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Abstract

To explain why sellers in takeover auctions limit bidders’ entry, we structurally

measure two negative effects of inviting an additional bidder on the seller’s revenue:

information cost and operation cost. In particular, our auction model allows for bidders

to discount their synergy values when their rivals obtain the confidential information –

we refer to the induced revenue loss as the information cost. We establish the identifica-

tion of the model primitives with unobserved heterogeneity, naturally arising from the

confidential information. From a sample with 287 M&A deals of U.S. public companies,

we find that the unobserved heterogeneity explains 75.3% of the variation of the value

and bidders lower their values by 7.6% for each rival. We quantify the information

cost and operation cost using counterfactual analysis, and discuss policy implications

for the seller as well as regulatory and judiciary authorities.

Keywords: Mergers and Acquisitions, Takeover Auctions, Structural Identification

and Estimation, Information Cost, Operation Cost

JEL Classifications: C57, D22, D44, G34

∗We thank Tong Li, Mattias Polborn, and Matthew Shum for their insightful suggestions. We thank
Alexander Gorbenko and Andrey Malenko for sharing data. We thank Zi Yin for his research assistance,
and audiences at various seminars and conferences, including the 1st Asian Pacific Industrial Organisation
Conference, 11th International Conference on Computational and Financial Econometrics, University of
Melbourne, University of Queensland, and Vanderbilt University.
†School of Economics, University of Queensland. Email: donghyuk.kim@uq.edu.au.
‡Department of Economics, Vanderbilt University. Email: ying.zheng.1@vanderbilt.edu.

1



The literature of the mergers and acquisitions (M&A) has reported that sellers of takeover

auctions routinely restrict bidders’ entry. In particular, Boone and Mulherin (2007) docu-

ment that about a half of the company sales in their M&A sample invite one acquiror and

even when they do more than one, they allow only a few. This observation seems to con-

tradict the received theory: competition raises the seller’s (expected) revenue.1 We explain

the entry regulation by formalizing a takeover auction with costs incurred by the seller and

empirically measuring the model primitives.

We consider two well-documented costs: operation cost and information cost. The oper-

ation cost includes advisory fees and other economic costs explicitly or implicitly incurred

by the seller to conduct a company sale.2 The operation cost varies across target companies,

reflecting sellers’ private information on their own business, e.g., the loss of potential business

opportunities, and therefore is mostly unknown to the acquirors. We bound the operation

cost by contrasting the theoretical prediction on the seller’s revenue against the number of

invited bidders observed in the sample. While the operation cost is one of key determinants

in the seller’s choice, our methodology focuses more on the information cost because it is

implied by bidders’ evaluation process and bidding strategy. Specifically, a bidder would

discount her value on the target whenever other bidders, who are mostly industry rivals,

gain the confidential information on the target, which then can be strategically exploited.

Hence, bidders would lower their bids, and this causes a premium loss for the seller, which

we call the information cost. Notice that the information cost is a unique feature of the

takeover auction where the confidential information plays a crucial role in and even after the

auction.

1 Bulow and Klemperer (1996) show, for example, that no amount of bargaining power is as valuable to
the seller as attracting one extra bona fide bidder. There is a range of situations where this claim can fail,
e.g., auctions with almost common value in Klemperer (1998) and auctions with voluntary entry in Li and
Zheng (2009). The takeover auction, however, does not fit into those frameworks.

2 Rosenbaum and Pearl (2009) and DePamphilis (2014) discuss in detail about various economic costs
associated with disruption of business, negative impacts on the employee morale, and foregoing of business
opportunities in a takeover process.
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Hansen (2001) first introduces the notion of information cost in takeover auctions, which

has been, since then, discussed in a number of articles in corporate finance, including Boone

and Mulherin (2007); Rogo (2014); Schlingemann and Wu (2015). Legal studies of corporate

takeovers also echo the “legitimate proprietary concerns” on sensitive information being

disseminated to their industry rivals. Although the fiduciary duty requires that the boards

of the target company act as auctioneers to maximize shareholders’ benefits, the Delaware

Court of Chancery indicated in many cases that a full-blown auction may not be desirable,

as the cost could outweigh the benefits. Among those cases, the potential loss of competitive

information is one of the major concerns. For example, in the case of Lear Corp. Shareholder

Litigation, the target company rejects a potential acquiror on the ground that there could

be a risk of losing an initial bidder or the initial bidder would pay less if the target engaged

with additional bidders.3

In order to quantify the seller’s information cost, we first develop a takeover auction

model, accounting for the synergy value discount, which we term the information disclosure

discount. Specifically, we approximate the takeover transaction by the first-price sealed-bid

auction where bidders are uncertain about the number of opponents, reflecting the practice

that the highest bidder takes over the target at the price that she bids and the seller keeps

bidders uninformed of their rivals. Assuming that bidders are ex-ante identical yet privately

learn their synergy values, we derive a symmetric Bayesian Nash equilibrium with a strictly

increasing bidding strategy for the game induced by the auction.

