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The Partition function p(n)

Definition
A partition of an integer n is any nonincreasing sequence

A= N, )

of positive integers which sum to n.

Notation

The partition function

p(n) := # partitions of n.

4=34+1=2+42=24+141=1+414141 = p(4)=5.

4
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Limiting Partition Distributions

General Problem

Let {Y(n)} be a sequence of discrete distributions on {\: A+ n}.
Can we have

lim Y(n) = “Distribution independent of n” ?
n—-o0o

Questions

(1) Are there any nice natural examples?

(2) ....examples with normalized limits independent of n?
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Dyson’s Rank

Definition

The rank of a partition is its largest part minus its number of parts.

N(m, n) := #{partitions of n with rank m}.

Example
The ranks of the partitions of 4:
Partition Largest Part # Parts Rank
4 4 1 3=3 (mod5)
3+1 3 2 1=1 (mod5)
242 2 2 0=0 (mod 5)
2+1+1 2 3 ~1=4 (mod 5)
1+1+1+1 1 4 —3=2 (mod 5)
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If0 < a < b are integers and

N(a, b; n) := #{partitions of n with rank = a mod b},
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Theorem (Atkin and Swinnerton-Dyer, 1954)
If0 < a < b are integers and

N(a, b; n) := #{partitions of n with rank = a mod b},

then for every n and every a, we have

N(a,5;5n+4) = p(5n+4)/5,
N(a,7;7n+5) = p(7n+5)/7.
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Dyson's ranks are equidistributed

Theorem (Atkin and Swinnerton-Dyer, 1954)
If0 < a < b are integers and

N(a, b; n) := #{partitions of n with rank = a mod b},

then for every n and every a, we have

N(a,5;5n+4) = p(5n+4)/5,
N(a,7;7n+5) = p(7n+5)/7.

This “explains” Ramanujan’s congruences modulo 5 and 7.

Theorem (Bringmann, 2008)
For all 0 < a < b we have

lim N(a,b;n) 1
nstoo  p(n) b
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Number of Parts

Notation

The “number of parts” polynomials Py(n; T) are defined by

o0

n .,__ - 1
Z Py(n; T)q" := nl;[l m

n=0
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Counting Parts in Partitions

Number of Parts

Notation

The “number of parts” polynomials Py(n; T) are defined by

ZP#HT H(l Tq

Example (Asymmetry)

Pu(4; T)=T+2T>+ T+ T*
Pu(5; T)=T+2T?2+2T3+ T*+ T°
Pyu(6;T) =T +3T>+3T34+2T*+ T°+ T°

Pu(15; T) = T+ 7T2+19T3 +27T* + 3075 + ... + 278 4 T 4 T}

y
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If k is a positive integer, then let
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Theorem of Erdos and Lehner

Notation

If k is a positive integer, then let

p<k(n) = #{partitions of n with < k parts}.

Theorem (Erdds and Lehner (1941))
If C :=7/2/3 and k,(x) := C~1\/nlog n + +/nx,
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Counting Parts in Partitions

Theorem of Erdos and Lehner

Notation

If k is a positive integer, then let

p<k(n) = #{partitions of n with < k parts}.

Theorem (Erdds and Lehner (1941))
If C:=7\/2/3 and ky(x) := C~1/nlogn+ \/nx, then as a

function in x we have
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Remarks
(1) Normal order for the number of parts is

V/nlogn B V3nlogn
C Vor
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Counting Parts in Partitions

Remarks
(1) Normal order for the number of parts is

V/nlogn B V3nlogn
C Vor

(2) The graph of the “Gumbel cumulative distribution function”
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Counting Parts in Partitions

Numerics

Notation

kn(x) == C~1\/nlog n + v/nx

_ #{partitions of n with < k,(x) parts}
p(n) '

Ok, (x) :

2
Gumbel(x) := exp <_C : eécx> :
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Counting Parts in Partitions

Partitions of n = 750

x| | kzs0(X)] | Oksso(X) | Gumbel(x)
0.5 84 0.656...| 0.663...
1.0 98 0.814...| 0.805...
1.5 111 0.899...| 0.892...
2.0 125 0.949...| 0.941...
2.5 139 0.975...| 0.969...
3.0 152 0.987...| 0.983...
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How “many” multiples of A are parts in size n partitions?

Question (Precise Form)
If A> 2, then let

p<k(A;n) = #{\F n with < k parts in AN}.
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Our work

Problem 1: Parts in AN

Question

How “many” multiples of A are parts in size n partitions?

