
NEW DIRECTIONS

RALPH MCKENZIE

A variety is called finitely decidable (FD for short) iff the class of all its finite
models has decidable first-order theory. A variety is called ω-structured iff the class
of its finite models does not semantically embed the class of all finite graphs. Finite
decidability implies ω-structured. P. Idziak [1] found a small collection of structural
properties of algebras that hold in the finite algebras of an ω-structured variety.
He proved that for finitely generated varieties omitting type 1, these properties
together with a further property concerning a derived variety of modules over a
finite ring, form a necessary and sufficient set of conditions for finite decidability.
We seek to obtain a similar result that applies to all finitely generated varieties.
In this paper, we are seeking new structural implications of ω-structuredness. This
has been an ongoing project, pursued by a number of researchers, since about 1992.

1. An Example (the little diamond)

Before beginning the main work of this paper, we present here a three-element al-
gebra that is simple of type 3 (polynomially, it is primal), generates an FD variety,
and such that every two-element subalgebra is trivial (all operations are projec-
tions). This solves a question we were asking at CRAW16 in Nashville: Can a
finite algebra omitting type 1, belonging to an ω-structured variety, possess a sub-
algebra that has type 1? Answer: Yes. Thus the example rules out what we hoped
would be a further new consequence of ω-structuredness.

We put A = 〈A, f〉 = 〈{0, 1, 2}, f(x1, . . . , x6)〉 where

f(x1, x2, x3, x4, x5, x6) = x1 if |{x1, x2, x3}| < 3

= x6 if {x1, x2, x3} = {0, 1, 2} and x4 = x5

= x4 if {x1, x2, x3} = {0, 1, 2} and x4 6= x5 .

I claim that every finite B ∈ V = V (A) is isomorphic to some S × Ak where
S |= f(x̄) = x1. Finite decidability of V easily follows. Clearly, A has the ternary
discriminator as a polynomial, so is functionally complete, simple, and of type 3.
Every two elements of A constitute a trivial two-element algebra.

2. Summary of results proved below

Our readers need to be very familiar with tame congruence theory. There is a
large literature on that subject, but everything we use can be found in D. Hobby,
R. McKenzie [1]. All algebras are finite and belong to an ω-structured variety V.
Given a finite algebra A in this variety, we have the congruences θ1, θ2, θ3 which
are, respectively, the largest strongly solvable congruence (or the largest congruence
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α such that typ[0A, α] ⊆ {1}), the largest congruence α such that typ[0A, α] ⊆ {2},
and the largest congruence α such that typ[0A, α] ⊆ {3}. The existence of θ1 is
proved for every finite algebra in [1]. The existence of θ2 and θ3 for finite algebras
in an ω-structured variety will be proved in this paper. As we shall see, the algebra
B = A/θA1 has a Maltsev polynomial, and θB1 = 0B . Thus congruences of A above
θ1 permute in relation product. The chief feature of this paper is to reveal that
there are many pairs of congruences lower down in the congruence lattice that are
forced to permute if ω-structuredness holds.

We shall show that if α, β are congruences with α ≤ θi and β ≤ θj and 3 ∈ {i, j},
then α and β permute—α ◦ β = β ◦ α = α ∨ β. We conjecture that this is true
for {i, j} = {1, 2}, and know that it is not always true for {i, j} = {1, 1}. Using
Theorem 6.1 and some other results proved in this paper, it can be proved that if
this permutability holds for {i, j} = {1, 2} then it holds for {i, j} = {2, 2}.

Rather amazingly, our results imply that {θ1, θ2, θ3} generate a Boolean sublat-
tice of Con(A) whose atoms are the non-zero members of {θ1, θ2, θ3}.

Besides known results in the published literature on FD varieties, we shall be
using results from an unpublished manuscript of R. McKenzie and M. Smedberg
[3]. Here are the results from all sources, that we shall use; they were all known by
2010. Assume that V is an ω-structured variety. The only tame congruence types
of coverings in the congruence lattices of finite algebras in V are types 1, 2, 3, and
if α ≺ β in Con(A) and the type of the covering is 2 or 3 then the (α, β)-minimal
sets have no tails. The (1, 2), (2, 1), (3, 1) and (3, 2) transfer principles hold. We
have that on any finite A ∈ V, θ1 ∨ θ2 is the largest solvable congruence of A
and it is an Abelian congruence, while θ1 is strongly Abelian. If V is generated
by one finite algebra then there are only finitely many non-isomorphic subdirectly
irreducible algebras in V, all of them finite. The type of a finite SI algebra in V
is defined to be the type of its monolith. If S is such an algebra and its type is
3 then the congruence lattice is a chain of type 3 covers and θ1 = θ2 = 0A. If
the type of S is 2 then in S, θ2 is the centralizer of the monolith; it is an Abelian
congruence comparable to all congruences and the congruences not below θ2 form
a chain of type 3 covers. In this case, θ1 = θ3 = 0A. The SI algebras of types 2 and
3 have Maltsev polynomials. If S is an SI of type 1 then θ1 is the centralizer of the
monolith and it is a strongly Abelian congruence. In this type, θ2 = θ3 = 0A, and
again θ1 is comparable to all congruences and the congruences not below θ1 form
a chain of type 3 covers. Every solvable congruence in any finite algebra of V is
Abelian, and strongly solvable congruences are strongly Abelian.

The stated facts about type 1 SI’s and the fact that strongly solvable congru-
ences are strongly Abelian were proved apparently for the first time in McKenzie-
Smedberg, and as noted there, all the other results mentioned (with the possible
exception of the existence of a Maltsev polynomial for A/θ1 for every finite A in
V) had been proved earlier by some subset of R. Willard, M. Valeriote, K. Kearnes,
J. Jeong, P. Idziak and D. Delic.

3. Some preliminary results

Theorem 3.1. Let A be a finite algebra in an ω-structured locally finite variety.
A has a polynomial operation p(x, y, z) such that

p(x, x, y) ≡θ1 y ≡θ1 p(y, x, x)
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for all x, y ∈ A–i.e., p becomes a Maltsev polynomial in A/θ1.

Proof. Using what we know, it is easy to see that the algebra A/θ1 augmented by
all constants generates an ω-structured variety that omits type 1. (This uses the
fact that θ1 is a first order definable relation in A.) Hence it has a Maltsev term.

•

Theorem 3.2. Let A be a finite algebra in an ω-structured locally finite variety.
Then A has a polynomial function J satisfying J(x) ≡θ1 x and x ≡θ1 y implies
J(x) = J(y), for all x, y. Thus J is the projection onto a transversal of the θ1
equivalence classes. We have x ≡θ1 y iff J(x) = J(y).

Proof. We use the polynomial p(x, y, z) provided by Theorem 3.1. Let f(x) be a
polynomial satisfying f(x) ≡θ1 x for all x having minimal range for such a poly-
nomial. We can assume that f(f(x)) = f(x) for all x. Consider the operation
f(p(f(x), f(y), f(z)) = q(x, y, z). We can iterate q(x, x, z) as a function of z to
get a polynomial b(x, z) satisfying b(x, b(x, z)) = b(x, z) for all x, z and such that
where q′(x, y, z) = q(x, x, q(x, x, · · · , q(x, x, q(x, y, z)) with the appropriate number
of iterations, we have that q′(x, y, z) ≡θ1 q(x, y, z) and q′(x, x, z) = b(x, z), and so

q′(x, x, q′(x, x, z)) = q′(x, x, z) ≡θ1 z
. We claim that for all x, z ∈ f(A), q′(x, x, z) = z. If this fails, for some
(x, z) = (a, b) then b and q′(a, a, b) = c are distinct elements of f(A) such that
where g(t) = q′(a, a, t), gf is a function with range properly contained in the
range of f , and satisfying gf(x) ≡θ1 x for all x. This contradicts our choice
of f . Starting with q′ in place of q, we get q′′(x, y, z) ≡θ1 p(x, y, z) such that
q′′(y, x, x) = q′′(q′′(y, x, x), x, x), and q′′(x, x, y) = y for all x, y ∈ f(A). We con-
clude that q′′ is Maltsev acting on f(A). The Maltsev equations imply that f(A)
contains no two distinct θ1 congruent elements. Thus this f(x) has the desired
properties of J(x). •

Lemma 3.3. The algebra A|J(A) is polynomially equivalent to an algebra of the
same signature as A that is isomorphic to A/θ1.

