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Birth of partition theory

Partition generating function (Euler)

∞∑
n=0

p(n)qn =
∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

Template for partition theory
product-sum generating functions
combinatorics encoded in exponents, coefficients
connected analysis to partitions
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Birth of partition theory

Partition generating function (Euler)
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n=0

p(n)qn =
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n=1
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Proof

RHS =
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n=1(1 + qn + q2n + q3n + ...) (geom. series)
=
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n=1(1 + qn + qn+n + qn+n+n + ...) (like, second grade)
= 1 + q1 + q1+1 + q2 + q1+1+1 + q1+2 + q3 + ...= LHS
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Multiplicative number theory

I.e., most of classical number theory
primes
divisors
Euler phi function ϕ(n), Möbius function µ(n)
arithmetic functions, Dirichlet convolution
zeta functions, Dirichlet series, L-functions
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Birth of multiplicative number theory

Euler

first to understand (Riemann) zeta function:

ζ(s) :=
∞∑

n=1

1
ns (Re(s) > 1)

explicit zeta values→ compute even powers of π:

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ...
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Multiplicative number theory

Product formula for zeta function (Euler)

∞∑
n=0

1
ns =

∏
p∈P

(
1− p−s)−1

(Re(s) > 1)

Template for study of L-functions
“Euler product” generating functions
connected analysis to prime numbers
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Additive-multiplicative correspondence (Euler)

Partition generating function (encodes addition)
∞∏

n=1

(1− qn)−1 =
∞∑

n=0

p(n)qn, |q| < 1

Euler product formula (encodes primes / multiplic.)∏
p∈P

(1− p−s)−1 =
∞∑

k=1

n−s, Re(s) > 1

Proofs feel similar (multiply geometric series)
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Modern vistas in partition theory

Alladi–Erdős (1970s)
Bijection between integer factorizations, prime partitions

study properties of arithmetic functions

Question
Are other thms. in arithmetic images in prime partitions of
combinatorial/set-theoretic meta-structures?
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Modern vistas in partition theory

Andrews (1970s)

Theory of partition ideals
inspired by lattice theory
unifies classical results on gen. functions, bijections
suggestive of a universal algebra of partitions

Question
Is there an algebra of partitions generalizing arithmetic in
integers (i.e., prime partitions)?
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Multiplicative theory of (additive) partitions

Philosophy of this talk

Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory
→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers
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Partition notations

Let P denote the set of all integer partitions.

Let ∅ denote the empty partition.

Let λ = (λ1, λ2, . . . , λr ), λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1,
denote a nonempty partition, e.g. λ = (3,2,2,1).

Let PX denote partitions into elements λi ∈ X ⊆ N,
e.g. PP is the “prime partitions”.
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Partition notations

`(λ) := r is length (number of parts).

mi = mi(λ) := multiplicity (or “frequency”) of i .

|λ| := λ1 + λ2 + · · ·+ λr is size (sum of parts).

“λ ` n” means λ is a partition of n.

Define `(∅) = |∅| = mi(∅) = 0, ∅ ` 0.
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Multiplicative theory of (additive) partitions

New partition statistic
Define N(λ), the norm of λ, to be the product of the parts:

N(λ) := λ1λ2λ3 · · ·λr

Define N(∅) := 1 (it is an empty product)
See “The product of parts or ‘norm’ etc.” (S-Sills)
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Multiplicative theory of (additive) partitions

Partition multiplication

For λ, γ ∈ P let λγ denote multiset union of the parts,
e.g. (3,2)(2,1) = (3,2,2,1).

Identity is ∅

Partitions into one part are like primes, FTA holds
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Multiplicative theory of (additive) partitions

Partition division (subpartitions)

For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ,
e.g. (3,2,1)|(3,2,2,1).

For δ|λ, let λ/δ mean parts of δ deleted from λ,
e.g. (3,2,2,1)/(3,2,1) = (2).

Replace P with PP → mult./div. in Z+
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Multiplicative theory of (additive) partitions
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Multiplicative theory of (additive) partitions

Partition division (subpartitions)

For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ,
e.g. (3,2,1)|(3,2,2,1).

For δ|λ, let λ/δ mean parts of δ deleted from λ,
e.g. (3,2,2,1)/(3,2,1) = (2).

Replace P with PP → mult./div. in Z+

107



Parallel universe

Many arithmetic objects have partition counterparts.

Partition Möbius function
For λ ∈ P, define

µP(λ) :=

{
0 if λ has any part repeated,
(−1)`(λ) otherwise.

Replacing P with PP reduces to µ(N(λ)), where N(λ)
is the norm (product of parts).
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Parallel universe

Just as in classical cases, nice sums over “divisors”...

