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Additive number theory

Patterns and interconnections

o theory of partitions

@ beautiful generating functions
@ surprising bijections

@ Ramanujan congruences

@ combinatorics, algebra, analytic num. theory, mod.
forms, stat. phys., QT, string theory, chemistry, ...
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Birth of partition theory

@ wondered about size of p(n) := # of partitions of n

@ p(n) is called the partition function
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Leonhard Euler (1700s)
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Birth of partition theory

Partition generating function (Euler)

(e.e]

d pma"=]](1-9¢")" (geC, gl <1)

n=1

Template for partition theory

@ product-sum generating functions
@ combinatorics encoded in exponents, coefficients
@ connected analysis to partitions
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Birth of partition theory

Partition generating function (Euler)

> opma’=1]0-a")" (geClqgl<1)

RHS = [[;2,(1+9"+q*"+q* +..) (geom. series)
Hoo (149" +qmn+ g7+ . (like, second grade)
+q'+q'"" + 2+ g + g2+ ¢* +..=LHS
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Multiplicative number theory

l.e., most of classical number theory
@ primes
o divisors
@ Euler phi function ¢(n), Mébius function p(n)
@ arithmetic functions, Dirichlet convolution
@ zeta functions, Dirichlet series, L-functions
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Birth of multiplicative number theory

Eratosthenes, Euclid (Alexandria, ca. 300 B.C.E.)
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o explicit zeta values — compute even powers of 7
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o first to understand (Riemann) zeta function:
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Multiplicative number theory

Product formula for zeta function (Euler)
o 1 B _1
Yo=I10-p9"  (Rels)>1)
n=0

peP

Template for study of L-functions

@ “Euler product” generating functions
@ connected analysis to prime numbers
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Additive-multiplicative correspondence (Euler)

Partition generating function (encodes addition)

o0

[[=a")"=> p(ng", gl <1
n=0

n=1

Euler product formula (encodes primes / multiplic.)
[[a=p=)"=> _n"° Re(s)>1

peP k=1

@ Proofs feel similar (multiply geometric series)

[
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Modern vistas in partition theory

Alladi-Erdos (1970s)

Bijection between integer factorizations, prime partitions
o study properties of arithmetic functions

Are other thms. in arithmetic images in prime partitions of
combinatorial/set-theoretic meta-structures?

BQ
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Modern vistas in partition theory

Andrews (1970s)

Theory of partition ideals
@ inspired by lattice theory
@ unifies classical results on gen. functions, bijections
@ suggestive of a universal algebra of partitions

Is there an algebra of partitions generalizing arithmetic in
integers (i.e., prime partitions)?
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Multiplicative theory of (additive) partitions

Philosophy of this talk

e Exist multipl., division, arith. functions on partitions

@ Objects in classical multiplic. number theory
— special cases of partition-theoretic structures

o Expect arithmetic theorems — extend to partitions

o Expect partition properties — properties of integers

TR
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Partition notations

o Let P denote the set of all integer partitions.
@ Let () denote the empty partition.

o Let A= (M, A2, .., Ar), At 2 A > > A > 1
denote a nonempty partition, e.g. A = (3,2,2,1).

@ Let Px denote partitions into elements \; € X C N,
e.g. Pp is the “prime partitions”.
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Partition notations

@ ((X) := ris length (number of parts).

e m; = m;(A\) := multiplicity (or “frequency”) of i.
@ |A:= X+ A2+ -+ A is size (sum of parts).
@ “A n”means X is a partition of n.

o Define ¢(0) = [0| = mi(0) =0, 0+ O.
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Multiplicative theory of (additive) partitions

New partition statistic

Define N(\), the norm of A, to be the product of the parts:
N()\) = )\1)\2)\3 tee )\r

@ Define N()) := 1 (it is an empty product)
@ See “The product of parts or ‘norm’ etc.” (S-Sills)
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Multiplicative theory of (additive) partitions

Partition multiplication

@ For A,y € P let Ay denote multiset union of the parts,
e.g. (3,2)(2,1) =(3,2,2,1).

@ Identity is 0

@ Partitions into one part are like primes, FTA holds
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Partition division (subpartitions)

@ For \,6 € P, let 6|A mean all parts of ¢ are parts of ),
e.g. (3,2,1)[(3,2,2,1).

@ For 4|, let /0 mean parts of ¢ deleted from A,
eg. (3,2,2,1)/(8,2,1) = (2).

o Replace P with Pp — mult./div. in Z*

.
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Parallel universe

Many arithmetic objects have partition counterparts.

Partition Mobius function

For A € P, define
3 0 if A has any part repeated,
Hp( ) = (—1)‘™  otherwise.

@ Replacing P with Pp reduces to p(N())), where N())
is the norm (product of parts).
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Parallel universe

Just as in classical cases, nice sums over “divisors”...