Proof. For each basic operation F (x̄) of A, let F J(x̄) be the operation J(F (x̄))
restricted to J(A) Write J(A) for the algebra 〈J(A), F J(F basic for A)〉. It is
easy to see that the polynomial operations of J(A) are precisely the operations
of the form GJ where G is any polynomial operation of A. Thus J(A) is an
algebra in the signature of A that is polynomially equivalent to A|J(A) (which in
Hobby-McKenzie is defined to be the set J(A) supplied with the restrictions of all
polynomials of A under which J(A) is closed). The reader can verify that mapping
a/θ1 to J(a) establishes the desired isomorphism. •

Lemma 3.4. Let A be a finite algebra in an ω-structured variety. Suppose that
0 ≺1 α and 0 ≺3 β are minimal congruences. If M is an (0, α)-minimal set, then

(α ∨ β)|M = α|M ∪ β|M
.

Proof. Suppose not. Then there are a, b, b′ in M such that a 6= b 6= b′ and b ≡α b′
a ≡β b. Obviously, a 6= b′ for that would imply (a, b) ∈ α ∧ β = 0A. We choose
an idempotent polynomial δ1 with δ1(A) = M . There are β-traces, i.e., β-minimal
sets, {a0, a1}, {a1, a2}, . . . {an−1, an} such that a0 = a and an = b. Now the
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sets {δ1(a0), δ1(a1)}, . . . {δ1(an−1), δ1(an)} connect a to b and each of these sets is
either a singleton or a β-minimal set. Hence there exists ā ∈M such that {ā, b} is a
β-minimal set. Since β∩α = 0A, then ā, b, b′ are three distinct elements. Changing
notation, we have a, b, b′ ∈M such that {a, b} = V is a β-minimal set and {b, b′} is
an α-subtrace. We can choose an idempotent polynomial δ2 so that δ2(A) = {a, b}.

We can now semantically embed into the variety generated by A a family of finite
simple graphs that in turn semantically embeds the class of all finite simple graphs.
This will contradict the assumption that A lies in an ω-structured variety. The
family of graphs we use consists of all finite simple graphs without loops, having
at least five elements, and such that every vertex has degree at least two. In this
construction, and two analogous ones later in the paper, when we have sets A,X,
{c, d} ⊆ A and {x}∪U ⊆ X, we use [c, d]U to denote the member of AX that maps
x to d if x ∈ U and maps x to c otherwise. [c, d]x denotes [c, d]{x}.

Let G = (X,E) be a finite graph satisfying the above stated restrictions. Let
x0, y0 be two distinct elements outside of X. Put Y = X ∪ {x0, y0}. We take

A(G) to be the subalgebra of AY generated by all the constant functions together
with, for all e = {x, y} ∈ E, the functions fe such that fe|X = [a, b′]{x,y}, while
fe(x0) = a and fe(y0) = b.

We can recover G from A(G) as follows. Since α ∩ β = 0A, and δ2(b) = b,
it follows that δ2(b′) = b (as the other possibility, δ2(b′) = a would put (a, b) ∈
α∩β). Now A|{a,b} is a two-element Boolean algebra, under operations induced by

polynomial operations of A. Then it is easy to see that A(G) includes {a, b}Y . The
set X of all functions fx = [a, b]{x,y0} (x ∈ X is definable in A(G); and the relation
consisting of all triples (fx, fy, fx,y) where x 6= y in X and fx,y = [a, b]x,y,y0 is
definable, too. (In these definitions, we need to use the |A|many constant functions,
and the functions [a, b]y0 and [a, b]x0

as parameters.)

We define E to be the set of all pairs {fx, fy}, x 6= y, such that there exists
h ∈ A(G) with J(h) = J(fx,y), δ1(h) = h, and such that for no β-minimal set

{u, v} = q(A) (q = q ◦ q) is h = q(h). It is now up to us to prove that (X,E) is
isomorphic to the graph G.

First, if {x, y} = e ∈ E then the generator fe is a witness h to the fact that
{fx, fy} ∈ E. In fact, J(fe) = J(fx,y) since J(b) = J(b′). (The polynomial J was
introduced in Theorem 3.2.) Moreover, if we had fe ∈ {u, v}Y where {u, v} is a
β-minimal set, it would follow that (b, b′) ∈ β, which is false.

Now for the hard part, suppose that x, y are two elements of X and h ∈ A(G)
witnesses that {fx, fy} ∈ E. Letting f1, . . . , fm be a one-to-one list of the non-
constant generators fe (e ∈ E) of A(G), it follows that there is a polynomial
s(x1, . . . , xm) such that s = δ1s and s(f1, . . . , fm) = h.

For e ∈ E let, ge(t) = a for t = x0, ge(t) = fe(t) = b′ for t ∈ e, and ge(t) = b else-
where in Y . Thus ge = fe except at t ∈ X \e where ge(t) = b and fe(t) = a. Notice
that ge is congruent modulo β to fe everywhere and ge|Y \{x0} ∈ {b, b′}X∪{y0}. For
1 ≤ i ≤ m put gi = gei where fi = fei .

We claim that g = s(g1, . . . gm) restricted to X∪{y0} is not constant (we are not
claiming that this function belongs to A(G)). To prove the claim, suppose that g is
constant on this range, so that the constant value is b̄ = s(b, . . . , b) = h(y0) = g(y0).
Let ā = h(x0) = s(a, . . . , a). Note that hβg, i.e., h(t)βg(t) for all t ∈ Y . We have
that {ā, b̄} is a polynomial image of {a, b} and ā θ1 a and b̄ θ1 b since J(h) = J(fx,y).
Thus ā 6= b̄ and consequently {ā, b̄} is a β-minimal set.
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For t ∈ X \ {x, y}, we have

h(t)β g(t) = b̄ β ā ,

and
h(t) θ1 a θ1 ā ;

implying h(t) = ā. For t ∈ {x, y}, we have that h(t)β g(t) = b̄ and h(t)θ1b̄ so
h(t) = b̄. We conclude that j′(h) = h where j′ is an idempotent polynomial
projection onto the β-minimal set {ā, b̄}. This is a contradiction to one condition
in our definition of E.

Thus g restricted to X ∪ {y0} is not constant. Since α is strongly Abelian and s
restricted to {b, b′}X∪{x0)} is mapping into M , it depends on precisely one variable,
and without loss of generality, just on the last variable. Hence g agrees on X ∪{y0}
with τ(gm) where τ(z) = s(z, . . . , z) and τ(b) = b̄, τ(b′) = b̄′ say, and b̄ 6= b̄′. Thus
τ is a polynomial permutation of M . We have, of course, that τ(a) = ā. Now say
fm = fem , so that g = [b̄, b̄′]em on X and takes the values ā, b̄ at x0, y0.

I claim that {x, y} = em so that {x, y} ∈ E as we hoped. Suppose that this fails.
Then we can suppose that x 6∈ em. Then h takes value b̄ at x, as g(x) = b̄ and the
two values at x are in the relation β ∩ θ1.

Let us re-order e1, . . . , em−1 (and f1, . . . , fm−1) so that changing notation, the se-
quence f1(x), . . . , fm(x) is r̄1r̄2a where r̄1 is a sequence of k many a’s, r̄2 is an itera-
tion of b′ ` times and a = fm(x). Define a polynomial u(z) = s(z, . . . , z, b′, . . . , b′, z)
with k initial occurences of x and ` adjacent occurences of b. Now u maps M into
M . We have that u(a) = h(x) = g(x) = u(b) (= b̄). But u(b′) = b̄′ because this
depends only on the last entry and thus equals τ(b′). This polynomial u contradicts
the most basic property of an α-minimal set. Namely, u is a polynomial self-map of
M that does not collapse α, but is not a permutation. The contradiction establishes
that {x, y} = em ∈ E, as desired. •

4. Towards permutability, under θ1, θ3

This whole section constitutes our proof of the theorem below.

Theorem 4.1. Let A be a finite algebra in an ω-structured variety. Suppose that
0 ≺1 α and 0 ≺3 β are minimal congruences. Let V = {a, b} be a β-minimal
set, U be a α-minimal set containing b, and N = b/α ∩M . Finally, suppose that
b′ ∈ N \ {b} so that N is an α-trace. Then there must exist an α-minimal set U ′

containing a trace N ′ with a ∈ N ′, and an element a′ ∈ N ′ such that {a′, b′} is a
β-minimal set.

We suppose that A, α, β, U , N and a, b, b′ are given as above and that such an
element a′ does not exist; and we hold these elements, congruences and sets fixed
throughout §4. We choose δ1 and δ2 to be idempotent polynomials projecting A
onto U and onto V = {a, b} respectively. We use the construction of Lemma 3.4
to semantically embed into the class of finite subdirect powers of A the class of all
finite graphs with at least five elements, without loops, and in which every vertex
has degree larger than 1. This will contradict the ω-structuredness.

