n)$.

- In the limit the sum is supported on $|y| \le n^{3/4} \log(n)$.
- Therefore, the desired overall limit is

$$\lim_{n \to \infty} \sum_{|y| < n^{3/4} \log(n)} \frac{A^2}{96^{1/4} \sqrt{A-1}} \cdot \frac{1}{n^{3/4}} \cdot \exp\left(-\frac{CA^4}{8(A-1)} \frac{y^2}{n^{3/2}} - \frac{2}{AC} \exp\left(-\frac{1}{2} xAC\right)\right)$$

- In the limit the sum is supported on $|y| \le n^{3/4} \log(n)$.
- Therefore, the desired overall limit is

$$\lim_{n \to \infty} \sum_{|y| < n^{3/4} \log(n)} \frac{A^2}{96^{1/4} \sqrt{A-1}} \cdot \frac{1}{n^{3/4}} \cdot \exp\left(-\frac{CA^4}{8(A-1)} \frac{y^2}{n^{3/2}} - \frac{2}{AC} \exp\left(-\frac{1}{2} xAC\right)\right)$$

ullet Letting $n o +\infty$, this converges to the limit of integrals

$$: \lim_{n \to +\infty} \frac{A^2}{96^{1/4} \sqrt{A-1}} \int_{-\log(n)}^{\log(n)} \exp\left(-\frac{CA^4}{8(A-1)} t^2 - \frac{2}{AC} \exp\left(-\frac{1}{2} xAC\right)\right) dt$$

• Dependence on *n* is only in limits of integration!

- Dependence on *n* is only in limits of integration!
- The part involving t vanishes after integration as $n \to +\infty$.

- Dependence on *n* is only in limits of integration!
- The part involving t vanishes after integration as $n \to +\infty$.
- This only leaves

$$\lim_{n\to+\infty}\frac{p_{\leq k_n}(A;n)}{p(n)}=\exp\left(-\frac{2}{AC}\exp\left(-\frac{1}{2}xAC\right)\right).$$

Counting hooks

Theorem (Han, 2008)

$$G_t(\textit{T};\textit{q}) = \sum_{n=0}^{\infty} P_t(n;\textit{T}) \textit{q}^n = := \sum_{\lambda} \textit{q}^{|\lambda|} \textit{T}^{\#\{t \in \mathcal{H}(\lambda)\}} = \prod_{n=1}^{\infty} \frac{(1+(\textit{T}-1)\textit{q}^{tn})^t}{1-\textit{q}^n},$$

$$\widehat{G}_t(T;q) = \sum_{n=0}^{\infty} \widehat{P}_t(n;T)q^n := \sum_{\lambda} q^{|\lambda|} T^{\#\mathcal{H}_t(\lambda)} = \prod_{n=1}^{\infty} \frac{(1-q^{tn})^t}{(1-(Tq^t)^n)^t(1-q^n)}.$$

Proposition

If
$$\eta \in (0,1]$$
 and $\eta \leq T \leq \eta^{-1}$ and $c(T) := \sqrt{\pi^2/6 - \operatorname{Li}_2(1-T)}$,

Proposition

If
$$\eta \in (0,1]$$
 and $\eta \leq T \leq \eta^{-1}$ and $c(T) := \sqrt{\pi^2/6 - \mathrm{Li}_2(1-T)},$ then

$$P_t(n;T) = \frac{c(T)}{2\sqrt{2}\pi n T^{\frac{t}{2}}} \cdot e^{c(T)\left(2\sqrt{n} - \frac{1}{\sqrt{n}}\right)} \cdot \left(1 + O_{\eta}(n^{-\frac{1}{7}})\right),$$

where $\operatorname{Li}_2(z) := -\int_0^z \frac{\log(1-u)}{u} du$ is the dilogarithm function.