Partition Mobius function

Z if A =0,
pr( 0 otherwise

8IA
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Parallel universe

Partition Mobius inversion

If we have
) => 90

8IA

we also have

g\ =D ur(A/8)(5).
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Classically, 11(n) has a close companion in ¢(n).

Partition phi function

For \ € P, define

pep(\) =N [ -X7).
AEA
no repeats

e Replacing P with Pp reduces to ¢(N(A)).
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Phi function identities

d_wr(®) =N, ep(X) =NK) D %;\7/’(((;5))

3|A SIA

@ Replacing P with Pp reduces to classical cases.
@ Many analogs of objects in multiplic. # theory...
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Parallel universe

(Zf(A)q'”) (Zg(k)q“') > g > #(8)g(A/9)

AEP AEP AEP 8IA

D) 90) = 9> ()

AEP 5| AEP ~eP

Other multiplicative objects generalize to partition theory...
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In analogy with {(s) = >, n~*:

For P' C P, s € C, define a partition zeta function:

(r(s) ==Y N()*

AEP’

@ N()) is the norm (product of parts) of A\, N(() := 1.
@ For1 ¢ P =Px (parts in X C N)
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Partition zeta functions

In analogy with {(s) = >, n~*:

For P' C P, s € C, define a partition zeta function:

(r(s) ==Y N()*

AEP’

@ N()) is the norm (product of parts) of A\, N(() := 1.
e For1 ¢ P’ = Px (parts in X ¢ N) — Euler product:

Gr(s) = [T(1 =)

nexX
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Partition zeta functions: nice identities

Fix s = 2, vary subset P’

Summing over partitions into prime parts:

T

(re(2) = ¢(2) = 3
Summing over partitions into even parts:

(Poen(2) = >

Summing over partitions into distinct parts:

sinh

deistinct (2) =

™

TA0)
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Partition zeta functions: nice identites

Partition analogs of classical identities
1
> rp(WN()®

APy )
-5 __ CPX(S _ 1)
AEZPX (PP(/\)N(A) - Q»PX(S)

Takeaway from these examples

o Different subsets of P induce very diff. zeta values
o Classical zeta theorems — partition zeta theorems




Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we had
families of identities like Euler’s zeta values




Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we had
families of identities like Euler’s zeta values:

C(2N) = =N x rational number




Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we had
families of identities like Euler’s zeta values:

C(2N) = =N x rational number

A7




Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we had
families of identities like Euler’s zeta values:

C(2N) = =N x rational number

Do there exist (non-Riemann) partition zeta functions
such that, for the “right” choice of P’ C P




Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we had
families of identities like Euler’s zeta values:

C(2N) = =N x rational number

Do there exist (non-Riemann) partition zeta functions
such that, for the “right” choice of P’ C P,

Cpr(N) = 7™ x rational number?
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Partition zeta functions: nice family

Partitions of fixed length k

Define sum over partitions of fixed length ¢(\) = k:

Cr({s}) Z N(\ (Re(s) > 1)

4(>\)

A R
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Partition zeta functions: nice family

Theorem (S, 2016)

Summing over partitions of fixed length k > 0:
22k—1 —1
ep({2}9) = WC(QK) = 72K x rational number

o Note: k = 0 suggests ((0) = —1 (correct value)

Theorem (Ono-Rolen-S, 2017)

For N> 1: (p({2N}*) = 72Nk x rational number
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Theorem (Ono-Rolen-S., 2017)

Some other partition zeta fctns. contin. to right half-plane.

Natural questions

General (p({s}¥)? Analytic continuation? Poles? Roots?
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Theorem (S.-Sills, 2020)

For Re(s) > 1:
¢(s)™((28)™((38)™ - - - ((ks)™
=2

m1l mo! ms! - - my!

¢r({s}")

Ak

@ sum over partitions A of size k on RHS




Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)

For Re(s) > 1:

¢(s)™((28)™((38)™ - - - ((ks)™
=2

m1l mo! ms! - - my!

¢r({s}")

Ak

@ sum over partitions A of size k on RHS
@ inherits continuation from ¢(s)




Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)

For Re(s) > 1:
¢(s)™((28)™((38)™ - - - ((ks)™
=2

m1l mo! ms! - - my!

¢r({s}")

Ak

@ sum over partitions A of size k on RHS
@ inherits continuation from ¢(s)
@ polesats=1,1/2,1/3,1/4,..,1/k




Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)

For Re(s) > 1:

¢(s)™((28)™((38)™ - - - ((ks)™
=2

m1l mo! ms! - - my!

¢r({s}")

Ak

@ sum over partitions A of size k on RHS
@ inherits continuation from ¢(s)

@ polesats=1,1/2,1/3,1/4,..,1/k

o trivial roots at s € —2N




Partition zeta functions: analytic properties

-

Theorem (S.-Sills, 2020)

For Re(s) > 1:

¢(s)™((28)™((38)™ - - - ((ks)™
=2

m1l mo! ms! - - my!