Question (Precise Form)
If A> 2, then let

p<k(A;n) = #{\F n with < k parts in AN}.
What is the cumulative distribution function for

p<k(Ain) ,

p(n)
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Solution to Problem 1

Theorem (G, Ono, Rolen, Tsai (2021))
If C :=m\/2/3 and ky = kn(x) := 4=+/nlog n+ /nx,
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Theorem (G, Ono, Rolen, Tsai (2021))
If C :=m\/2/3 and ky = kn(x) := 4=+/nlog n+ /nx, then as a

function in x

. p<i,(Ain) 2 _1ack
nl;Too p(n) _exp< Ac ¢’ i
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Solution to Problem 1

Theorem (G, Ono, Rolen, Tsai (2021))

If C :=m\/2/3 and ky = kn(x) := 4=+/nlog n+ /nx, then as a

function in x

im P<ka(Ain) <
im —2+ 72 —exp
n—-+00 p(n)

2
E . e;AC><> )

Remarks

(1) These are Gumbel distributions.
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Our work

Solution to Problem 1

Theorem (G, Ono, Rolen, Tsai (2021))
If C:=m\/2/3 and k, = kn(x) :=

function in x

a=\/nlogn+ \/nx, then as a

. p<i,(Ain) 2 _1ack
nll>Too p(n) _exp< Ac ¢’ i

Remarks
(1) These are Gumbel distributions.

(2) The mean and variance of the limiting distribution are:

2 2
Mean := AC ('Og (AC) +’7Euler> )

Variance = 1/A%
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Numerics when A = 2

Notation

1
kn(x) := fﬁlog n+ +/nx
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Our work

Numerics when A = 2

Notation

1
kn(x) := fﬁlog n+ +/nx

#{A F n with < k,(x) even parts}

Ok, (x) == o(n)
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Our work

Numerics when A = 2

Notation
1
kn(x) := fﬁlog n+ +/nx

#{A F n with < k,(x) even parts}

Ok, (x) == o(n)

Gumbel(x) := exp (—(1: . eCX> .
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Our work

Distribution of even parts for n = 600

’ X ‘ I_kﬁoo(X)J ‘ 5!(600()() ‘ Gumbel(x) ‘

-0.1 28 0.597... 0.604...
0.0 30 0.663... 0.677...
0.1 32 0.721... 0.739...
0.2 35 0.791... 0.792...
0.3 37 0.830... 0.835...
1.5 67 0.994... 0.992...
2.0 79 0.998... 0.998...
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Our work

Asymptotics for p<x(A; n)?

Theorem (G, Ono, Rolen, Tsai (2021))
If A> 2 and k is fixed, then as n — +00 we have

242" apn2" 4 a/(1—1)n
pgk(A; n)~ 1741,72 ‘ e2 6(1 A) ,
V2 (1= 5)27% kIART2 (27)k
2424 (n— Ak)2 4 27 /1(1-1) (n—AkK)
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Asymptotics for p<x(A; n)?

Theorem (G, Ono, Rolen, Tsai (2021))
If A> 2 and k is fixed, then as n — +00 we have

p<k(A; n) ~ . @ WO AT

Remarks
(1) This theorem is proved by Wright's “circle method.”
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Our work

Asymptotics for p<x(A; n)?

Theorem (G, Ono, Rolen, Tsai (2021))
If A> 2 and k is fixed, then as n — +00 we have

pgk(A, n) - 245k_11n5_? e27r é(l—%)n’
V2 (1= %)27% kAkTz (27K
k_1 k_3
p(A;n) ~ 242 +(n—AK)T Y o 5(1-5) (-0

Remarks
(1) This theorem is proved by Wright's “circle method.”