Let G = (X,E) be such a graph. Let x0, y0 be two distinct elements outside of

X. Put Y = X ∪ {x0, y0}. We take A(G) to be the subalgebra of AY generated
by all the constant functions together with, for all e = {x, y} ∈ E, the functions fe
such that fe|X = [a, b′]{x,y}, while fe(x0) = a and fe(y0) = b.



6 RALPH MCKENZIE

By “definable in A(G)” we shall mean, in this section, first-order definable using
the constant functions and the functions [a, b]y0 and [a, b]x0

as parameters. We note
that α restricted to V = {a, b} is the identity function, hence δ2(b′) = δ2(b) = b
while δ2(a) = a. Thus for e ∈ E, δ2(fe) = [a, b]{y0}∪e. Also, δ1(a) = b = δ1(b) while
δ1(b′) = b′. This follows from Lemma 3.4. Thus δ1(fe) = [b, b′]e = ge. We shall
need these functions ge ∈ A(G) several times, as in we did in the proof of Lemma
3.4.

Lemma 4.2. (1) The set of all functions f ∈ AY such that

for all y, y′ ∈ Y, f(y)α ◦ β ◦ α f(y′)

is an algebra and A(G) is a subalgebra of this algebra. Thus if f ∈ A(G)
and f(y)θ1f(y′) then f(y)αf(y′).

(2) If K = {c, d} is any β-minimal set then A(G)∩KY is a definable subset of
A(G). Likewise, for any α-minimal set L, the set A(G) ∩ LY is definable
in A(G).

(3) A(G) ∩ (a/θ1 ∪ b/θ1)Y is a definable subset of A(G).

Proof. For (1), note that (α ◦ β ◦ α) ∩ θ1 = α, since if

x0 αx1 β x2 αx3 θ1 x0 ,

then α ⊆ θ1 implies x1θ1x2 yielding x1 = x2 because β ∩ θ1 = 0A. But then
obviously, (x0, x3) ∈ α.

For (2), for either set Q = K or Q = L there is a polynomial τ such that τ ◦τ = τ
and τ(A) = Q. Then A(G) ∩QY is the set of all f ∈ A(G) satisfying τ(f) = f .

For (3), we use that A(G) ∩ (a/θ1 ∪ b/θ1)Y is the set of all f ∈ A(G) satisfying
J(f) ∈ {J(a), J(b)}Y , and {J(a), J(b)} is a β-minimal set (since {a, b} is a β-
minimal set, and (consequently) (a, b) 6∈ θ1 so that J(a) 6= J(b). •

Now we claim, and prove, that there are two categories of elements in A(G).
The first category consists of functions all of whose values lie in one β-equivalence
class. The second category consists of functions f ∈ A(G) such that for some
unary polynomial p, δ1p(f) = r is non-constant while J(r) is constant. If f is of
the second category as witnessed by p, then all values of δ1p(f) are θ1 equivalent,
two distinct values cannot be β-equivalent, and so f cannot be of the first category.
We note that it follows from Lemma 4.2 (1), that in this case, all values of δ1p(f)
lie in one α-trace inside U .

To prove the claim, that every member of A(G) is either category 1 or category
2, let f ∈ A(G). We can write f = t(f1, . . . , fm) where fi = fei and e1, . . . , em
is a one-to-one list of all the members of E, and t is some polynomial operation.
We can consider f as the result of applying t to the rows of an |Y | × m matrix
whose columns are f1, . . . , fm. All entries in this matrix are coming from {a, b, b′}
and so they are all congruent modulo α ∨ β. Now α centralizes α since it is an
Abelian congruence, and β contralizes α because α ∧ β = 0A. Consequently, α ∨ β
centralizes α. Thus if

t(w1, . . . , wi−1, b, wi+1, . . . , wm) = t(w1, . . . , wi−1, b
′, wi+1, . . . , wm)

for some {w1, . . . , wm} ⊆ {a, b, b′} then

t(z1, . . . , zi−1, b, zi+1, . . . , zm) = t(z1, . . . , zi−1, b
′, zi+1, . . . , zm)
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for all {z1, . . . , zm} ⊆ {a, b, b′}. We say in this case that restricted to {a, b, b′}, t
has no U -dependence at variable i. t does have U -dependence at variable i if and
only if

t(b, . . . , b, b′, b . . . , b) 6= t(b, . . . , b, b, b . . . , b)

where the lone b′ sits at place i.
Now if t has U -dependence at no variables then f = t(δ2(f1), . . . , δ2(fm)), and

this obviously implies that all values of f are β-equivalent to f(y0) = t(b, . . . , b).
Thus f has category 1. On the other hand, if t does have U -dependence at some
variable i, then there is a polynomial p mapping the two unequal but α-equivalent
elements in the last displayed formula above, into U = δ1(A), such that p = δ1p
maps t(b, . . . , b) to a member of an α-trace in U . Since the function pt(z1, . . . , zm)
restricted to mapping {b, b′}m into U is essentially unary (a consequence of the fact
that 0A ≺1 α), it depends on just the i’th variable. Replacing a by b everywhere it
occurs in the matrix exhibiting the production of f from f1, . . . , fm, and using the
essential unary character of pt restricted to {b, b′}m, pf is in U and β-equivalent
either to pt(b, . . . , b) or to pt(b, . . . , b, b′, b, . . . , b). Then it follows by Lemma 3.4
that every value is equal to one of these two. In fact, where, gi = δ1(fi) again,
this shows that pf = pt̂(gi) where i is the chosen variable of U -dependence, and
t̂(z) = t(z, . . . , z) is a unary polynomial. Clearly, J(δ1p(f)) is constant since α ⊆ θ1.
Thus f is of category 2 in this case.

Lemma 4.3. The subsets of A(G) consisting of category 1 (respectively category
2) functions are definable.

Proof. Clearly, category 2 is definable. Since, as we have shown, category 1 is the
set-complement of category 2 in A(G), it follows that category 1 is definable. •

Definition 4.4. For f, g ∈ UY , we write f ∼ g iff there is a polynomial q such
that q(U) = U and q(f) = g. Note that in this case, some power of q maps U
onto U inverting the action of q on U , and so g ∼ f . This binary relation is
an equivalence relation on UY and restricted to A(G), is a definable equivalence
relation on A(G) ∩ UY .

Recall that for an edge e ∈ E we have δ1(fe) = [b, b′]e = ge. The collection of all
functions f ∈ A(G) such that f = δ1(f) and f ∼ ge for some e ∈ E we denote by
∆E .

Corollary 4.5. ∆E is definable, in fact, it is the collection of all functions f ∈
A(G) such that f = δ1(f) ∼ p(f ′) for some f ′ ∈ A(G) and polynomial p witnessing
that f ′ is of the second category.

Note that if p witnesses that f is of the second category, then the argument
before Lemma 4.3 effectively showed that p(f) ∈ ∆E .

Observe that the set X of all functions fx = [a, b]{x,y0} (x ∈ X) is definable in
A(G); and the relation consisting of all triples (fx, fy, fx,y) where x 6= y in X and
fx,y = [a, b]x,y,y0 is definable, too. (In these definitions, we need to use the |A|
many constant functions, and the functions [a, b]y0 and [a, b]x0 as parameters.)

Definition 4.6. Consider these possible properties of a function f ∈ A(G).

(i): f = δ1(f);
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(ii): f is not a constant function;
(iii): J(f) is constant;
(iv): δ1(f) satisfies (i)–(iii), and for any unary polynomial p such that δ1p(f)

satisfies (i)–(iii) we have δ1p(f) = δ1p(δ1(f)) ∼ δ1(f).

We now define the set Γ. It is the set consisting of all f ∈ A(G) such that

J(f) = [J(a), J(b)]y0,x,y

for some x 6= y in X, and f satisfies (iv)

We have seen that the functions f of the second category are defined by the
existence of a polynomial p so that δ1p(f) satisfies (i)–(iii). Thus Γ is a subset
of the set of functions of the second category. Let us note that for f ∈ Γ with
J(f) = [J(a), J(b)]y0,x,y, we have that δ2(f) = [a, b]y0,x,y. In general, the first of
these conditions is stronger than the second.