¢r({s}")

Ak

@ sum over partitions A of size k on RHS
@ inherits continuation from ¢(s)

@ polesats=1,1/2,1/3,1/4,..,1/k

o trivial roots at s € —2N

Note: ¢p({s}*) not zero at roots of ((s) for k > 1
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Proof mimics Sills’ combinatorial proof (2019) of
MacMahon’s partial fraction decomposition...

MacMahon'’s partial fraction decomposition
For |g| < 1:

ﬁ“ gy =y (=) g™ =gy

e )J—k N(A) mitmp! - my!

Although here we really want to use...
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MacMahon-partition zeta correspondence

MacMahon’s partial fraction decomposition times g*

k

¢[J(1-a)"= > "

n=1 (M=K
gm(1 — g™ - ™1 —g*)™ .- g1 — g*)™
a NN mit m! - my!

ARk

o LHS generates all partitions with largest part k
@ Conjugation — also gen. partitions w/ length k
@ RHS = comb. geom. series over partitions of size k




MacMahon-partition zeta correspondence

MacMahon’s partial fraction decomposition times g*

k

¢l -a) "= > o"

=1 oN)=k
_ qm1(1 _ q)—m1 . q2m2(1 _ q2)—m2 e qkmk(‘] _ qk)—mk
S N(A) my! mp! - my!

Compare and contrast

m1 ks) M«
(1) = 30 Ny = 3 St O

o=k AFk
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MacMahon-partition zeta correspondence

Gen fctn component | Analogous zeta fcth component
g™ NV~
1i7/qi C(IS)
k
m ¢r({s}")

Multiplication of terms of either shape g"” or n—° generates
partitions in exactly the same way:

PG g =g o AT NS = NS




MacMahon-partition zeta correspondence

Gen fcth component | Analogous zeta fcth component
q" NA)—*
qjq/ C(/S)
k
m ¢p({s}")

The term ¢” in geom series 3~ | ¢" and resp. term n~/¢
of {(js) both encode partition (n) := (n, n, ..., n) (j times):

q ny S
g ;q( — ((js) = ZN

1
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MacMahon-partition zeta correspondence

Geometric series-zeta function duality

Correspondence says % and ((js) are interchangeable
as gen fctns for partitions (n, n, ..., n) (j reps / same part).
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Multiplicative theory of (additive) partitions

Applications

@ New combinatorial bijections

@ Computing coefficients of g-series, mock mod. forms
o Statistical physics

o Computational chemistry

@ Computing arithmetic densities

@ Computing 7 (quite inefficiently, to boot!)
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Application: arithmetic densities

The arithmetic density of a subset S C Z™ is
- #{ne S| n<N}

li
N— oo N

if the limit exists.

@ Integers = r (mod t) have density 1/t
e Square-free integers have density 6/72 = 1/((2)
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Application: arithmetic densities

Classical computation

@ Well-known relation between arithmetic density and
zeta-type sums

o If asubset T C P has arith. density in P, its density is
equal to the Dirichlet density of T
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Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)

The arith. density of integers = r mod t is equal to

“im Y (e = ¢

AeP
sm(A)=r(mod t)

@ “sm” is the smallest part of A
o extends work of Alladi (1977), Locus Dawsey (2017)
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Theorem (Ono-S-Wagner, 2018)

The arith. density of kth power-free integers is equal to

. N
—limo > (N = R

AEP
sm(\) kth power-free

g-binomial thm + partition bijection + complex analysis




Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)

The arith. density of kth power-free integers is equal to
1

— lim > pp(N)GgN = R

g—1
AEP
sm(X) kth power-free




Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)

The arith. density of kth power-free integers is equal to
1

— lim > pp(N)GgN = R

g—1
AEP
sm(X) kth power-free

@ another partition-zeta connection
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Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)

For ds arith. density of a g-commensurate subset S C N:

—lim Y pup(N)g = ds.

AEP
sm(A)eS

More generally, for a(\) with certain analytic conditions:

- A
o2 oemoy @ T %

@ here x is partition convolution, ¢(n) classical phi
@ second formula extends work of Wang (2020)




Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)

@ Proof requires a new theory of g-series density
computations based on “q-density” statistic.:

Al
ds(q) = —ng”eff’ =(1-q > g
A4 sm()\)eS
Natural number n Partition )\
Prime factors of n Parts of A
Square-free integers | Partitions into distinct parts
p(n) pip(A)
p(n) er(A)
Punin(1) sm(\)
Prmax (1) Ig(A)
—S A\
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Philosophy of this talk (again)

e Exist multipl., division, arith. functions on partitions

@ Objects in classical multiplic. number theory
— special cases of partition-theoretic structures

@ Expect arithmetic theorems — extend to partitions

o Expect partition properties — properties of integers

Work in progress

With Akande, Beckwith, Dawsey, Hendon, Jameson, Just,
Ono, Rolen, M. Schneider, Sellers, Sills, Wagner, ... you?




Thank you for listening :)




