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Part One: Hilbert’s 12th Problem
My personal motivation for this work

Part Two and Three: Indefinite Theta and Indefinite Zeta
A general construction with potential applications beyond the
motivating problem

Part Four: Kronecker Limit Formulas
An application of the general construction to one aspect of the
motivating problem




Part One: Hilbert’'s 12th Problem




Hilbert’s 12th problem

@ List of 23 open problems published in 1900

@ 12th problem asks for an “Extension of
Kronecker’s Theorem on Abelian Fields to
any Algebraic Realm of Rationality.”

@ Kronecker’s Theorem (Kronecker-Weber
theorem) says that the abelian extensions of
Q are generated by the values of
e(z) = €?™ at rational values of z.

@ Given any base field (“realm of rationality”),
Hilbert wanted “analytic functions” that play
the role of e(z).




Class field theory

@ The imaginary quadratic case was mostly known to Hilbert and
uses the theory of elliptic curves with complex multiplication
(CM), due to Weber and others.

@ Abstract class field theory, developed during the 1910s and
1920s by Takagi and others, constructs class fields in an indirect
manner.

@ Goro Shimura generalized CM theory to
“CM base fields” by replacing elliptic curves
with abelian varieties.




Stark conjectures

F

Introduced 1971-1980 by Harold Stark

Artin L-function L(s, p) for irrep
p: Gal(L/K) — GL,(C)
Taylor seriesat s =0: L(s,p) =¢/S" + -+

Leading coefficient ¢, conjectured to be a product of an algébraic
number and a “Stark regulator”, a determinant of an r x r matrix
of linear forms of logarithms of algebraic units.

If L/K is an abelian, L(s, p) = L(s, x) is a Hecke
L-function—specified by data internal to K.

Units are predicted to live in the corresponding class field.

Partial answer to Hilbert’s 12th problem in the “rank 1” case
(r = 1), when we can recover the Stark units by exponentiation.

The rank 1 abelian Stark conjectures remain open for any real
quadratic field, e.g., Q(+/3).




L-functions at s = 1: rational example

This formula can be proved using calculus. Try it! Hint: Replace ‘ﬁ
with £ and take a derivative.

1 1 1 1 1 1 1 1
1-3-5+7*s 1w -t =gz e(1+v?)
The left-hand side is the value L(1, x), where x(n) = (2) is the
Dirichlet character associated to the field exten3|on Q(v2)/Q. The

right-hand side involves ¢ = 1 + /2, the fundamental unit of Q(v/2).




L-functions at s = 1: imaginary quadratic example

This formula is proved using the theory of complex multiplication for
elliptic curves. The notation e(z) := €7

Sy SmEl_een/s) _2n

2 2
iy m? +mn+ n V3

where ¢ = 29 + 12/5 + 2,/6(65 + 291/5).

The left-hand side is a linear combination of Hecke L-values at s = 1
for Q(v/—3). The right-hand side involves an algebraic unit ¢ in the
ray class field modulo (5) for Q(v/—3).

This example is related to the 5-torsion points of the elliptic curve
y?2 =x341.




L-functions at s = 1: real quadratic example

This formula is an open conjecture!

= e (4m/5) - e (m/5)
> T I\flog()

m=1

m
3N

7§m < m

where ¢ ~ 3.890861714 is a root of the polynomial equation
x® — (8 4+5v3)x” + (53 + 30v/3)x® — (156 + 90V/3)x®
+ (225 + 130v/3)x* — (156 + 90v/3)x® + (53 + 30V/3)x2
—(8+5V3)x+1=0.

The number ¢ is an algebraic unit in the narrow ray class field of
Q(+v/3) modulo 5.




Kronecker limit formulas

In the imaginary quadratic case (where Stark is known), L-values
relate to special values of modular forms by Kronecker limit formulas.

The first limit formula is for the real analytic Eisenstein series (which
specialize to linear combinations of Hecke L-functions of conductor 1
when 7 is imaginary quadratic),

Im(7)®
E(T, S) = Z m
(m,n)ez?