Proposition

If
$$\eta \in (0,1]$$
 and $\eta \leq T \leq \eta^{-1}$ and $c(T) := \sqrt{\pi^2/6 - \mathrm{Li}_2(1-T)},$ then

$$P_t(\textbf{n};T) = \frac{c(T)}{2\sqrt{2}\pi n T^{\frac{t}{2}}} \cdot e^{c(T)\left(2\sqrt{n} - \frac{1}{\sqrt{n}}\right)} \cdot \left(1 + O_{\eta}(\textbf{n}^{-\frac{1}{7}})\right),$$

where $\mathrm{Li}_2(z) := -\int_0^z \frac{\log(1-u)}{u} du$ is the dilogarithm function.

Proposition

If t is a positive integer and $T:=\{T_n\}$ is a positive real sequence for which $T_n=e^{\frac{\alpha(T)+\varepsilon_T(n)}{\sqrt{n}}}$, where $\alpha(T)$ is real and $\varepsilon_T(n)=o_T(1)$,

Proposition

If
$$\eta \in (0,1]$$
 and $\eta \leq T \leq \eta^{-1}$ and $c(T) := \sqrt{\pi^2/6 - \operatorname{Li}_2(1-T)}$, then

$$P_t(n;T) = \frac{c(T)}{2\sqrt{2}\pi n T^{\frac{t}{2}}} \cdot e^{c(T)\left(2\sqrt{n} - \frac{1}{\sqrt{n}}\right)} \cdot \left(1 + O_{\eta}(n^{-\frac{1}{7}})\right),$$

where $\mathrm{Li}_2(z) := -\int_0^z \frac{\log(1-u)}{u} du$ is the dilogarithm function.

Proposition

If t is a positive integer and $T:=\{T_n\}$ is a positive real sequence for which $\frac{\alpha(T)+\varepsilon_T(n)}{n}$

$$T_n=e^{rac{lpha(T)+arepsilon_T(n)}{\sqrt{n}}},$$
 where $lpha(T)$ is real and $arepsilon_T(n)=o_T(1),$ then

$$\widehat{P}_t(n;T_n) \sim \frac{1}{2^{\frac{7}{4}}3^{\frac{1}{4}}n} \cdot \sqrt{\frac{1}{\sqrt{6}} + \frac{\alpha(T)}{\pi t}} \left(\frac{\pi t}{\pi t + \sqrt{6}\alpha(T)}\right)^{\frac{t}{2}} \cdot e^{\pi \sqrt{n}\left(\sqrt{\frac{2}{3}} + \frac{\alpha(T)}{\pi t}\right)}.$$

Lemma

If $\eta \in (0,1],$ then for $\alpha > 0$ and $\eta \leq T \leq \eta^{-1}$ we have

$$\sum_{j=1}^{\infty} \log(1 - e^{-j\alpha}) = -\frac{\pi^2}{6\alpha} - \frac{1}{2} \log\left(\frac{\alpha}{2\pi}\right) + O(\alpha), \tag{1}$$

$$\sum_{n=1}^{\infty} \frac{t^2 n(T-1)}{T-1+e^{tn\alpha}} = -\frac{\text{Li}_2(1-T)}{\alpha^2} + O_{\eta}(1), \tag{2}$$

$$\sum_{n=1}^{\infty} \log \left(1 + (T-1)e^{-tn\alpha}\right) = -\frac{\operatorname{Li}_2(1-T)}{t\alpha} - \frac{1}{2} \log T + O_{\eta}(\alpha), \quad (3)$$

$$\sum_{n=1}^{\infty} \frac{t^3 n^2 e^{-tn\alpha}}{(1+(T-1)e^{-tn\alpha})^2} = -\frac{2}{\alpha^3} \frac{\text{Li}_2(1-T)}{T-1} + O_{\eta}(\alpha). \tag{4}$$