Outline of the remainder of the proof of Theorem 4.1. We have a bijection x 7→
fx = [a, b]x,y0 between X and a definable set X in A(G). We need to show that

the relation E over X which consists of all pairs (fx, fy) such that {x, y} ∈ E, is
definable. The ternary relation consisting of all triples (fx, fy, fx,y) with {x, y} a
two-element subset of X is definable. Thus it will suffice to show that the set of
functions fx,y ({x, y} ∈ E) is definable. This is exactly the set of functions δ2(f)
where f = fe is one of our generators.

We will show first that the generators belong to Γ, then define a property, “the
bad property”. We will define f ∈ Γ to be good if it fails to have the bad property.
We will prove that the generators are good; and that if f ∈ Γ is good, then δ2(f) =
δ2(f ′) where f ′ is a generator. Thus we will have that the set of functions [a, b]e∪{y0}
(e ∈ E) is precisely the set of δ2(f) where f belongs to Γ and is good. This fact
will obviously establish that E is definable, as desired.

Lemma 4.7. (1) Every function fe (e ∈ E) belongs to Γ, and δ1(fe) ∈ ∆E.
(2) If f ∈ Γ, then δ1(f) ∼ ge for some e ∈ E.

Proof. (1) is very easy, using the fact, from Hobby-McKenzie [1], that every poly-
nomial map from U to itself that doesn’t identify b and b′ is a permutation of U
and has a polynomial inverse. (2) is established in Corollary 4.5. •

Now we need to more precisely analyze the form of functions in Γ.

Lemma 4.8. Let f ∈ Γ, f = t(f1, . . . , fm) where f1, . . . , fm are the non-constant
generators fe.

(1) t(z1, . . . , zm) has dependence on U at zi for precisely one i.
(2) Defining

fβ = t(δ2(f1), . . . , δ2(fm)) (mod α) and

fα = t(δ1(f1), . . . , δ1(fm)) (mod β) ,

we have that fβ ≡α f ≡β fα. This means that fβ(z) ≡ f(z) (mod α) for
all z ∈ Y and that fα(z) ≡ f(z) (mod β) for all z ∈ Y .

(3) Where δ2(f) = [a, b]x,y,y0 , and (ā, b̄) = (f(x0), f(y0)) , we have fβ =
[ā, b̄]x,y,y0 . Moreover, δ2(fβ) = δ2(f); the set {ā, b̄} is a β-minimal set;
and δ1(fα) = δ1(f).
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(4) The values of f on {x, y, y0} are all α-equivalent, and likewise, f is constant
modulo α on (X \ {x, y}) ∪ {y0}.

Proof. To prove (1), suppose that t has dependence on U at zi. Then

t(b, . . . , b, b′, b, . . . , b) 6= t̂(b)

with the b′ being substituted on the left for zi. By tame congruence theory (Hobby-
McKenzie [1]), we get a unary polynomial p = δ1p such that p maps the two unequal
but α-equivalent elements to distinct elements of an α-trace in U . Then by Lemma
3.4, p(f) = p(fα) ∼ gi This cannot happen for two values of i since gi 6∼ gi′ when
i 6= i′.

For (2), Since fi(y0) = b for all i then

f(y0) = t̂(b) = t(b, . . . , b) = fβ(y0) = b̄

and likewise

f(y0) = fα(y0) = ā .

{ā, b̄}, the t̂-image of {a, b}, is a β-minimal set, since â θ1 a and b̂ θ1 b.
It should be clear that fβ ≡α f ≡β fα. Since V = {a, b} has no distinct α-related

elements, then δ2(f) = δ2(fβ). For w ∈ {x, y, y0} we have fβ(w)α f(w)α f(y0) = b̄
(by Lemma 4.2 (1) and the fact that J(f) = J([a, b]x,y,y0). Also, fβ(w)βt(b, . . . , b) =
b̄. Thus fβ(w) = b̄. For w ∈ (X \ {x, y}) ∪ {x0}, the same argument proves that
fβ(w) = ā. Thus fβ(w) = [ā, b̄]x,y,y0 .

It follows from Lemma 3.4 and Lemma 4.2 (1), and our assumption that J(δ1(f))
is constant while δ1(f) is not constant, and the fact that f ≡β fα, that δ1(f) =
δ1(fα). This completes the proof of (3).

For z ∈ {x, y} we have f(z)θ1b̄ since J(f) = J([a, b]x,y,y0); so that by Lemma
4.2 (1), we have that f(z) ≡α b̄. By the same token, for z ∈ X \ {x, y} we have
that f(z) ≡α ā. This is (4). •

Lemma 4.9. (1) Let f ∈ Γ, J(f) = [J(a), J(b)]x,y,y0 with {x, y} a two-element
subset of X, and δ1(f) ∼ [b, b′]e, e = {u, v} ∈ E. We have that f agrees
with fβ = [ā, b̄]x,y,y0 except at w ∈ e where {f(w), fβ(w)} is an α-subtrace.
If {x, y} = e then f(x) = f(y). If {x, y} ∩ e = ∅ then f(u) = f(v).

(2) For f ∈ Γ as above, f(u) is α-equivalent to exactly one of f(x0), f(y0), and
the α-pair, either {f(u), f(x0)} or {f(u), f(y0)} is an α-subtrace.

Proof. For (1), let f ∈ Γ. We use the same notation as in the previous lemma. We
have f = t(f1, . . . , fm) where fi are the generators fe and gi = δ1(fi). And we are
writing ā = f(x0) = t̂(a) and b̄ = f(y0) = t̂(b).

We have that the m-ary polynomial δ1(t(x̄)) acting on {b, b′}m and mapping into
U depends on at most one variable, since 0 ≺1 α; actually depends on exactly one
variable since δ1(f) is non-constant. We can assume without loss of generality that
the variable of dependence is the last. Thus δ1(f) = δ1(fα)) = δ1t̂([b, b

′]em) where
δ1t̂ acts as a permutation on U . Hence δ1(f) ∼ [b, b′]em . Say em = {u, v}.

Now assume that z ∈ X \ {x, y, u, v} and f(z) 6= ā. We know that f(z)αā. By
tame congruence theory, there is a polynomial p such that p = δ1p and p(f(z)) 6=
p(f(x0)). By Lemma 3.4, p(f) = p(δ1(f)), and by (iv), p(f) ∼ δ1(f) ∼ [b, b′]u,v; but
this is impossible because p(f) takes distinct values at z and x0. The contradiction
shows that f(z) = f(x0) for z ∈ X \ {x, y, u, v}. The same argument shows that if
em ∩ {x, y} = ∅, then f(x) = f(y) = f(y0) and f(u) = f(v). The argument shows
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also that f(z) = f(y0) if z ∈ {x, y} \ {u, v}. If, say, x 6∈ {u, v} but y = u, then
the argument gives that f(x) = f(y0) but f(y) = f(u) 6= f(y0) since δ1(f) takes
different values at u and y0.

The first assertion in (2) is obvious. Let us assume, without loss of generatlity,
that f(u)αf(y0). We consider f(u) = t(u1, . . . , um−1, fm(u)). We know that f(u) 6=
f(y0). Also, we have fm(u) = b′ and we look at

t(u1, . . . , um−1, b) = fβ(u) = fβ(y0) = f(y0) = b̄ .

We have that {f(u), f(y0)} = {t(u1, . . . , um−1, b′), t(u1, . . . , um−1, b)}, a polynomial
image of {b, b′}, and f(u) 6= f(y0) (else, (f(u), fβ(u) ∈ α ∩ β, which is false). Thus
(3) is proved. •

Definition 4.10. For f ∈ Γ, J(f) takes the value J(b) at precisely three points,
{y0, x, y} where x and y are distinct elements of X. Also δ1(f) = [b̄, b̄′]e takes the
exceptional value b̄′ at precisely two points {u, v} where u, v ∈ X and {u, v, } = e ∈
E. We call f aligned if {x, y} = e, that is, the two patterns match:

e = {x ∈ X : J(f)(x) = J(b)}
.

Note that if f is aligned then {x, y} ∈ E.

We call f ∈ Γ un-aligned if it is not aligned.

We need a definable property that holds for all the generators fe and fails for all
the non-aligned functions in Γ. Call f good if it belongs to Γ and does not have
the property described below. If f has the property, call it bad.

The bad property. A function f ∈ Γ has this property iff there is a polynomial
p of nine variables and an element τ ∈ Γ and elements r1, s1, . . . , r8, s8 ∈ {a, b}Y ,
all of which take value a at x0 such that f = p(r̄, τ) and J(p(s̄, τ)) is the constant
function of value J(a).

Lemma 4.11. If f ∈ Γ is un-aligned, then it has the bad property.