(m,m)#(0,0)

Theorem (Kronecker first limit formula)

lim (E(T, s) — 71-1> =~y —2log )ZWn(T)‘ .

s—1 S

Here, n(7) is the Dedekind eta function (a modular form of weight %),
and ~ is the Euler-Mascheroni constant.
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Kronecker limit formulas

The second limit formula is for the twisted real analytic Eisenstein
series for (py, p2) € R? \ Z? (which specialize to to linear
combinations of Hecke L-functions of conductor N when 7 is
imaginary quadratic and py, p, € Z),

] 1 s Im(7)°
Ep o (T, ):éw r(s) Z e(P1m+P2n)m~
(m,n)ez?

(m,n)#(0,0)

Theorem (Kronecker second limit formula)

O3+p,3-pe(T)

Ephpz(T, 1) = —2log 0

Here ¢ is the Jacobi theta function, n is the Dedekind eta function,
and the expression inside the absolute value is a modular function for
[(N) whenever py, p> € +Z.




Kronecker limit formulas for real quadratic fields

@ One approach to the Stark conjectures is to find Kronecker limit
formula for real quadratic fields.

@ Hecke (1917), Herglotz (1923), Zagier (1975) found analogues of
first limit formula.

@ Shintani (1976) found an analogue of the
second limit formula...

@ ...and proved (1978) a special case of the Stark
conjectures.

@ All (except Hecke) interpolate between zeta
functions in a similar way.




Kronecker limit formulas for real quadratic fields

@ We introduce a new way of interpolating that preserves the
functional equation...

@ ...and obtain a new Kronecker limit formula (analogous to
second).

@ Gives a new, fast-converging analytic formula for (presumptive)
Stark units...

@ ...but does not (yet) help with proving algebraicity.

KT ™™»HHSSSSSSSh




Part Two: Indefinite Theta Functions )




Zwegers’s thesis

@ Indefinite theta functions were introduced in the PhD thesis of
Sander Zwegers in 2002.

@ He used them to build harmonic weak Maass forms whose
holomorphic parts are Ramanujan’s mock theta functions.

@ Zwegers’s work, and subsequent work of Kathrin Bringmann and
Ken Ono, led to a renaissance in mock modular forms.

"
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Generalizing Zwegers’s theta

Let M be a real symmetric matrix of signature (g — 1,1) and
¢y, G2 € RY satisfying chAc,- < 0. Zwegers’s indefinite theta function is
Uar®(z,7) for z € C9 and 7 € H. We generalize it by...

@ Replacing 7M with a symmetric matrix Q = N + iM such that M
has signature (g — 1, 1). Fairly straightforward.

@ Allowing c1, ¢, to take complex values. Not straightforward.

@ To get a good transformation theory, the latter is required to once
we do the former.
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Siegel intermediate half-space

Definition (Siegel intermediate half-space)

For 0 < k < g, we define the Siegel intermediate half-space of genus
g and index k to be

Hgk) ={QeMy(C): Q=0T and Im(Q) has signature (g — k, k)}.




1

Symplectic group action

The symplectic group Sp,4(R) acts on the set of g x g complex
symmetric matrices Q = N + iM with M invertible, by

(é g)-Q:(AQ+B)(CQ+D)‘1.

Proposition

The ch,k) are the open orbits of this Sp,,(IR)-action.




Moduli problem

@ The space Héo)/sz(Z) is the moduli space of principally
polarized abelian varieties of dimension g.

@ For k > 0, the points of ”Hg‘)/ Sp,(Z) correspond to certain
non-algebraic complex tori of dimension g...

@ ...except the action of Sp,(Z) is not properly discontinuous.

@ When k = 1, one may fix the action by adding an auxiliary
parameter ¢ € P9~'(C) such that ¢ Im()c < 0 and letting
Sp,(Z) act on (2, ¢) by

( Al >'(Q,C)— (A2 + B)(CQ + D)™, (CQ + D)c) .

@ Also works for (2, ¢q, ¢2).
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Definition of definite (Riemann) theta function

This function was defined by Riemann and is known as the Riemann
theta function.

Definition (Definite theta function)

Letz € C9and Q = N+ iM € #. Define

oz =) e (;nTQn+ nTz) .

nez9

The sum will only converge if the bilinear form Qu(n) = 1n"Mnis
positive definite—that is, if Q € #.