Partition Möbius function∑
δ|λ

µP(δ) =

{
1 if λ = ∅,
0 otherwise
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Parallel universe

Partition Möbius inversion
If we have

f (λ) =
∑
δ|λ

g(δ)

we also have

g(λ) =
∑
δ|λ

µP(λ/δ)f (δ).
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Parallel universe

Classically, µ(n) has a close companion in ϕ(n).

Partition phi function
For λ ∈ P, define

ϕP(λ) := N(λ)
∏
λi∈λ

no repeats

(1− λ−1
i ).

Replacing P with PP reduces to ϕ(N(λ)).
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Parallel universe

Phi function identities

∑
δ|λ

ϕP(δ) = N(λ), ϕP(λ) = N(λ)
∑
δ|λ

µP(δ)

N(δ)

Replacing P with PP reduces to classical cases.
Many analogs of objects in multiplic. # theory...
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Parallel universe

Partition Cauchy product(∑
λ∈P

f (λ)q|λ|
)(∑

λ∈P

g(λ)q|λ|
)

=
∑
λ∈P

q|λ|
∑
δ|λ

f (δ)g(λ/δ)

Swapping order of summation∑
λ∈P

f (λ)
∑
δ|λ

g(δ) =
∑
λ∈P

g(λ)
∑
γ∈P

f (λγ)

Other multiplicative objects generalize to partition theory...
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Partition zeta functions

In analogy with ζ(s) =
∑∞

n=1 n−s:

Definition
For P ′ ( P , s ∈ C, define a partition zeta function:

ζP ′(s) :=
∑
λ∈P ′

N(λ)−s

N(λ) is the norm (product of parts) of λ, N(∅) := 1.
For 1 6∈ P ′ = PX (parts in X ⊂ N)→ Euler product:

ζPX(s) =
∏
n∈X

(1− n−s)−1
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Partition zeta functions: nice identities

Fix s = 2, vary subset P ′

Summing over partitions into prime parts:

ζPP(2) = ζ(2) =
π2

6

Summing over partitions into even parts:

ζPeven(2) =
π

2

Summing over partitions into distinct parts:

ζPdistinct(2) =
sinh π

π
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Partition zeta functions: nice identites

Partition analogs of classical identities∑
λ∈PX

µP(λ)N(λ)−s =
1

ζPX(s)∑
λ∈PX

ϕP(λ)N(λ)−s =
ζPX(s − 1)
ζPX(s)

Takeaway from these examples
Different subsets of P induce very diff. zeta values
Classical zeta theorems→ partition zeta theorems
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Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we had
families of identities like Euler’s zeta values

:

ζ(2N) = π2N × rational number

Question
Do there exist (non-Riemann) partition zeta functions
such that, for the “right” choice of P ′ ( P,

ζP ′(N) = πM × rational number?
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Partition zeta functions: nice family

Partitions of fixed length k

Define sum over partitions of fixed length `(λ) = k :

ζP({s}k) :=
∑
λ∈P
`(λ)=k

N(λ)−s (Re(s) > 1)
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Partition zeta functions: nice family

Theorem (S, 2016)

Summing over partitions of fixed length k > 0:

ζP({2}k) =
22k−1 − 1

22k−2 ζ(2k) = π2k × rational number

Note: k = 0 suggests ζ(0) = −1
2 (correct value)

Theorem (Ono-Rolen-S, 2017)

For N ≥ 1: ζP({2N}k) = π2Nk × rational number
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Partition zeta functions: nice family

Theorem (Ono-Rolen-S., 2017)
Some other partition zeta fctns. contin. to right half-plane.

Natural questions

General ζP({s}k)? Analytic continuation? Poles? Roots?
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Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)

For Re(s) > 1:

ζP({s}k) =
∑
λ`k

ζ(s)m1ζ(2s)m2ζ(3s)m3 · · · ζ(ks)mk

N(λ) m1! m2! m3! · · · mk !

sum over partitions λ of size k on RHS
inherits continuation from ζ(s)
poles at s = 1,1/2,1/3,1/4, ...,1/k
trivial roots at s ∈ −2N

Note: ζP({s}k) not zero at roots of ζ(s) for k > 1
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MacMahon-partition zeta correspondence

Proof mimics Sills’ combinatorial proof (2019) of
MacMahon’s partial fraction decomposition...

MacMahon’s partial fraction decomposition
For |q| < 1:

k∏
n=1

(1− qn)−1 =
∑
λ`k

(1− q2)−m2 · · · qkmk (1− qk)−mk

N(λ) m1! m2! · · · mk !

Although here we really want to use...
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MacMahon-partition zeta correspondence

MacMahon’s partial fraction decomposition times qk

qk
k∏

n=1

(1− qn)−1 =
∑
`(λ)=k

q|λ|

=
∑
λ`k

qm1(1− q)−m1 · q2m2(1− q2)−m2 · · · qkmk (1− qk)−mk

N(λ) m1! m2! · · · mk !