(2) Error terms are too large to imply the Gumbel distributions.
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Our work

Example A=3 and k =1

The previous theorem gives

1 2mw\/n—3

67(n — 3)%

pi(3;n) ~
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Example A=3 and k =1

The previous theorem gives

1 2mw\/n—3

67(n — 3)%

pi(3;n) ~

Let pi(3; n) be the asymptotic in the theorem.
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Our work

Example A=3 and k =1

The previous theorem gives

1 2mwy/n—3

67(n — 3)%

pi(3;n) ~

Let pi(3; n) be the asymptotic in the theorem.

n p1(3: n) pi(3:n) p1(3:n)/pi(3: n)
200 93125823847 ~ 82738081118 ~ 1.126
400 ~ 1.718 x 1016 ~ 1.579 x 1016 ~ 1.088
600 ~ 1.928 x 1020 ~ 1.799 x 10%° ~ 1.071
800 ~ 5.058 x 10%3 ~ 4.764 x 1023 ~ 1.062
1000 ~ 5.232 x 1026 ~ 4.959 x 100 ~ 1.055
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Our work

Problem 2: t-hooks

Example (Hook lengths)

5[4[3]1]

7
5
il

Figure: Hook lengths for A\ = (5,4,1)
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Our work

Problem 2: t-hooks

Example (Hook lengths)

5[4[3]1]

7
5
il

Figure: Hook lengths for A\ = (5,4,1)

Problem

Does the sequence {Y:(n)} of distributions of the number of
t-hooks in the partitions of integers n have a limiting behavior?
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Our work

Example t = 2 and n = 5000

> TH#REHNY — 704 T 4921171272 + - - - + 1805943379138 T°% + 2 T7°°.
AF5000

2.x107
15x107
1.x10"

5.x107

0 —
0 10 20 30 40 50 60 70 80 90

Figure: Y>(5000)
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Our work

Solution to Problem 2

Theorem (G, Ono, Tsai (2022))

(1) The sequence {Yi(n)} is asymptotically normal with mean

/6n . 2 6)6n
pe(n) ~ Y27 — L and variance o2(n) ~ w.
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Our work

Solution to Problem 2

Theorem (G, Ono, Tsai (2022))

(1) The sequence {Yi(n)} is asymptotically normal with mean

/6n . 2 6)6n
pe(n) ~ Y27 — L and variance o2(n) ~ w.

(2) If ke p(x) := pe(n) + o¢(n)x, then we have

1 fx _p
lim Di(kin(x);n) = — e 2dy =: E(x).
Jim Dilken()im) = <= [ ey = E(y
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Our work

Example t = 2 and n = 5000 continued

Illustration of the cumulative distribution approximation

D> (k2,5000(x); 5000) ~ E(x).
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Example t = 2 and n = 5000 continued

Illustration of the cumulative distribution approximation

D> (k2,5000(x); 5000) ~ E(x).

X Dz(k2,5000(X), 5000) E(X) Dz(kz}s()o()(x)7 5000)/E(X)
-15 0.0658 ... 0.0668 . .. 0.9849...
0.0 0.5055... 0.5000... 1.0011...
1.0 0.8246... 0.8413... 0.9802...
2.0 0.9685. .. 0.9772... 0.9911...
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Our work

Problem 3: Hook lengths in tN

Problem

Does the sequence {Vg(n)} of distributions of the number of even
hooks in the partitions of n have a limiting behavior?
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Our work

Problem 3: Hook lengths in tN

Problem

Does the sequence {Vg(n)} of distributions of the number of even
hooks in the partitions of n have a limiting behavior?

Problem

Does the sequence {\A/t(n)} of distributions of the number of hooks
in tN in the partitions of n have a limiting behavior?
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Our work

Example t = 11 and n = 1000

Z T#H11(N)

A-1000
= 811275879 + 7892635410T + - - - 4 296721855252136022807918284087°.
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Our work

Example t = 11 and n = 1000

Z T#H11(N)
AF1000
= 811275879 + 78926354107 + - - - + 296721855252136022807918284087°.

2.%x10°1 N
.
1.5 x 10°°4
.
1. x 10°1
.
5_x1029’ ° o
.
J
s .
y
0 A
10 20 30 40 50 60 70 80 90
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Our work

Solution to Problem 3

“Theorem” (G, Ono, Tsai (2022))
If t > 4, then Y:(n) is a shifted Gamma distribution. J
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Our work

Solution to Problem 3

“Theorem” (G, Ono, Tsai (2022))

If t > 4, then Y:(n) is a shifted Gamma distribution.