Definition of indefinite theta function

Definition (Incomplete Gaussian integral)

Forany a € C, set £(a) = / e ™ du.
0

Definition (Indefinite theta function)

LetzeC9and Q=N+ iM ¢ HS). Take ¢y, c2 € CY such that
¢ ' Mc; < 0. Define

C2
-
901,02(2;9) _ Z P (C |m(Qn—|—Z)>
c=c

nez9 \/ —%CTMC

Note: f(c)|Z,, means f(cz) — f(cy).

e (;nTQn—i- nTz) .

=4

Proposition (K)

The series defining the indefinite theta function converges absolutely.




Theta functions with real characteristics

We switch to a different notation because it will make our formulas
nicer.

Definition (Definite theta null with real characteristics)

For “characteristics” p,g € RY and Q2 € quo), set

.
Opq(2) =€ <2qTQq +qu) O(p+929,9).

Definition (Indefinite theta null with real characteristics)

For “characteristics” p,g € R9, Q € Hg), and ¢y, ¢, € CY such that
¢ ' Im(Q)c < 0, set

]
O () =e <2qTQq + qu) 0% (p+Qq; Q).




Elliptic transformation laws

Letp,ge R9and a,b € Z9.

Proposition (Elliptic trans., definite case; classical)

ForQ e 1Y,

Opragib(2) = €(a' (g + b)) Opq(Q).

Proposition (Elliptic trans., indefinite case; K)

ForQ e, ¢i,co € CY, and G Im(Q)g < 0,

O0 3 qp(Q) = e(a' (g + b)) ©557(Q).

If you ignore the ¢;, these two equations are exactly the same.




Modular transformation laws, definite case

Proposition (Modular trans., definite case; classical)

LetQ e HYY and p,q € RY. Let A € GLy(Z), B € My(Z), and B= BT .

(1) ©p,g(ATQA) = ©p-1p 24(Q).
(2) ©54(2+2B) = e(—q" Bq)©p+284,4()-
e(p"q)

(3) @p,q (_9_1) = m@*q”"(ﬂ)‘




Modular transformation laws, indefinite case

Theorem (Modular trans., indefinite case; K)

LetQ=N+iMeHS, ¢, c € CI such that G Mc; < 0, and
p.q € RI. Let A€ GLy(Z), B € My(Z), and B= B'.

(1) O55*(ATQA) = 05°/% (9).

(2) ©75%(2+2B) = e(—q" Bq)O; %5, 4()

T =1 ==
@) O (- = L0 1 ")

The case when N is a constant multiple of M and ¢y, ¢; € RY is due to
Zwegers. If you ignore the ¢;, these are exactly the same equations
as on the previous slide.




Part Three: Indefinite Zeta Functions )




Definition of definite and indefinite zeta function

Letp,geRY9and Q € ’Hgo). For Re(s) > 1, define

n e dt
Cp,q(QS):/O ep,q(m)tST-

Definition

Letp,ge R9and Q € ’H(g”. Consider ¢y, ¢, € C9 such that
G ' Im(Q)c; < 0. For Re(s) > 1, define

{e(Q,8) = /0 egz;fz(m)tﬁ.




Analytic continuation and rapid convergence

Theorem (Analytic continuation; K)

For any choice of r > 0, the following expression is an analytic
continuation of (5'y* (€, s) to the entire s-plane.

(g™ (,8) = / 62‘,&;’2(t9)t3$
r
e(qu) > eﬁq Qe (t (_Q_1)) tg_s dt

== -
det(=iQ) Jr— 9P

| have used this formula for computer calculations, as it may be used
to compute the indefinite zeta function to arbitrary precision in
polynomial time.




Functional equation

Symmetry about the line s = §.

Corollary (Functional equation; K)

T —-
é\gjélcz (Q7 g - S) = M&QCMQCZ (—971’5) '

/det(=iQ) 7P




Ray class groups

Let K be a number field and Ok its ring of integers. Let ¢ be a ideal in
Ok, and let S be a subset of the real embeddings of K.

Definition (Ray class group modulo {c, S})

{fractional ideals of Ok coprime to c}
{a0k s.t. a=1 (mod ¢) and p(a) > 0 for p € S}

Cl,s(Ok) =




Zeta functions associated to ray classes

Definition
For A € Cl. s(Ok), the associated zeta function is
((s,A)= > N(a)™.
a<(9K
acA

Let R € Cl; s(Ok) be the ideal class

R={a0k :a=—1 (mod ¢) and p(a) > 0 for p € S}.