Lemma

If $\eta \in (0,1]$, then for $\alpha > 0$ and $\eta \leq T \leq \eta^{-1}$ we have

$$\sum_{j=1}^{\infty} \log(1 - e^{-j\alpha}) = -\frac{\pi^2}{6\alpha} - \frac{1}{2} \log\left(\frac{\alpha}{2\pi}\right) + O(\alpha), \tag{1}$$

$$\sum_{n=1}^{\infty} \frac{t^2 n(T-1)}{T-1+e^{tn\alpha}} = -\frac{\text{Li}_2(1-T)}{\alpha^2} + O_{\eta}(1), \tag{2}$$

$$\sum_{n=1}^{\infty} \log \left(1 + (T-1)e^{-tn\alpha}\right) = -\frac{\operatorname{Li}_2(1-T)}{t\alpha} - \frac{1}{2} \log T + O_{\eta}(\alpha), \quad (3)$$

$$\sum_{n=1}^{\infty} \frac{t^3 n^2 e^{-tn\alpha}}{(1+(T-1)e^{-tn\alpha})^2} = -\frac{2}{\alpha^3} \frac{\text{Li}_2(1-T)}{T-1} + O_{\eta}(\alpha).$$
 (4)

+ Connect to Han's Gen. Fcns

Lemma

If $\eta \in (0,1],$ then for $\alpha > 0$ and $\eta \leq T \leq \eta^{-1}$ we have

$$\sum_{j=1}^{\infty} \log(1 - e^{-j\alpha}) = -\frac{\pi^2}{6\alpha} - \frac{1}{2} \log\left(\frac{\alpha}{2\pi}\right) + O(\alpha), \tag{1}$$

$$\sum_{n=1}^{\infty} \frac{t^2 n(T-1)}{T-1+e^{tn\alpha}} = -\frac{\text{Li}_2(1-T)}{\alpha^2} + O_{\eta}(1), \tag{2}$$

$$\sum_{n=1}^{\infty} \log \left(1 + (T-1)e^{-tn\alpha}\right) = -\frac{\operatorname{Li}_2(1-T)}{t\alpha} - \frac{1}{2} \log T + O_{\eta}(\alpha), \quad (3)$$

$$\sum_{n=1}^{\infty} \frac{t^3 n^2 e^{-tn\alpha}}{(1+(T-1)e^{-tn\alpha})^2} = -\frac{2}{\alpha^3} \frac{\text{Li}_2(1-T)}{T-1} + O_{\eta}(\alpha). \tag{4}$$

+ Connect to Han's Gen. Fcns + Technical "saddle point" calculations.

Proof.

(1) Use these results to compute "moment generating functions."

Proof.

(1) Use these results to compute "moment generating functions."

Theorem (Curtiss, 1940s)

Let $\{X_n\}$ be real random variables

Proof.

(1) Use these results to compute "moment generating functions."

Theorem (Curtiss, 1940s)

Let $\{X_n\}$ be real random variables with moment gen. fcns.

$$M_{X_n}(r) := \int_{-\infty}^{\infty} e^{rx} dF_n(x),$$

where $F_n(x)$ are the cumulative distributions.

Proof.

(1) Use these results to compute "moment generating functions."

Theorem (Curtiss, 1940s)

Let $\{X_n\}$ be real random variables with moment gen. fcns.

$$M_{X_n}(r) := \int_{-\infty}^{\infty} e^{rx} dF_n(x),$$

where $F_n(x)$ are the cumulative distributions. If the $\{M_{X_n}(r)\}$ converge, then the $\{X_n\}$ converge.

Proof.

(1) Use these results to compute "moment generating functions."

Theorem (Curtiss, 1940s)

Let $\{X_n\}$ be real random variables with moment gen. fcns.

$$M_{X_n}(r) := \int_{-\infty}^{\infty} e^{rx} dF_n(x),$$

where $F_n(x)$ are the cumulative distributions. If the $\{M_{X_n}(r)\}$ converge, then the $\{X_n\}$ converge.

(2) Prove convergence and recognize as normal and shifted Gamma respectively.