Proof. We return to the context of Lemmas 4.8 and 4.9 and use the notation em-
ployed in their proofs. So we have f ∈ Γ,

f = t(f1, . . . , fm−1, fe) ,

where t(z̄) depends on U only at the last variable zm, fe is one of our generators,
and since t is independent of U at zi for i < m, we can replace each fi by δ2(fi) for
i < m and thus write f = t(h1, . . . , hm−1, fe) with {h1, . . . , hm−1} ⊆ {a, b}Y . We
assume that f is un-aligned, i.e., e 6= {x, y}. There are two cases.

Case 1: e ∩ {x, y} 6= ∅. We can assume that e = {y, v}, v, x, y three distinct
elements. We have, say f(v) = ā′ 6= ā ≡ ā′ (mod α) and f(y) = b̄′ 6= b̄ ≡ b̄′ (mod
α).

Case 2: e ∩ {x, y} = ∅. e = {u, v}. In this case, we have by Lemma 4.9 (2) that
f(u) = f(v) = ā′ say, with ā 6= ā′ ≡ ā (mod α).

We can visualize f as the result of applying t to the rows of a |Y | ×m matrix
where the final column is fe and the first m−1 columns belong to {a, b}Y . We alter
this matrix twice, each time by a system of row-by-row changes in the first m− 1
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columns. In all changes, the last position in a row is unchanged, so altogether,
we are simply replacing one system of m − 1 columns in {a, b}Y by another such
system. In both changes, each z’th row, where f(z) = ā and z 6∈ e gets replaced by
a constant row of a’s. This does not change the last position in the row, where an
a is left standing, and t applied to the new row gives of course the same value ā.
Additionally, in the first change, if e ∩ {x, y} = ∅, we replace the v’th row by the
u’th row and the x’th row by the y’th row. This gives us a system where in the
initial X × (m− 1) matrix there are two constant rows and just two other rows, so
at most four distinct columns among the first m− 1. t applied to the new matrix
also gives f , because we had that f(u) = f(v) and f(x) = f(y) = b̄.

For the second change in this case where e ∩ {x, y} = ∅, we replace the y0’th
row by a row that looks like the vth, but with b in last position, not b′, and we
replace the x’th and y’th rows by the x0’th row, all a’s. By identifying variables
among z1, . . . , zm−1 where both changed matrices have equal columns, we get a five
variable polynomial and by adding dummy variables, a nine variable polynomial
p(z̄, w) with p(r′1, . . . , r

′
8, fe) = f and J(p(s′1, . . . , s

′
8, fe))) = 〈J(a)〉, and where all

r′i, s
′
i belong to {a, b}Y .

In case e = {v, y}, in the first change we just replace the z’th row for every
z ∈ X\{x, y, v} by a constant row of a’s, leaving the x’th, y’th, v’th rows unchanged.
In the second change, we replace the first m − 1 entries in the y0’th row and also
those of the y’th row, by the first m− 1 entries of the v’th row, and all other rows
become constant rows of a’s. This produces a nine variable polynomial p(z̄, w) with
p(r′1, . . . , r

′
8, fe) = f and J(p(s′1, . . . , s

′
8, fe))) = 〈J(a)〉, and where all r′i, s

′
i belong

to {a, b}Y .
This ends our proof that if f is un-aligned then it has the bad property. •

Lemma 4.12. Our chosen generators are good.

Proof. Let f = fe, e = {u, v} ∈ E. We show that f does not have the bad property.
We already know that f ∈ Γ. Suppose, to get a contradiction, that f has the bad
property. Let f = p(r1, . . . , r8, λ) and f† = p(s1, . . . , s8, λ) where λ ∈ Γ and all
the functions r1, . . . , s8 ∈ {a, b}Y ⊆ A(G) take the value a at x0, and J(f†) is
constantly J(a). As we noted above, f† ∈ A(G). By Lemma 4.2 (1), all values of
f† lie in one α-equivalence class. Then since f†(x0) = f(x0) = a, we have that
f†(u)αa. We have that f(u) = b′ α b. Thus it is clear that f(u) and f†(u) are
unequal, and congruent modulo β since rj(u) and sj(u) are congruent modulo β
for 1 ≤ j ≤ 8. In fact, we shall show that {b′, f(u)} is a polynomial image of {a, b},
hence it is a β-minimal set.

Indeed we have f(u) = p(c̄, w) and f†(u) = p(d̄, w) where w = λ(u) and
c̄, d̄ ∈ {a, b}8. Permuting the first 8 variabls in p so that those i where ci = di = a
come first, and then, those where ci = di = b, and then those where ci = a and
di = b, finally those where ci = b and di = a, we get a 5-variable polynomial
p′ such that f(u) = p′(a, b, a, b, w), f†(u) = p′(a, b, b, a, w). Let ι be a polyno-
mial such that ι(a) = b and ι(b) = a. (A|{a,b} is a Boolean algebra). Then put

p′′(x) = p′(a, b, x, ι(x), w). One sees that p′′(a) = f(u), while p′′(b) = f†(u). Thus
{b′, f†(u)} is a β-minimal set.
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We know that {a, f†(u)} ⊆ α. We need to show that this set is actually an
α-subtrace. Since δ1(f) = [b, b′u,v, it follows by Lemma 3.4 that

δ1(f) = δ1p(b, . . . , b, λ) = δ1p(s1, . . . , sr, λ) = δ1f
†) .

Thus δ1(f†) = δ1(f). Then by Lemma 4.9 (2), exactly one of {λ(u), λ(x0)},
λ(u), λ(y0)} is a subtrace. The remainder of our proof is almost the same in the
two cases, so we assume that {λ(u), λ(y0)} is the α-subtrace. Consider the element

c = p(s1(u), . . . , s8(u), λ(y0)) .

We claim that c = f†(y0). We know that (λ(u), λ(y0)) ∈ α. Thus (c, f†(y0) ∈
α ∩ β) and the claim follows. Next we claim that f†(y0) = a. Indeed f†(x0) =
f(x0) = a since ri(x0) = a = si(x0) for all i. Moreover, (λ(x0), λ(y0)) ∈ β so that
(f†(y0), f†(x0)) ∈ β ∩ α, establishing this claim. Putting two claims together, we
get that

{a, f†(u)} =
{
p(s(u), λ(y0)), p(s(u), λ(u))

}
,

a polynomial image of λ(y0), λ(u)). Thus by Lemma 4.9 (2), the two elements
constitute an α-subtrace unless they are equal. But equality of these elements
implies that (b′, a) ∈ β, which in turn implies (b′, b) ∈ β, which is definitely false.

Our starting assumption as we began the proof of Theorem 4.1 was that no such
element as f†(u) exists. This contradiction proves that f = fe is good. It is aligned
by definition. •

Now every function fe is of the form δ2(f) for some good f ∈ Γ; and it follows
that {x, y} ∈ E (where x 6= y, {x, y} ⊆ X, the function [a, b]x,y,y0 is δ2(f) for some
good f ∈ Γ.

The remaining details of demonstrating that we have a semantic embedding of
the class G of graphs into the finite subdirect powers of A are just the same as in
the proof of Lemma 3.4 and will be omitted.

We have now contradicted our assumption that A belongs to an ω-structured
variety, and this completes our proof of Theorem 4.1.

5. Interaction of type 1 and type 2 minimal sets

This section is the beginning of an attempt to prove that α and β permute
whenever α ≤ θ1 and β ≤ θ2, which would imply also that any two congruences
contained in θ2 permute. It seems it would also imply that any ω-structured Abelian
variety is the varietal product of a type 1 variety with a type 2 variety. So far, all
I have is the theorem below.

Theorem 5.1. Let A be a finite algebra in an ω-structured variety. Suppose that
0 ≺1 α and 0 ≺2 β are minimal congruences. If U is an (0, α)-minimal set, then

(α ∨ β)|U = α|U ∪ β|U
.

Proof. We prove this with a modification of a construction that was used in Hobby,
McKenzie [2] (Chapter 10) to prove Lemma 8.4 in that book. In Hobby, McKenzie
[2] there was the extra assumption that A is Abelian, which we do not assume.