Definition

A random variable X ¢ is Gamma distributed with parameter k > 0 and scale

6 > 0 if its probability distribution function is

Fkﬂ(X) =

1

I(k)ox

k=1~
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Our work

Solution to Problem 3

Theorem (G, Ono, Tsai (2022))
(1) If t > 4, then

?t(n) ~ 0 7V3(t—1)" -

t Tt 2 '\ t—1
n _ (t=1)v6n

t 27t

3(t—1)n

and variance 2(n) ~ -

and has mean fit(n) ~
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Solution to Problem 3

Theorem (G, Ono, Tsai (2022))
(1) If t > 4, then

Ye(n) ~ 2 — V3(t=1)n X,

t Tt 2 0\ -1

and has mean fi¢(n) ~ 2 (t=1)v6n

o 3(t—1)n
t 27t

and variance 2(n) ~ el

(2) If ke,n(x) := Tie(n) + G¢(n)x, then in the lower incomplete y-function

lim De(ke.n(x); n) = ! (tgl. \/?X i %> .

s (&)
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Solution to Problem 3

Theorem (G, Ono, Tsai (2022))

(1) If t > 4, then
= \/ -1
Ye(n) ~ 2 — V3(t=1)n X

t Tt 2 )\ t-1

n _ (t=1)v6n
t 27t

2 ~ 3(t—1
and variance 2(n) ~ (,thz)n~

and has mean fit(n) ~

(2) If ke,n(x) := Tie(n) + G¢(n)x, then in the lower incomplete y-function

lim De(ke.n(x); n) = ! (tgl. \/?X i %> .

— ()

Remark

No continuous limit for t € {2.3} as there are always vanishing terms as in

> T#HO) =3007° +185T° + 077 +0T° +07° +07T* +07° +5T>.

AF19




Distributions on integers partitions

Our work

Example t = 11 and n = 1000

We illustrates the approximation

=: Ell(X).

Du1(k(x); 1000) ~ W
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Our work

Example t = 11 and n = 1000

We illustrates the approximation

Di1(k(x); 1000) ~

7 (5; V5x +5)
Tty

= Ell(X).

x Di1(k(x); 1000) Ei(x) | Dii(k(x); 1000)/Ex1(x)
—1.00 0.1319... 0.1467 ... 0.8993...
0.75 0.7410. .. 0.7954 . .. 0.9315. ..
1.00 0.8226. .. 0.8474. .. 0.9707 . ..
1.25 0.8872... 0.8880... 0.9991...
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L4]
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j=0
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Solving Problem 1

Proposition

If A > 2, then for every positive integer n we have

L4]
pr(Ain) =3 pekli) - preg(Ai n — A,
j=0

where preg(A; ) is the A-regular partition function.
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Solving Problem 1

Proposition

If A > 2, then for every positive integer n we have

L4]
pr(Ain) =3 pekli) - preg(Ai n — A,
j=0

where preg(A; ) is the A-regular partition function.

Proof.
e Suppose A is counted by p<i(A;n).
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Solving Problem 1

Proposition

If A > 2, then for every positive integer n we have
L]
p<k(Ain) = p<k(j) - Preg(Ain — Aj),
j=0

where preg(A; ) is the A-regular partition function.

Proof.
e Suppose A is counted by p<i(A;n).

e Then we have
A= dreg @ AN,
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Problem 1: Parts that are multiples of A

Solving Problem 1

Proposition

If A > 2, then for every positive integer n we have
L]
p<k(Ain) = p<k(j) - Preg(Ain — Aj),
j=0

where preg(A; ) is the A-regular partition function.

Proof.
e Suppose A is counted by p<i(A;n).

e Then we have
A= dreg @ AN,

where |AN| = Aj and X is counted by p<x(j)- O
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Problem 1: Parts that are multiples of A

Erdés-Lehner Formula for p<x(j)

Proposition (Erdds-Lehner (1941))
If k and j are positive integers, then

o0

p<k(j) = p(j) = Y _(=1)"Sk(m: ),

m=1
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Problem 1: Parts that are multiples of A

Erdés-Lehner Formula for p<x(j)

Proposition (Erdds-Lehner (1941))
If k and j are positive integers, then

o0

p<k(j) = p(j) = Y _(=1)"Sk(m: ),

m=1
where

Sk(m;j) == Z p (j - Z(k + fi))

1<n<n<--<tm =1
Tm<rn+ro+-+rm<j—mk

and Tp, := m(m+1)/2.
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Proof of the formula

o Conjugacy implies p<x(j) = #{\Fj : no parts > k + 1}.
e We have p(j — (k+r)) = #{AFj : with a part of size k + r.}.

o Therefore, we have p(j) — Sk(1,/) < p<k ().
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Proof of the formula

o Conjugacy implies p<x(j) = #{\Fj : no parts > k + 1}.
e We have p(j — (k+r)) = #{AFj : with a part of size k + r.}.
o Therefore, we have p(j) — Sk(1,/) < p<k ().

