

Initial Evaluation of a Spring-Opposed Shoulder Retractable Pin Tool for Friction Stir Welding

D.Lammlein, D.DeLapp, A.Strauss, G.Cook, Vanderbilt Univ., Nashville TN

T.Lienert, M.Bement, Los Alamos N.L., NM

Friction Stir Welding

•TWI, 1991 Solid state process Rotating tool

frictional heat •Shoulder of tool retains stirred

material

[1]frictionstirlink.com, Friction Stir Link Inc.

Why FSW?

- Maintain parent material strength (alloy dependent)
 No fumes, arcs, or
- •No tumes, arcs, or spatter
- •High repeatability
- No weld post-processing

Q: Why a Retractable Pin? A: Exit Material Without Defects

Other Closed Contour Methods:

Figure: 'Start and park' method in the welding of cylinders without a RPT [2.]

[2.] Anderson, C.-G. (2002). Development of fabrication technology for copper canisters with cast inserts, Swedish Nuclear Fuel and Waste Management Co.

Keyhole Defect

Method: Stop traverse and remove tool

Result: Void left by pin

Run-out Defect

Method: Weld over material boundary

Result: Material fails

Pin traverse
 forces

•Proximity of FSW influenced zone

•No edge material containment

Tapered Retraction: Conventional FSW Tool

Gradually remove pin during weld traverse

Tapered Retraction with a Conventional Tool

Lack of shoulder pressure results in defect

Retractable Pin Tool: Tapered Retraction

 Gradually remove pin during weld traverse while applying shoulder pressure

Spring-Opposed Shoulder Retractable Pin Tool (SSRPT) Goals:

- Maintain shoulder/work contact while inserting & retracting pin.
- Maintain significant shoulder force on work during insertion & retraction to prevent flash.
- Leave no hole when welding cylinders or closed contours.

•Compact

- •Concentric
 - •High Capacity

Replaceable pin tool

Press fit

Backed by a channel to aid in removal.

Outer boss further constrains discs
Retaining washer allows application of preload condition in discs

Elliptical mating for smooth actuation.

RPT placed in series with Dynamometer.

Static Welding Trials: Axial Force Calibration and SSRPT Validation

Goals:

•Discern axial force component in pin and in shoulder.

•Verify theoretical axial shoulder force as pin depth varies.

Methods:

•Incrementally plunge RPT without traverse.

 Incrementally plunge a dimensionally equivalent conventional tool without traverse.

Spring-oppossed Shoulder RPT

Fz [N]

Tapered Retraction Welding Trials

Initial Results: Retraction Zone •Retract pin at 0.12 in/min •Weld quality maintained through 40% of retraction

How can quality be improved?

- •Adjust traverse rate and/or spindle speed during retraction
- •Vary retraction rate over length of retraction
- •Adjust force relationship of shoulder

Tool: ¹⁄₄" diameter pin, 0.7"diameter shoulder Parameters: 2200rpm, 10ipm, 0.06" pin depth Retraction Parameters: 2200rpm, 5ipm, 0.12"/min retraction rate

Weld Parameters: 2200rpm,10ipm, 0.03" pin depth, smooth pin Retraction Parameters: All 2ipm, 0.12"/min retraction rate 2200rpm retraction:

1900rpm retraction:

2500rpm retraction:

2800rpm retraction:

→2500rpm is best, try slowing retraction rate to 0.06"/min: 2500rpm, 0.06"/min retraction rate:

Weld Parameters: 2200rpm,10ipm, 0.03" pin depth, smooth pin Retraction Parameters: 2500rpm, 2ipm, 0.12"/min retraction rate

Acknowledgements:

D.DeLapp, A.Strauss, G.Cook, Vanderbilt Univ., Nashville TN T.Lienert, M.Bement, Los Alamos N.L., NM