For the construction, assume that α, β, U are as in the statement of the lemma.
Let M be an α-trace contained in U , and let 0, 0′, 1 be elements such that {0, 0′} ⊆
M , 0 6= 0′, and {0, 1} ∈ β, 0 6= 1. Let δ1 be an idempotent polynomial projecting
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A onto U . Since β classes are connected by their traces and e1(0) = 0, e1(1) = 1,
there is a chain 0 = a0 = δ1(b0), a1 = δ1(b1), . . . , an = δ1(bn) = 1 where each set
{bi, bi+1} is a β-subtrace. Since 1 6= 0, there is an i so that 0 = ai 6= ai+1. Now δ1
restricted to a (0A, β)-minimal set containing {bi, bi+1} does not collapse β to 0A
in that set, so it follows that e1 restricted to that set is a polynomial isomorphism,
and thus there is a (0A, β)-minimal set V ⊆ U having trace N with 0, c ∈ N for
some c 6= 0. we change notation so that 0, 1 ∈ N . Since α ∩ β = 0A, the elements
0′, 0, 1 are all distinct. Let δ2 be an idempotent polynomial projecting A onto V .

After defining the construction, we will show that it serves to semantically embed
the class G of all finite simple graphs without loops and with at least three vertices,
into the class of finite subdirect powers of A. This contradicts our assumption that
A lies in an ω-structured variety. The contradiction proves the theorem.

So let G ∈ G, G = (G,E). Let X = G ∪ {p1, p2, p3, p4} where p1, p2, p3, p4 are
distinct points outside G. We define some elements of AX .

For v ∈ G, let fv : X → {0, 0′, 1} be defined as

fv(x) =

 0′ if x = p2
1 if x = v
0 otherwise,


and for e ∈ E and i = 1, 2 let f ie : X → {0, 0′, 1} be defined as

f ie(x) =

 0′ if x = pi
1 if x ∈ e
0 otherwise.


Let

G? = {fv : v ∈ G},

E? = {f ie : e ∈ E, i = 1, 2},

N? = {f ∈ NX : f(p1) = f(p2), f(p3) = 0 and f(p4) = 1}.

We define

D is the subalgebra of AX

generated by the set G? ∪ E? ∪N?

together with all the constants.

Notice that for µ ∈ D we have {µ(p1), µ(p2)} ⊆ α since the generators of D
satisfy this.

Lemma 5.2. Let t(x1, . . . , xk) be a k-ary polynomial of A such that t(Ak) ⊆ U
and for all a1, . . . , ak ∈M ∪N and all i ≤ k the unary polynomial

t(a1, . . . , ai−1, x, ai+1, . . . , ak)

is non-consant on M ∪N . Then either all these functions are constant on M , or
else k = 1 and t(x1) maps U bijectively onto U .
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Proof. If this lemma is false, by substituting constants for some of the variables in
t, we can find a binary polynomial t(x, y) such that t(x, a) is non-constant on M
for some a ∈M ∪N while t(c, x) is non-constant on M ∪N for all c ∈M ∪N . Since
M ∪N is contained in one equivalence class of the Abelian congruence α ∨ β then
t(x, a) induces a permutation of U for all a ∈ M ∪ N . Since α is a type 1 atom,
then t|M2 depends only on its first variable. For a, b, c ∈M , t(a, b) = t(a, c). Since
α ∨ β is Abelian, we have t(a, b) = t(a, c) whenever a ∈ M ∪ N and b, c ∈ M , in
fact because U is α-minimal, t(a, b) = t(a, c) whenever a ∈M ∪N and (b, c) ∈ α|U .

For all c ∈M∪N , t(c, x) is not constant on N , since this function is not constant
on M ∪N . Hence t(c, V ) is a β-minimal set inside U , and t(c,N) is a β-trace.

Since t(U, a) = U , for a ∈M∪N , then t(x, a) permutes the β-equivalence classes.
Thus

t(0/β, 1) = (t(0, 1)/β ∩ U = (t(0, 0)/β) ∩ U = t(0/β) ∩ U, 0) ,

since 0, 1 ∈ β. Thus we can find c ∈ U such that (0, c) ∈ β and t(c, 1) = t(0, 0).
Now, (0, c) 6∈ α for if not then

(t(c, 1), t(0, 1)) ∈ α , implying (t(0, 0), t(0, 1)) ∈ α ∩ β ,
and so t(0, 0) = t(0, 1). This contradicts the fact noticed above that t(c, x) does
not collapse N .

Since 0 and c are distinct β-equivalent elements, we may choose a polynomial g
with g(A) ⊆ V and g(0) 6= g(c). Since all β-traces in V are polynomially isomorphic,
and A|N is polynomially equivalent to a one-dimensional vector space, we may
choose h so that h(A) ⊆ V and h(0) = 0, h(c) = 1. Let p(x) = t(x, h(x)). Then
p(0) = t(0, 0), p(c) = t(c, 1) = t(0, 0) = p(0), but p(0′) = t(0′, h(0′)) = t(0′, h(0)) 6=
p(0). The last inequality implies that p|U is a permutation, and contradicts the
equality p(0) = p(c). This concludes our proof of this lemma. •

Now put
S = {g ∈ Pol1A : g(A) ⊆ U = g(U)} .

D(U) = D ∩ UX .
D(V ) = D ∩ V X .

Note that D(U), D(V ) are definable in D. Where δ1, δ2 are the polynomial projec-
tions of A onto U, V respectively, D(U) consists of all µ ∈ D with δ1(µ) = µ and
likewise for D(V ). For µ, ν ∈ D(U), we put µ ∼ ν iff there is some g ∈ S with
ν = g(f).

For µ ∈ D(U) we can write µ = t(ν1, . . . , νk) for a term t and generating elements
ν1, . . . , νk. We can always arrange that t satisfies the hypothesis of Lemma 5.2. If
k = 1 and t(x1) acts as a permutation on U , then µ ∼ ν for some generator ν.
Else t is a collapsing function, i.e., the one-variable specializations of t all collapse
α|M . In this case, obviously, we can take ν1, . . . , νk ∈ NX and µ ∈ N(t)X , where
we write N(t) = t(Nk).

Since A is finite we can choose finitely many collapsing functions t1, . . . , tm such
that for every collapsing function t we have N(T ) = N(ti) for some 1 ≤ i ≤ m.
This choice of the ti is fixed and independent now of choice of G. The arity of ti
will be denoted by ni.

Suppose that µ = t(ν1, . . . , νk) for collapsing function t and generators νj ∈ N?,
as above, and choose i with N(t) = N(ti). Then the range of f is contained in N(ti),
hence for x ∈ X we can choose νx,1, . . . , νx,ni ∈ N with f(x) = ti(νx,1, . . . , νx,ni).



NEW DIRECTIONS 15

For 1 ≤ i ≤ ni let ν′i = (νx,i : x ∈ X). Then clearly, µ = ti(ν
′
1, . . . , νn′

i
) and

ν′j ∈ D(V ).
We take Coll(x) as a first order formula (with some parameters from D) equiva-

lent to x is not constant, x ∈ D(U), and x = ti(y1, . . . , ymi
) for some {y1, . . . , yni

} ⊆
D(V ).

We take Gen(x) as a first order formula equivalent to x ∈ D(U) and x is not
constant and ¬Coll(x), and for all y ∈ D(U) with ¬Coll(y) and polynomial g with
g(A) ⊆ U , if g(y) = x then y ∼ x and in fact g(U) = U .

Claim 1: For µ ∈ D, there is a generator ν ∈ G?∪E? with µ ∼ ν iff D |= Gen(µ).

To prove this, suppose first that µ ∼ ν ∈ G? ∪ E?. Then any member of D(U)
equivalent to µ takes two distinct values that are α-equivalent. This rules out
µ ∼ ν ∈ D(V ). If Coll(µ) then all values of µ are β-equivalent; again this is false.
The prove of the converse is very easy, using the same facts, and Lemma 5.2.

Clearly, if Gen(µ then µ ∼ ν for a unique ν ∈ G? ∪ E?. We put G† equal to
those µ with Gen(µ) such that whenever Gen(µ′) and µ ∼ λ, µ′ ∼ λ′, λ, λ′ ∈ D(U)
and δ2(λ) = δ2(λ′) then µ ∼ µ′. We put E† equal to the set of those µ such that
Gen(µ) and µ 6∈ G†. It is easy to see that G† = G?/ ∼ and E† = E?/ ∼. We can
choose a polynomial operation x+ y so that restricted to N , x+ y is the addition
of vectors in the vector space A|N with 0 chosen as the zero element. Thus for
an edge e = {x, y} ∈ E, δ2(fx) + δ2(fy) = δ2(f ie) (i = 1, 2). Where m(x, y, z) is a
polynomial giving a Maltsev operation on V , we must have x+ y = m(x, 0, z). The
operation m has the property that whenever x, y, z, x′, y′, z′ ∈ V and exactly one
of the pairs (x, x′), (y, y′), (z, z′) is an unequal pair, then m(x, y, z) 6= m(x′, y′, z′).
That is, each one-variable specialization of m acts as a permutation of V . Using
this, we can easily show that if µ ∼ fx and µ′ ∼ fy then {x, y} ∈ E iff µ 6∼ µ′ and
there is λ ∈ E† µ̄ ∼ µ, µ̄′ ∼ µ′ (µ̄, µ̄′ ∈ D(U)), and δ2(λ) = δ2(µ̄) + δ2(µ̄′).