We then establish the identification of the auction model with unobserved heterogeneity,

which naturally arises from the confidential information that is latent by nature. In par-

ticular, we use the deconvolution method of Kotlarski (1966) to identify the distribution of

unobserved heterogeneity from the within-auction bid variation.4 After separating out the

3 See In Re Lear Corp. Shareholder Litigation, 926 A.2d 94, 119. More examples can be found in Sautter
(2013).

4 Li and Vuong (1998) first introduce Kotlarski (1966) to identify models with measurement error. Using
this technique, Li et al. (2000) identify a class of auctions with conditionally independent private values and
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unobserved heterogeneity, we identify the distribution of synergy values and the information

disclosure discount by the cross-auction bid variation and the exogenous variation of the

number of potential bidders.

Integrating out the unobserved heterogeneity in the Bayesian framework, we analyze a

sample of 287 takeover auctions of U.S. public companies that took place between 2000 and

2008. We find that the bidders lower their synergy value by 7.6 percent (posterior mean)

for each additional opponent joining the bidding competition. In addition, after controlling

for the observed characteristics, the unobserved auction heterogeneity accounts for 75.3 per-

cent of the bid variation, corroborating the importance of the unobserved heterogeneity in

empirical investigation of takeover auctions.

Our structural approach allows us to quantify the competition effect and the information

cost via counterfactual analysis. The result indicates a substantial information cost; for

example, the predictive takeover premium decreases by 2.6%, which amounts to $23 million,

for the median target company in the consumer industry when the seller chooses 2 final

bidders from 4 potential bidders. Furthermore, we use the observed shortlisting pattern to

bound the seller-specific operation cost. In the same example, we find that the operation cost

is at least 4.4% of the transaction value. This economic cost is much larger than observable

advisory fees: Hunter and Jagtiani (2003) report advisory fees of 0.84% of the transaction

value.

The main contribution of this paper is to employ a structural method to measure the

information cost and operation cost incurred by the seller in a sale of company. Many studies

in corporate finance use the existence of the information cost to explain some stylized features

in M&A transactions. For example, Boone and Mulherin (2007) find that negotiations and

auctions accrue similar transaction premiums and suggest that the presence of information

cost may explain the choice of sale mechanism. Schlingemann and Wu (2015) find that

the likelihood of choosing auction over negotiation decreases in R&D intensity, which may

in a different context, Krasnokutskaya (2011) identifies auction models with unobserved heterogeneity.
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proxy the cost of disclosing proprietary information. These studies, however, take a reduced

form approach that cannot measure the magnitude of the information cost or disentangle

the information cost from the competition effect on the revenue, as the information cost is

essentially structural.

There are a few articles that use a structural approach to study other aspects of takeover

competitions. Taking the pool of acquirors as given, Gorbenko and Malenko (2014) estimate

an auction model to study how strategic and financial bidders evaluate target companies and

find that different targets appeal to different groups of bidders. Gentry and Stroup (2015)

model potential acquirors’ entry decision, i.e., a decision on whether to sign confidentiality

agreements, and study how the pre-entry uncertainty on the target value affects the bidders’

entry and bidding behavior. Unlike those previous papers, we focus on the seller’s active role

in determining the pool of final competitors and study how the seller’s shortlisting affects

bidding behavior, from which we can recover the costs incurred by the seller.

Moreover, none of aforementioned empirical papers formally consider the unobserved

target heterogeneity. We highlight the importance of the confidential information in takeover

transactions, which is latent by nature. We then formally consider the unobserved target

heterogeneity in the econometric identification and document its economic significance for

the first time in the M&A literature.