Definition

For A € Cl. s(Ok), the associated differenced zeta function is

Za(s) = ((s, A) — ¢(s, RA).




Real quadratic Z4(s) as an indefinite zeta function

Let K be a real quadratic field and ¢ a nonzero ideal in O.

Theorem (Specialization of indefinite zeta; K)

For each A € Cl; (0, ,o,) and integral ideal b € A~", there exist
¢1, ¢ € Q?, M a rational symmetric matrix of signature (1,1), and
q € Q? such that,

(2wN(0))~°T(8)Za(8) = Cg'g™ (iM. 5).

The rank 1 Stark conjecture predicts that, for B € Cl (1,
Z5(0) = log(eg) for some algebraic unit g generating a particular
abelian extension of K.




@ Let K = Q(v/3), so Ok = Z[/3], and let ¢ = 50k.
@ The ray class group Cl. (,} = Z/8Z. Let | be the identity.

@ The ray class group Cl; (oo, ,00,} = Z/27Z x Z/8Z. Write
I'=1,ul_, where [, is the identity element of Cl (o, oc,}-

@ We have Zi(s) = Z,(s) + Z,_(s). But it turns out that Z;_(s) is
identically zero in this case, so Zj(s) = Z,, (S).

oForq:})((1)>,c1:<?),andP:(? g)

Zj(0) = Z.(0)
= A°“P3°1(iM 0)
_ c1 PC1(IM 0)+CPC1 PP C1(IM 0)+CP c,P® C1(IM 0)
= (510 (iM, 0) + (g7 (iM, 0) + {577 (iM, 0),

1 2 2
Whereq0:;<0)!q1:é(1 >aandq2:})<4>




@ Using this, we can calculate Z/(0) ~ 1.3586306534 and
exp(Z/(0)) ~ 3.8908617139—apparently the root of the degree 8
polynomial we saw earlier.

x® — (8 +5v3)x” 4 (53 + 30v/3)x® — (156 + 90v/3)x®
+ (225 4+ 130v/3)x* — (156 + 90v/3)x® + (53 + 30v/3)x?
—(845V3)x+1=0.
@ Indeed, the polynomial was found (as a factor of a degree 16
integer polynomial found) by the Mathematica
RootApproximant [] function after calculating exp(Z/(0)) to

100 decimal places. We then checked in Magma that it
generates the expected class field.




Part Four: Kronecker Limit Formulas )




Kronecker limit formula for definite zeta functions

Let p1, p2 € R? with 0 < py,p2 < 1. For 7 € H, set

fphpz(T):e(—%) uf"'ﬂfz (V-]%_VT )ﬁ 1—u VT 1—ufv;1)

a=1
e((P1—3) (P2 +3)) Vyupyi—p,(7)
n(7)

o

)

where u, = e(7), v, = e(p2 — p17), ¥ is the Jacobi theta function, and
7 is the Dedekind eta function. Let Log fy, p, is the branch satisfying

. 1 .
(Log fo, p, )(T) ~ mi <p12 —pi + 6) Tas T — foco.




Kronecker limit formula for definite zeta functions

Theorem (Generalized second KLF at s = 1; K)
Letp = ( g; ) cER2with0 < py,p2 <1,andletQ =N+ iM e Hgo).

Letz =71 and z = 7~ be the solutions of Qq f ) = 0 in the upper
and lower half-planes, respectively. Then,
-1

fp,o(Q» 1) = m

((Log for.p.) (1) + (Log foy ) (=77)) -




Kronecker limit formula for indefinite zeta functions

Suppose Q =N+ iM € HS) and ¢ € C2 such that ¢' Mc < 0. Let
Ae = — ﬁ(C)MCCTM € Hgo). For v € C?, set

crn c"Mv
ra(v) = 4ri\/—Qu(€)Qa(v)\/—2iQp, (V)

The function ¢p, p, : H — C is defined by a product expansion,

o 7 1—e((d+p)é+p2)
Ppy.pe (&) = (1 e(P1€t+P2))£[1 1_e((d—p1)E—p2)’

and its logarithm (Log ¢p, p,) (£) is the unique continuous branch with
the property

_ [ log(1 —e(p2)) ifpy =0,
£|_|>r}‘IOO(L0g<pP1,P2)(£) = { 0 if pl # 0.