e By overcounting, we have

pU) — Sk(1:J)) < p<k() < pU) — Sk(1:)) + Sk(2;))



Distributions on integers partitions
Problem 1: Parts that are multiples of A

Proof of the formula

o Conjugacy implies p<x(j) = #{\Fj : no parts > k + 1}.
e We have p(j — (k+r)) = #{AFj : with a part of size k + r.}.
o Therefore, we have p(j) — Sk(1,/) < p<k ().
e By overcounting, we have
pU) = Sk(1:)) < p<k() < pU) = Sk(Li)) + Sk(2:))-

o Inclusion-Exclusion. |
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o By Erdds-Lehner formula for p<k(j), we have
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“Hand Wavy Proof” of Our Theorem

e We start with the elementary formula
L4)
p<k(Ain) =" p<k(j) - Preg(Ain — Aj),
j=0
o By Erdds-Lehner formula for p<k(j), we have

2] / o
per(in) = (Z(l)msk(m;j)) Preg (A — Aj).
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“Hand Wavy Proof” of Our Theorem

e We start with the elementary formula
L4)
p<k(Ain) =" p<k(j) - Preg(Ain — Aj),
j=0
o By Erdds-Lehner formula for p<k(j), we have

2] / o
per(in) = (Z(l)msk(m;j)) Preg (A — Aj).

pei(Ain) XA (D2 o (—1)mSk(mif)) preg(Ai n — A))
p(n) p(n) '
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Problem 1: Parts that are multiples of A

e Counterintuitively let S;(m;j) := Sk(m;j)/p(j).

e Therefore, we get

2]/ o . .
p<k(A n . m m p(f)prcg(A; n— AJ)
o) (Z /ol ”) p)
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Problem 1: Parts that are multiples of A

e Counterintuitively let S;(m;j) := Sk(m;j)/p(j).

e Therefore, we get

] / . .
p<k(Ain) _ sy | L PUPreg(Ain — A)j)
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Problem 1: Parts that are multiples of A

e Counterintuitively let S;(m;j) := Sk(m;j)/p(j).

e Therefore, we get

pe(Ain) _ (Z(—U"’SL“(W))  PU)Pres(Ai n = Aj)

p(n) = p(n)

pNE]

m=0

e Erdds and Lehner proved

Si(mif) ~ = ( )

e For every m this means S;(m;j) ~ % -SE(1; /)™, giving

o0

> (=1)7"Sg (m; ) ~ exp(—Sf, (1:4))-

m=0
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Problem 1: Parts that are multiples of A

e Therefore, as a sum in j we have
M %exp(_s* (1;))) - PU)Preg(As n — Aj)
p(n) ot p(n) '

Jj=0
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Problem 1: Parts that are multiples of A

e Therefore, as a sum in j we have

L] ) .
PSk(A; n) -~ exp(—S* (1: 7)) - p(./)preg(A; n— AJ)
p(n) J;O p( Skn(lvf)) p(n) .

e Hardy-Ramanujan proved

p(n)~4n\/§-e
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Problem 1: Parts that are multiples of A

e Therefore, as a sum in j we have

L] ) .
PSk(A; n) -~ exp(—S* (1: 7)) - p(./)preg(A; n— AJ)
p(n) J;O p( Skn(lvf)) p(n) .

e Hardy-Ramanujan proved

1 ”\/Z

p(n)~4n\/§-e 3

e Hagis proved that

A—1 A—1
preg(A; n) ~ CA(24H -1+ A)_% exp (C\/ y; (n + o >> ]
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Problem 1: Parts that are multiples of A

e Therefore, each jth summand has the “factor”

p(j)preg(A§ n— A])
p(n)

- Ca " o - _ A-1 e A A-1 _ (-}
7(24n724Aj71+A)%jep<C<\[ ‘/_+\/ A ( A+ =5 ))) (1+0,n))
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Problem 1: Parts that are multiples of A

e Therefore, each jth summand has the “factor”

p(j)preg(A§ n— A])
p(n)

- Ca " o - _ A-1 e A A-1 _ (-}
7(24n724Aj71+A)%jep<C<\[ ‘/_+\/ A ( A+ =5 ))) (1+0,n))

e The convenient change of variable j = [n/A?] + y gives

Cy A’n
(24n — 24n/A — 24Ay — 1+ A)in+ A%

X exp (C <\/11/A2—+y*\/7_7.+\/% (nfn/AfAer %))) . (1+Oy(n’%)).
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Problem 1: Parts that are multiples of A

e In the limit the sum is supported on |y| < n3/*log(n).