LHS generates all partitions with largest part k
Conjugation→ also gen. partitions w/ length k
RHS = comb. geom. series over partitions of size k
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MacMahon-partition zeta correspondence

MacMahon’s partial fraction decomposition times qk

qk
k∏

n=1

(1− qn)−1 =
∑
`(λ)=k

q|λ|

=
∑
λ`k

qm1(1− q)−m1 · q2m2(1− q2)−m2 · · · qkmk (1− qk)−mk

N(λ) m1! m2! · · · mk !

Compare and contrast

ζP({s}k) =
∑
`(λ)=k

N(λ)−s =
∑
λ`k

ζ(s)m1ζ(2s)m2 · · · ζ(ks)mk

N(λ) m1! m2! · · · mk !
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MacMahon-partition zeta correspondence

Gen fctn component Analogous zeta fctn component
q|λ| N(λ)−s

qj

1−qj ζ(js)
qk∏k

j=1(1−qj )
ζP({s}k)

Multiplication of terms of either shape qn or n−s generates
partitions in exactly the same way:

qλ1qλ2qλ3 · · · qλr = q|λ| ←→ λ−s
1 λ−s

2 λ−s
3 · · ·λ

−s
r = N (λ)−s
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MacMahon-partition zeta correspondence

Gen fctn component Analogous zeta fctn component
q|λ| N(λ)−s

qj

1−qj ζ(js)
qk∏k

j=1(1−qj )
ζP({s}k)

The term q jn in geom series
∑∞

n=1 q jn and resp. term n−js

of ζ(js) both encode partition (n)j := (n,n, ...,n) (j times):

q j

1− q j =
∞∑

n=1

q|(n)
j | ←→ ζ(js) =

∞∑
n=1

N
(
(n)j)−s

.
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MacMahon-partition zeta correspondence

Geometric series-zeta function duality

Correspondence says qj

1−qj and ζ(js) are interchangeable
as gen fctns for partitions (n,n, . . . ,n) (j reps / same part).
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Multiplicative theory of (additive) partitions

Applications

New combinatorial bijections
Computing coefficients of q-series, mock mod. forms
Statistical physics
Computational chemistry
Computing arithmetic densities
Computing π (quite inefficiently, to boot!)
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Application: arithmetic densities

Definition
The arithmetic density of a subset S ⊆ Z+ is

lim
N→∞

#{n ∈ S | n ≤ N}
N

,

if the limit exists.

Examples
Integers ≡ r (mod t) have density 1/t
Square-free integers have density 6/π2 = 1/ζ(2)
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Application: arithmetic densities

Classical computation

Well-known relation between arithmetic density and
zeta-type sums
If a subset T ⊆ P has arith. density in P, its density is
equal to the Dirichlet density of T

lim
s→1

∑
p∈T p−s∑
p∈P p−s
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Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)

The arith. density of integers ≡ r mod t is equal to

− lim
q→1

∑
λ∈P

sm(λ)≡r(mod t)

µP(λ)q|λ| =
1
t
.

“sm” is the smallest part of λ
extends work of Alladi (1977), Locus Dawsey (2017)
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Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)

The arith. density of k th power-free integers is equal to

− lim
q→1

∑
λ∈P

sm(λ) k th power-free

µP(λ)q|λ| =
1

ζ(k)
.

Proofs
q-binomial thm + partition bijection + complex analysis
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Application: arithmetic densities
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Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)
For dS arith. density of a q-commensurate subset S ⊆ N:

− lim
q→1

∑
λ∈P

sm(λ)∈S

µP(λ)q|λ| = dS.

More generally, for a(λ) with certain analytic conditions:

− lim
q→1

∑
sm(λ)∈S

(µP ∗ a)(λ)
ϕ (sm(λ))

q|λ| = dS.

here ∗ is partition convolution, ϕ(n) classical phi
second formula extends work of Wang (2020)
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Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)
Proof requires a new theory of q-series density
computations based on “q-density” statistic.:

dS(q) :=

∑
sm(λ)∈S q|λ|∑

λ q|λ|
= (1− q)

∑
sm(λ)∈S

q|λ|.

Natural number n Partition λ
Prime factors of n Parts of λ

Square-free integers Partitions into distinct parts
µ(n) µP(λ)
ϕ(n) ϕP(λ)

pmin(n) sm(λ)
pmax(n) lg(λ)

n−s q|λ|

ζ(s)−1 (q;q)∞
s → 1 q → 1
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Partition-theoretic multiverse

Philosophy of this talk (again)
Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory
→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers

Work in progress
With Akande, Beckwith, Dawsey, Hendon, Jameson, Just,
Ono, Rolen, M. Schneider, Sellers, Sills, Wagner, ... you?
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Gratitude

Thank you for listening :)
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