Here log(1 — e(p2)) is the standard principal branch.




Kronecker limit formula for indefinite zeta functions

Theorem (KLF for indefinite zeta functions at s = 1; K)

LetQ=N+iM=c 1, p= < 5; ) € R?, and ¢y, ¢; € C? such that

¢ ImQc; < 0. For ¢ = ¢y, ¢, factor the quadratic form

0§ ) =atee- (e (o),

where 77 (c) is in the upper half-plane and 7~ (c) is in the lower
half-plane. Then,

6;602(97 1) =I"(c2) — I"(c2) — I (¢1) + I (c1), where

I*(c) = — Lia(e(£p1))x§ < <1) )

w21 [ (Loggnsa) 7@+ i (£ ) ar




(In)definite KLF—proof sketch

@ Compute Fourier series in € for © 7¢y7, ¢4 (t (Tf)T QTf) or
@(TTgs)i‘pT;fgz (t (T6) " QTf). The kth Fourier coefficient is a sum
over divisors of k.

@ Take Mellin transform term-by-term to compute Fourier series for

Creyoreq ((T6) QTS s) or (L J0T 5% ((T6) T T s).
@ Plugin ¢ =0and s = 1. The only remaining big idea in the
definite case is the use of the Jacobi triple product formula to
e((p1,%)(p2+%))19%+p2%7p1 (r)
n(7) ’

rewrite f, p,(7) =




Indefinite KLF—proof sketch

@ In indefinite case, we obtain the following expression for the kth
Fourier coefficient of the theta function when k # 0.

o= [ i ((5))

nlk
e <QQ < § ) Pt+p’ ( $ > n) e(—k¢) de.

@ Before taking the Mellin transform, we must shift some contours
of integration up and others down so that we get a convergent
expression afterwards.

b(©) = 3o /oo+m(fnn) o <( f > nt‘/2>

oo+l)\( )

e(QQ< f >n2t+pT< f >n> e(—k¢) de¢.

:\»




Indefinite KLF—proof sketch

Combine into one integral over a horizontal line (plus Li, term).

GEs(501) = - (s(e(pn) ~ Lin(el-p)) s )

(- ozenmr©@ng = ()

+ (Log ¢pr.p,) (€) - kg < f >> o
kn(cz)

r n

ti(c1) 7(cr)

ry r2




Indefinite KLF—proof sketch

@ After moving above the zeros of the Q/\c, ( jif ) the integral

can be split up into pieces for ¢; and c..
@ Finally, we collapse the contours onto the branch cuts of

S ( ¢ )
171(02)

n

T(cr)

ra r2




@ Continue our running example with K = Q(+/3) and ¢ = 50k.

@ We use the Kronecker limit formula for indefinite zeta functions to
compute Z/(0), where [ is the principal ray class in Cl (.}

@ By previous considerations, Z/(0) = §C1 PS“(/M 0).
@ Use functional equation to write as Z/(0) = gc‘ P o (IMT1).

"'_ _1_ 2 _1
Here, P = MPM _<3 5 |




If we use the indefinite KLF directly, the branch cut of «/ ( f )

starts very close to the real axis, at ¢ = =234041V3 Convergence is
slow in practical terms. Instead, split into three pieces:

Cof o (=07 1) = 80 (- ) + (05— ) + 80 Pe(— 1),

1 1 2 2
wherec:(3>,q0:;<0),q1:;(1>,andq2:;<4>.

Now, branch cuts start at i”T’VE, and convergence is rapid.

I(Pc) — I(c) ~ —0.0592384392 -+ 3.6568783902i
h(Pc) — h(c) ~ —1.3373302109 + 0.5247781254i
b(Pc) — b(c) ~ 2.6405758737 + 0.5247781254i

Obtain Z/(0) ~ 1.3586306534, just as before.
AR




Thanks & Questions

Thank you for attending my talk! Thank you to Larry Rolen and the
other organizers.

Questions?