e Therefore, the desired overall limit is

li Z Aiz 1 _C_/ﬁy_Z_i -1 AC
noo 96U/A/A—1 n¥t TP\ TBA-1)n32  ACTP\ 72"

ly|<n3/4log(n)
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Problem 1: Parts that are multiples of A

e In the limit the sum is supported on |y| < n3/*log(n).

e Therefore, the desired overall limit is

li Z Aiz 1 _C_/ﬁy_Z 2 -1 AC
nglgo‘ I<ra7Tog. )961/4«/_——,4—1 n3/4 exp 8(A—1)n3/2 ac exp 21:
y|<n og(n

e Letting n — +o00, this converges to the limit of integrals

log(n) CA4 9 2 1
. nL—Hx: 961/4\/ / log(n) <_8(A - l)t AC o <—§.TAC)) -
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Problem 1: Parts that are multiples of A

e Dependence on n is only in limits of integration!
e The part involving t vanishes after integration as n — +o0.

e This only leaves

L P<kn(Ain) 2 1
nkrroo o) exp ( AC exp 2xAC . 0



Distributions on integers partitions

Solving Problems 2 and 3

Counting hooks

Theorem (Han, 2008)

«(T:q) = ZPt(n T)gq ::Z I p#{teH(N) HM
A

q"

n=1

e ZPt(n ne=o =1l e
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Important Asymptotics

Proposition

Ifne (0,1l and < T <n ' and c(T) := \/n2/6 — Lio(1 — T), then
c(T) (M) (2va--L) _1
P n, T) = ———F - € vl o1+ O,(n"7 y
t( ) 2/27nTz ( nl ))

— [ 809 gy js the dilogarithm function.

where Liz(z) :=
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Solving Problems 2 and 3

Important Asymptotics

Proposition

Ifne (0,1l andn < T <n~" and ¢(T) := \/72/6 — Lio(1 — T), then

c(T) (1) (2vA- %) 1
P.(n:T) = . Vi) (1 7
e ) QﬁﬂnT% y ( + On(n )) ’

(7 log(1—u

where Liz(z) == — [; =55 Ydu is the dilogarithm function.

Proposition

If t is a positive integer and T := {T,} is a positive real sequence for which
a(T)+er(n)
T.=e o , where o(T) is real and er(n) = or (1),
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Solving Problems 2 and 3

Important Asymptotics

Proposition

Ifne (0,1l andn < T <n~" and ¢(T) := \/72/6 — Lio(1 — T), then

c(T) (1) (2vA- %) 1
P.(n:T) = . Vi) (1 7
e ) QﬁﬂnT% y ( + On(n )) ’

(7 log(1—u

where Liz(z) == — [; =55 Ydu is the dilogarithm function.

Proposition

If t is a positive integer and T := {T,} is a positive real sequence for which
a(T)+er(n)
T.=e Vo , where a(T) is real and er(n) = or(1), then

= 1 1 «oT) ( mt )i /Ay E+ 24D
P:(n; Ty) ~ w—=+ e 8" J,
T~ o, Ve T e wt +v6a(T))
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Proving the Propositions Requires

Lemma

Ifn € (0,1], then fora >0 and n < T < n~ ' we have
i ol — ey = = _Lioq (5) + 0@ (1)
= 6a 2 2 ’
=~ t2n(T —1)  Lip(1-T)
p T -1 + etno - a2 + Oﬂ(l)v (2)
Stog(1+(T-ne ) = 20T Jiog T 0,@) ()
n=1
- t3n’e " 2 Lip(1-T)
; T (T _Dem)e o T-1 On(a). *)
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Solving Problems 2 and 3

Proving the Propositions Requires

Lemma

Ifn € (0,1], then foraw >0 andn < T <n~

oo

1 we have

2

ey T L (e
;mgu e )= —= — 5 Iog(27r) + 0(a),
=~ t2n(T —1)  Lip(1-T)
— T — 1+etna - a2 +Oﬁ(1)7
S log (14+(T—e) = -H20=T) _Ligg 74 0,(a),
P ta 2
- t3n’e " 2 Lia(1-T)
; (1+(T-1e ™)~ o3 T-1 + On(a).