The only tricky piece of the proof: Suppose that µ, µ′, λ ∈ G†, λ ∈ E†, and
δ2(µ) + δ2(µ′) = δ2(λ). Say µ ∼ fx, µ′ ∼ fy, λ ∼ f ie, e ∈ E, x 6= y. Then say
δ2(µ) is constantly equal to a except at x where the value is b 6= a, and δ2(µ′)
is constantly equal to a′ except at y where the value is b′ 6= a′. Then µ + µ′ is
constantly equal to a+a′ except at x, y where the respectively values are a′+ b and
a + b′. Since λ constantly equal to some a′′ except at exactly two places where it
takes equal values different from a′′, it follows that e = {x, y} (and that a+a′ = a′′

and b = b′).
So we have a bijection between X and G†/ ∼ where both G† and the equiv-

alence relation ∼ have been shown to be definable. And the edge relation in G
corresponds to a relation defined in essentially first order language at the end of
the last paragraph.

This concludes our proof that the construction D(G) semantically embeds G if
Lemma 5.1 fails. Thus Theorem 5.1 is proved.

6. Permutability with pure type 3 congruences

Theorem 6.1. Let A be a finite algebra in an ω-structured variety. If α, β are
congruences such that 0 ≺1 α and 0 ≺3 β, then α ◦ β = β ◦ α and α|M ∨ β|M =
αM ∪ β|M for every (0A, α)-minimal set M .
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Proof. From Hobby-McKenzie [1], we know that α is the transitive closure of Trα
where Trα is the set of all pairs (x, y) such that {x, y} is an α-subtrace. Likewise,
β is the transitive closure of Trβ . Theorem 4.1 states that

Trα ◦ Trβ ⊆ Trβ ◦ Trα .

Since these relations are symmetric, we have that Trα permutes with Trβ . It follows
that α permutes with β. •

Theorem 6.2. Suppose that α ≤ θ1 and typ[0A, β] ⊆ {3}. Then α ◦ β = β ◦ α.

Proof. We first prove this in the case that 0A ≺ β. There is a chain

0A ≺ α1 ≺ · · · ≺ αk = α

. We shall show that if i < k and αi permutes with β, then αi+1 permutes with β.
So suppose that αi ◦ β = αi ∨ β. Now in the quotient algebra B = A/αi, we have
that 0B ≺ αi+1/αi. We show that 0B ≺ (αi ∨ β)/αi also. Indeed, suppose that in
A, congruence θ is a congruence with αi < θ ≤ αi ∨ β. Choose (c, d) ∈ θ outside
of αi. We have (c, e) ∈ αi and (e, d) ∈ β for some e. Clearly, e 6= d. Thus (e, d)
generates β and there is a polynomial f so that {f(e), f(d)} is a (0A, β)-minimal
set. We have f(e) = f(c) since the only other possibility is f(c) = f(d) but then
(f(e), f(d)) ∈ αi ∩β which is impossible—αi ∩β = 0A. Thus (f(c), f(d)) generates
β, implying that β ≤ θ and so θ = αi ∨ β.

Thus Theorem 6.1 applied to B yields that the congruences αi+1/αi and (αi ∨
β)/αi permute. In A, this means that αi+1 permutes with αi ∨ β. Consequently,

αi+1 ◦ β ⊆ (αi+1 ◦ (αi ∨ β) = (β ◦ αi) ◦ αi+1 = β ◦ αi+1 .

Now given α and β as in the statement of the theorem, we string a chain

0A ≺ β1 ≺ · · · ≺ βk = β .

We showed above that α permutes with β1. We show inductively that α permutes
with βi implies α permutes with βi+1. Then it will follow that α permutes with β.

So assume that α permutes with βi. Now βi is strongly solvably equivalent with
α ∨ βi, which means that in B = A/βi we have that (α ∨ βi)/βi ≤ θBi . Also, in
B, 0B ≺3 βi+1/βi. Thus the case proved above implies that (α ∨ βi)/βi permutes
with βi+1/βi. In A, this means that α ∨ βi permutes with βi+1. Thus we have the
calculation

α ◦ βi+1 ⊆ βi+1 ◦ (α ∨ βi) = βi+1 ◦ (βi ◦ α) = βi+1 ◦ α .
This concludes our proof of Theorem 6.2. •

Lemma 6.3. Let 0A ≺2 α and M be a (0A, α)-minimal set. Suppose that N is a
(β, β′)-minimal set where β ≺3 β

′. Then N is a two-element set not included in
M .

Proof. Since M has no tail, then the induced algebra M = A|M is a nilpotent
Maltsev algebra. On the other hand, since N has no tail, A|N is polynomially
equivalent to a 2-element Boolean algebra. Since both M and N are the projected
images of A under idempotent polynomials, then if N ⊆ M we would have that
A|N = M|N . Thus N would be a 2-snag in A|M , contradicting that M is nilpotent.
•
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Lemma 6.4. Let 0A ≺2 α and M be a (0A, α)-minimal set. Suppose typ[0A, β] ⊆
{3}. then β|M = 0M .

Proof. We can suppose that this fails for β, but there is β′ ≺ β such that β′|M ⊆ 0M .
By the assumption, β′ ≺3 β. Tame congruence theory tells us that for any two β-
congruent elements, there is a chain connecting one to the other in which every
pair of consecutive elements either are β′-equivalent or constitute a (β′, β)-minimal
set. Let M = e(A) where e = e ◦ e is a polynomial. Suppose that we do have
(b, b′) ∈ β, b 6= b′, and b, b′ ∈ M . Connect b to b′, say b = a0, . . . , an = b′ where
each ai, ai+1 are β′-congruent or constitute a minimal set for the cover. Now we
have b = e(a0), e(a1), . . . , e(an) = b′. Since e(ai), e(ai+1} cannot be a (β′, β)-
minimal set, then tame congruence theory says that we have e(ai) congruent to
e(ai+1) modulo β′, holding for all i. It follows that (b, b′) ∈ β′, contradiction. •

Theorem 6.5. Let 0A ≺1 α and suppose that typ[0A, β] ⊆ {3}. Let M be an
α-minimal set. Then (α ∨ β)|M = α|M ∪ β|M .

Proof. Let 0A = µ0 ≺ · · · ≺ µn = β where each cover µi ≺ µi+1 is of type 3. Let
a, a′ be two distinct elements of an α-trace in M . We show by induction on i that
aµib ∈M implies b = a.

Suppose this is true for µi but not for µi+1, say a 6= b ∈ M , (a, b) ∈ µi+1. Let
B = A/µi. By Theorem 6.2, α∨µi = α◦µi. Thus it easily follows that in B we have
µi ≺1 (α∨µi)/µi = α′ and in A the intervals [0A, α] and [µi, α∨µi] are projective.
By Hobby-McKenzie [1], M/µi is an α′-minimal set and a/µi, a

′.µi belong to an
α′-trace in this set. Moreover, µi+1/µi �3 µi in B. The element b/µi ∈ B then
contradicts Lemma 3.4. This shows that in fact a is µi+1 congruent to no element
of M but itself. •

Theorem 6.6. Let β, δ be congruences of A such that typ[0A, β]∪ typ[0A, δ] ⊆ {3}.
Then typ[0A, β ∨ δ] ⊆ {3} and β ◦ δ = δ ◦ β.

Proof. Suppose that the first statement fails. Then from the (3, 2) and (3, 1) ex-
change properties, which both hold in A, we have some α such that 0 ≺1 α ≤ β ∨ δ
or 0 ≺2 α ≤ β ∨ δ. In either case, let M be an α-minimal set. Choose e = e2 with
e(A) = M .