This paper also contributes to theoretical studies on takeover auctions. The extant

research largely resides on the idea that information acquisition is costly for the bidders; for

example, Ye (2007), Quint and Hendricks (2015), and Lu and Ye (2016). Ye (2007) finds that

costly entry cannot explain why the seller of a company uses an indicative bidding stage to

shortlist bidders into the final bidding competition. Quint and Hendricks (2015) show that

in a special scenario, where the indicative bids sort bidders into a finite number of groups,

the seller can use indicative bids to optimally shortlist bidders. These studies acknowledge

the active role of the seller in the takeover process, but do not consider the costs incurred by

the seller. Deviating from this strand of studies, we build a novel model where information
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disclosure is costly to the seller to provide a new insight on why the seller restricts bidders’

entry in takeover auctions.

The paper proceeds as follows. Section I provides the institutional background and

outlines our data. Section II develops our auction model and section III establishes the

identification of the model. Section IV proposes a method to estimate the structural param-

eters and section V reports the empirical results with counterfactual analyses. Section VI

concludes by discussing policy implications. Appendices collect proofs and technical details

for computation.

I. Sale of Companies

Before modeling the takeover process, we describe a typical sale of a company in a private

takeover and describe our data.5 Then we conduct preliminary reduced-form analyses to

gain some intuition useful for modeling in the next section.

A. Institutional Background

A corporate takeover is initiated either by a target company considering the sale of its enter-

prise as a strategic alternative or by an acquiring company launching an unsolicited inquiry.

Once the takeover begins, the target hires an investment bank for financial advice and retains

a law firm for legal counsel – we call the target and its advisors as the seller in this paper.

The seller contacts prospective buyers with the delivery of a teaser and confidentiality and

standstill agreements.6 For public companies, Regulation Fair Disclosure concerns govern

the content of the teaser; at this stage no material nonpublic information is revealed to the

5 A public takeover could follow the announcement of a private takeover. For the purposes of this paper,
we describe only the private takeover process. See Boone and Mulherin (2007) and Hansen (2001) for a
complete description.

6 The confidentiality agreement governs how buyers can use the information obtained and the standstill
agreement precludes the prospective buyer from making unsolicited offers, or purchasing of the target’s shares
etc., in a specified period of time.
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buyers.7 Among the prospective buyers, those who are interested sign the confidentiality

and standstill agreements and obtain the Confidential Information Memorandum (CIM),

which contains detailed non-public information on the target company, including divisional

data, order backlogs, proprietary contracts, and the R&D status. After the preliminary due

diligence based on CIM, if further interested, a bidder submits a non-binding indication of in-

terest that specifies a number of elements: (a) indicative purchase price (typically presented

in a range) and form of consideration (cash vs. stock mix); (b) key assumptions to arrive

at the stated indicative purchase price; (c) information on financing sources; (d) treatment

of management and employees; (e) key conditions to signing and closing. For the research

purpose of this paper, we call bidders indicating their interest the potential bidders.

After reviewing potential bidders’ indications of interest, the seller selects a subset of the

potential bidders for the final round of comprehensive due diligence, where the invited final

bidders are granted access to the most confidential materials, on-site visits, consultations with

target management, etc. This shortlisting decision depends on various considerations, such

as speed to the transaction closing, fulfillment of fiduciary duties, disruption of business, and

confidentiality concern. Note that the concerns on dissemination of confidential information

is particular to takeover auctions. For example, in the sale of Spinnaker Exploration Com-

pany, the seller’s financial advisor Randall & Dewey suggested “limited marketing approach

as it minimized the exposure of Spinnaker’s sensitive confidential information to a smaller

group of competitors” because “the likely buyers for Spinnaker were all competitors.”8

Following the final due diligence, the final bidders submit their binding bids by the due

date. The seller then analyzes the final bids and selects the winner to work on the final

7 The Regulation Fair Disclosure mandates that all publicly traded companies must disclose material
information to all investors at the same time. According to this rule, the bidders may not even know which
company is on sale before signing the confidentiality agreement because it may constitute selective disclosure
of material information (i.e., that the company is for sale) to the contacted bidders. See discussion in Hansen
(2001).

8 The italic texts are extracted directly from the DEFM14A filing by Spinnaker to SEC on November 10,
2005.
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definitive agreement, which includes the purchase price, the method of payment, various

deal protection devices, and fiduciary-out provisions. Upon signing the M&A agreement, the

seller and buyer publicly announce the deal, which ends the takeover process.9 Throughout

the process, the seller keeps bidders uninformed about the participation of other bidders as

well as their identities and bids for legal and competitive reasons; see Gorbenko and Malenko

(2014) and Gentry and Stroup (2015).