(1)

(2)

©)

(4)

+ Connect to Han's Gen. Fcns
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Solving Problems 2 and 3

Proving the Propositions Requires

Lemma

Ifn € (0,1], then fora >0 and n < T < n~ ' we have

€9 2
ey T L (e
; log(1 — e¥*) = —2— — log (zﬂ) + 0(a),
=~ t2n(T —1)  Lip(1-T)
o T — 1+ etnx - a2 + Oﬁ(l)v
S tog (14 (T - De=) = ~220=T) Lo 1 0, (),
P ta 2
- t3n’e " 2 Lia(1-T)
Z 1+(T—-1e ™)~ a3 T-1 + Op(a).

n=1

(1)

(2)

©)

(4)

+ Connect to Han's Gen. Fcns + Technical “saddle point” calculations.
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Solutions to Problems 2 and 3

Proof.

(1) Use these results to compute “moment generating functions.”

Theorem (Curtiss, 1940s)
Let {X,} be real random variableswith moment gen. fcns.
Mx,(r) :_/ e™dFp(x),

where Fn(x) are the cumulative distributions.
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Solutions to Problems 2 and 3

Proof.

(1) Use these results to compute “moment generating functions.”

Theorem (Curtiss, 1940s)

Let {X,} be real random variableswith moment gen. fcns.

My (r)i= [ edF0),

o0

where Fn(x) are the cumulative distributions.
If the {Mx, (r)} converge, then the {X,} converge.
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Solutions to Problems 2 and 3

Proof.

(1) Use these results to compute “moment generating functions.”

Theorem (Curtiss, 1940s)
Let {X,} be real random variableswith moment gen. fcns.
My, (r) = / ™ dF (%),

where Fn(x) are the cumulative distributions.
If the {Mx, (r)} converge, then the {X,} converge.

<

(2) Prove convergence and recognize as normal and shifted Gamma
respectively.

Ol
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Problem 1: Parts in AN

Theorem (G, Ono, Rolen, Tsai (2021))
If C:=m\/2/3 and kp, = kn(x) := 5=+v/nlog n+ \/nx, then

1
AC
A 2
i P _ o (L2 )

n—-+o00
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Summary

Problem 1: Parts in AN

Theorem (G, Ono, Rolen, Tsai (2021))

If C :=m\/2/3 and ky = kn(x) := 4=\/nlog n+ \/nx, then
||m p<kn A n _ i e*%ACX
n—+00 AC |

Remarks
(1) These are Gumbel distributions.
(2) The mean and variance are:

2 2
Mean := ac (Iog (AC) +WEu/er> )

Variance = 1/A%
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Problem 2: t hooks

Theorem (G, Ono, Tsai (2022))

(1) The sequence {Yi(n)} is asymptotically normal with mean

/6n . 2 6)6n
pe(n) ~ Y27 — L and variance o2(n) ~ w.
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Problem 2: t hooks

Theorem (G, Ono, Tsai (2022))

(1) The sequence {Yi(n)} is asymptotically normal with mean

/6n . 2 6)6n
pe(n) ~ Y27 — L and variance o2(n) ~ w.

(2) If ke p(x) := pe(n) + o¢(n)x, then we have

1 fx _p
lim Di(kin(x);n) = — e 2dy =: E(x).
Jim Dilken()im) = <= [ ey = E(y
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Summary

Problem 3: Hooks in tN

Theorem (G, Ono, Tsai (2022))
(1) If t > 4, then

Ye(n) ~ V3(t=1n X, s

2
t Tt 7\ =1

n _ (t=1)v6n

3(t—1)n
t 27t 2

and variance 5; (n) ~ 253",

and has mean fit(n) ~
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Problem 3: Hooks in tN

Theorem (G, Ono, Tsai (2022))
(1) If t > 4, then

= V3(t—1
Yt(”)"“g_%'xg 2
2 t—1

n _ (t=1)v6n

and has mean fit(n) ~ & —

3(t—1)n
¥)

and variance 5; (n) ~ 253",

(2) If E,n(x) := 1t(n) + 7¢(n)x, then in the lower incomplete ~y-function

lim 5t(7(\t,n(X); ) — v (tzl; \/Ex—k f;1) |

n—-+oo r (t;il)
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Summary

Executive Summary

@ Parts in AN correspond to Gumbel Distributions.
o t-hooks correspond to Normal Distributions.

@ Hooks in tN correpond to shifted Gamma distributions.
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