If 0A ≺2 α, We can choose b, b′ in M , b 6= b′, (b, b′) ∈ α ∩ (β ∨ δ); and applying
e to a Maltsev chain, we have that (b, b′) ∈ β|M ∨ δ|M . This certainly implies that
there is some a, a′ ∈ M , a 6= a′, such that (a, a′) ∈ β ∪ δ. But this contradicts
Lemma 6.5

If 0A ≺1 α, M contains a pair (b, b′) ∈ α∩ (β∨ δ). As before, (b, b′) ∈ β|M ∨ δ|M .
So there certainly must exist a ∈ M , a 6= b, (a, b) ∈ β|M ∪ δM . The triple a, a′, b
contradicts Theorem 6.3

Now let us prove the second statement. We do have that (β ∨ θ1) and δ ∨ θ1
commute, since A/θ1 has a Maltsev polynomial. We also have that β and δ permute
with θ1 by Theorem 6.2. Thus

β ◦ δ ⊆ (δ ◦ θ1) ◦ (β ◦ θ1) = δ ◦ β ◦ θ1 .
So if this theorem fails, we’ll have a pair (a, a′) ∈ θ1 ∩ (β ∨ δ), a 6= a′, and

choosing some 0A ≺1 α ≤ Cg(a, a′), we’ll have a pair (b, b′) ∈ α, b 6= b′, {b, b′}
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contained in a (0A, α)-minimal set U . This pair (b, b′) also belongs to β ∨ δ, and so
to β|U ∨ δU , and then clearly we get a contradiction of the first statement of this
theorem, proved above. This finishes our proof of the theorem. •

Theorem 6.7. (1) There is a unique largest congruence θ3 with only type 3
covers below it. Similarly, there is a unique largest conruence θ2 with only
type 2 covers below it.

(2) We have that, θ1 ∩ (θ2 ∨ θ3) = θ2 ∩ (θ1 ∨ θ3) = θ3 ∩ (θ1 ∨ θ2) = 0A.
(3) θ1 ∨ θ2 is the solvable radical, the largest solvable congruence. It is Abelian.

Proof. The existence of θ3 follows from Theorem 6.6 For θ2 we have a more basic
argument. Suppose that typ[0A, δ] ∪ typ[0A, θ] ⊆ {2}.

To prove that typ[0A, δ ∨ θ] ⊆ {2}, suppose not. Let 0A ≤ ρ ≺ λ ≤ δ ∨ θ, with
the type of this cover different from 2. The type cannot be 3, since δ∨θ is solvable.
Thus ρ ≺1 λ. By the (2, 1)-transfer principle, there is 0A ≺1 α ≤ δ ∨ θ. α ≤ θ is
impossible, so δ ∨ θ ≥ α ∨ θ > θ. The interval [θ, δ ∨ θ] is solvable, so by the (2, 1)-
transfer principle, there is θ ≤ τ ≺1 δ ∨ θ. Clearly, θ 6≤ τ so we have a non-trivial
strongly solvable interval [θ ∩ τ, θ]. But then 1 ∈ typ[0A, θ], a contradiction

To prove (2), we begin by noting that θ1 ∨ θ2 is solvable, so θ3 ∩ (θ1 ∨ θ2) = 0A.
Our arguments for the disjointness of θ1 with θ2 ∨ θ3, and disjointness of θ2 with
θ1 ∨ θ3, parallel the proof above that θ2 exists.

Suppose that θ2 ∩ (θ1 ∨ θ3) ≥ λ �2 0A. Now θ3 ∩ λ = 0A, so θ3 ∨ λ > θ3. Find
θ3 ≤ ρ ≺ θ3 ∨ λ. We have that the intervals [0Aλ] and [ρ, θ3 ∨ λ] are projective so
that they have the same type. That type is 2. But θ3 is strongly solvably equivalent
to θ3 ∨ θ1. This is a contradiction.

Finally, suppose that θ1 ∩ (θ2 ∨ θ3) ≥ λ �1 0A. Then λ∨ θ3 is larger than θ3 and
strongly solvably equivalent to it. Since θ2 ∨ θ3 is solvably equivalent to θ3, by the
(1, 2)-exchange property, there is θ3 ≤ α ≺1 θ2 ∨ θ3. Then α∩ θ2 is smaller than θ2
and strongly solvable equivalent to it. This gives 1 ∈ typ[0A, θ2], a contradiction.

For (3), note that the join of two solvable congruences is solvable. Suppose that
there is a larger solvable congruence that θ1∨θ2. Then θ1∨θ2 has a cover of type 1
or 2. Suppose first that θ1 ∨ θ2 ≺1 λ. By the (2, 1)-exchange property, the interval
from θ1 to λ has a type 1 atom θ1 ≺1 δ. But then δ is strongly solvable, hence lies
below θ1, a contradiction.

Finally, suppose that θ1 ∨ θ2 ≺2 λ. The exchange properties applied in the
interval from θ2 to λ yield θ2 ≺2 δ for some δ. We get a chain 0Aβ1 ≺2 · · · ≺2 βm =
δ. Suppose that there is a type 1 cover below δ, hence a type 1 atom 0A ≺1 α ≤ δ.
Let i be largest with α 6≤ βi. Then i < m and α ≤ βi+1. Since 0A ≺ α and
βi ≺ βi+1, it follows that [0A, α] and [βi, βi+1] are projective intervals. By tame
congruence theory, the have the same type. Thus 1 = 2, which is absurd. •

Theorem 6.8. Suppose that α ≤ θ2 and β ≤ θ3. Then α and β permute.

Proof. We have

β ◦ α ≤ (α ∨ θ1) ◦ (β ∨ θ1) ⊆ (α ∨ θ1) ◦ β ,
since A/θ1 has permuting congruences and β permutes with θ1 (by Theorem 6.2).
So assuming that a β bαc there is d ∈ A with (a, d) ∈ α ∨ θ1 and (d, c) ∈ β. Thus

(a, d) ∈ (θ2 ∨ θ1) ∩ (β ◦ α ◦ β) ≤ θ2 ∨ θ3 .
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Let θ = Cg(a, d). This is a solvable congruence below θ2 ∨ θ3 so by Theorem 6.7
it contains no type 1 atom, and by the (2, 1)-exchange property, has no type 1
congruence covers. Thus θ ≤ θ2.

Choose a chain 0A = θ0 ≺2 θ1 · · · ≺2 θk = θ. We shall prove by induction on
i ≤ k that θi ≤ α. So suppose that i < k and θi ≤ α. Choose any (θi, θi+1)-minimal
set M , say M = e(A), e = e2 a polynomial. Choose (x, y) ∈ θi+1|M \ θi|M . Now
(x, y) ∈ α ∨ β so by applying e we obtain (x, y) ∈ α|M ∨ β|M . By Lemma 6.3,
β|M = 0M . Thus (x, y) ∈ α. Since θi+1 is generated by θi ∪{(x, y)}, it follows that
θi+1 ≤ α. So we conclude that θ ≤ α, (a, d) ∈ α, and (a, c) ∈ α ◦ β.

We have shown that β ◦ α ⊆ α ◦ β. Applying converse to this inclusion, we get
α ◦ β ⊆ β ◦ α. •

7. The remaining results

Theorem 7.1. Let α, λ be congruences of A such that typ[0A, α] ∪ typ[0A, λ] ⊆
{2, 3}. Then typ[0A, α ∨ λ] ⊆ {2, 3}.

Proof. •

Theorem 7.2. θ1 ∨ θ2 = θ2 ◦ θ2 ◦ θ2.

Proof. Let (a, b) ∈ θ2 ∨ θ2. Then aθ1J(a) and bθ1J(b) and (J(a), J(b)) ∈ θ1|J(A) ∨
θ2|J(A) We know that θ1|J(A) = 0J(A). Thus J(a)θ2J(b). •

Theorem 7.3. 0A, θ1, θ2θ3, θ1∨θ2, θ1∨θ3, θ2∨θ3, θ1∨θ2∨θ3 constitute a Boolean
sublattice of Con A.

Proof. •

Theorem 7.4. Every pair of congruences below θ2 ∨ θ3 commute.

Proof. •

Theorem 7.5. Suppose that 0A ≺i α and 0A ≺j β where {i, j} ⊆ {1, 2, 3}, i 6= j.
Let U be an α-minimal set. Then (α ∨ β)|U = α|U ∪ β|U .

Proof. •

Theorem 7.6. 0A, θ1, θ2θ3, θ1∨θ2, θ1∨θ3, θ2∨θ3, θ1∨θ2∨θ3 constitute a Boolean
sublattice of Con A.

Proof. •

References

(1) 1. P. Idziak, A characterization of finitely decidable congruence modular
varieties, Transactions of the AMS, Volume 340, Numer 3 (1997), 903–934.

(2) 2. D. Hobby, R. McKenzie, The Structure of Finite Algebras, Birkhäuser,
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