Problem 1: Parts in $A\mathbb{N}$

Problem 1: Parts in $A\mathbb{N}$

Theorem (G, Ono, Rolen, Tsai (2021))

If
$$C := \pi \sqrt{2/3}$$
 and $k_n = k_n(x) := \frac{1}{AC} \sqrt{n} \log n + \sqrt{nx}$, then

$$\lim_{n\to+\infty}\frac{p_{\leq \mathbf{k}_n}(A;n)}{p(n)}=\exp\left(-\frac{2}{AC}\cdot e^{-\frac{1}{2}AC\mathbf{x}}\right).$$

Problem 1: Parts in $A\mathbb{N}$

Theorem (G, Ono, Rolen, Tsai (2021))

If
$$C := \pi \sqrt{2/3}$$
 and $k_n = k_n(x) := \frac{1}{AC} \sqrt{n} \log n + \sqrt{nx}$, then

$$\lim_{n\to+\infty}\frac{p_{\leq k_n}(A;n)}{p(n)}=\exp\left(-\frac{2}{AC}\cdot e^{-\frac{1}{2}ACx}\right).$$

Remarks

- (1) These are Gumbel distributions.
- (2) The mean and variance are:

Mean :=
$$\frac{2}{AC} \left(\log \left(\frac{2}{AC} \right) + \gamma_{Euler} \right)$$
,
Variance := $1/A^2$.

Problem 2: t hooks

Problem 2: t hooks

Theorem (G, Ono, Tsai (2022))

(1) The sequence $\{Y_t(n)\}$ is asymptotically normal with mean

$$\mu_t(n) \sim rac{\sqrt{6n}}{\pi} - rac{t}{2}$$
 and variance $\sigma_t^2(n) \sim rac{(\pi^2 - 6)\sqrt{6n}}{2\pi^3}$.

Problem 2: t hooks

Theorem (G, Ono, Tsai (2022))

- (1) The sequence $\{Y_t(n)\}$ is asymptotically **normal** with mean $\mu_t(n) \sim \frac{\sqrt{6n}}{\pi} \frac{t}{2}$ and variance $\sigma_t^2(n) \sim \frac{(\pi^2 6)\sqrt{6n}}{2\pi^3}$.
- (2) If $k_{t,n}(x) := \mu_t(n) + \sigma_t(n)x$, then we have

$$\lim_{n\to+\infty} D_t(k_{t,n}(\mathbf{x});n) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\mathbf{x}} e^{-\frac{y^2}{2}} dy =: E(x).$$

Problem 3: Hooks in $t\mathbb{N}$

Theorem (G, Ono, Tsai (2022))

(1) If $t \geq 4$, then

$$\widehat{Y}_t(n) \sim \frac{n}{t} - \frac{\sqrt{3(t-1)n}}{\pi t} \cdot X_{\frac{t-1}{2},\sqrt{\frac{2}{t-1}}}$$

and has mean $\widehat{\mu}_t(n)\sim rac{n}{t}-rac{(t-1)\sqrt{6n}}{2\pi t}$ and variance $\widehat{\sigma}_t^2(n)\sim rac{3(t-1)n}{\pi^2t^2}$.

Problem 3: Hooks in $t\mathbb{N}$

Theorem (G, Ono, Tsai (2022))

(1) If $t \geq 4$, then

$$\widehat{Y}_t(n) \sim \frac{n}{t} - \frac{\sqrt{3(t-1)n}}{\pi t} \cdot X_{\frac{t-1}{2},\sqrt{\frac{2}{t-1}}},$$

and has mean $\widehat{\mu}_t(n)\sim rac{n}{t}-rac{(t-1)\sqrt{6n}}{2\pi t}$ and variance $\widehat{\sigma}_t^2(n)\sim rac{3(t-1)n}{\pi^2t^2}$.

(2) If $\widehat{k}_{t,n}(x) := \widehat{\mu}_t(n) + \widehat{\sigma}_t(n)x$, then in the lower incomplete γ -function

$$\lim_{n\to+\infty}\widehat{D}_t(\widehat{k}_{t,n}(x);n)=\frac{\gamma\left(\frac{t-1}{2};\sqrt{\frac{t-1}{2}}x+\frac{t-1}{2}\right)}{\Gamma\left(\frac{t-1}{2}\right)}.$$

Executive Summary

- Parts in AN correspond to **Gumbel Distributions**.
- t-hooks correspond to **Normal Distributions**.
- Hooks in $t\mathbb{N}$ correpond to shifted Gamma distributions.