B. Takeover Auction Data10

Our sample comes from the Mergers and Acquisitions database of the Securities Data Corpo-

ration (SDC) and consists of 287 takeover deals that were announced and completed between

January 1, 2000 and September 6, 2008 and meet the following criteria:

(i) The target is a publicly traded non-financial (SIC codes 6000 - 6999 excluded) U.S.

company.

(ii) The winning bid is made in cash only.

(iii) The winning bidder obtains 100% of target shares after transaction.

(iv) The deal is not a spin-off, recap, self-tender, exchange offer, repurchase, minority stake

purchase, acquisition of remaining interest, or privatization.

(v) The deal is fulfilled by an auction, which we define as a deal with at least two buyers

showing indications of interest.

9 The announcement could be followed by a public takeover battle for the target. In practice, less than
4 percent of deals are subject to public competition (e.g., Moeller et al. (2007)). Betton et al. (2009) show
that the winner from the private competition usually wins the public contest; 70.7% in their sample of
7,076 takeover contests. That is, the new bidder takes over the target only with 1.2% of chance. Moreover,
when it happens, the seller compensates the original winner following the final agreement. Note that Boone
and Mulherin (2007), Gorbenko and Malenko (2014), and Gentry and Stroup (2015) study only the private
takeover stage.

10 We thank Alexander Gorbenko and Andrey Malenko for sharing their data used in Gorbenko and
Malenko (2014). To serve our research purpose, we enlarge their dataset by hand-collecting additional
structural variables from SEC filings.
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(vi) The deal background is available in SDC, or EDGAR filings on the SEC, or Merger-

Metrics.

(vii) Quarterly financial data on the target is available on the Compustat database.

Conditions (i)-(iv) are imposed to make takeover deals and bids comparable. First, M&A

deals from the financial sector are excluded because its valuation is fundamentally different

from that for non-financial firms. For example, a high leverage normal to financial firms is

an indicator of great distress to firms in other industries.11 Second, the winning payment

is cash-only, in which case the deal value is known with certainty. This excludes other

payment arrangements whose values could depend on unobserved factors. For instance, in a

deal payment with securities exchanges, the deal value depends on the unobserved winner’s

characteristics, and thus cannot be reliably compared to a cash-only deal or other bids

involving security payments. Third, the winner eventually owns 100% share of the target

so that it is a full-scale merger rather than an equity investment. Finally, we exclude deals

with motivations other than a business combination.12

Structural Variables from SEC Filings

For each takeover in the sample, we collect additional information from the background

sections in filings of the US Securities and Exchange Commission (SEC).13 In particular,

we observe the bidder participation in each stage and the competing bids for each takeover

auction.14

11 Therefore, it is a common practice in corporate finance research to separate financial firms from others;
e.g., Fama and French (1992).

12 It is arguable that the true value of a bid depends on all terms of the final merger proposals, and thus is
different from the cash value of the bid. We argue that, in the context of our structural model, this deviation
reflects measurement error, which is captured as bidders’ heterogeneity.

13 Boone and Mulherin (2007) first use the hand-collected data from SEC filings to study the takeover
competition. Deal backgrounds are contained in SC-TOT, 14D-9, PREM14C, DEFM14C, DEFS 14A, and
S-4 filings, available at http://www.sec.gov/edgar/searchedgar/companysearch.html.

14 SDC provides the final deal value, i.e., winning bid, for each auction; while SEC filings often document
other (losing) bids.
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First, we identify the two measures of bidders’ participation: (i) N : the number of poten-

tial bidders, i.e., the ones showing indications of interest; (ii) n: the number of final bidders,

i.e., the ones shortlisted for the final due diligence. Note that our theoretical model is built

upon N and n. Second, we complement the bid data by collecting all the reported losing

cash-only bids from the SEC documents.15 Following other empirical studies on M&A, we

normalize each bid by the corresponding target stock price four weeks before the announce-

ment date, and use the resulting (raw) bid premiums in our empirical study.16

Explanatory Variables from Compustat and CRSP

Following Gorbenko and Malenko (2014), we construct obtain accounting data of the target

companies from the Compustat database and construct eight target-specific variables: (i)

Size is the firm size defined as the book value of the total assets (in millions); (ii) Leverage

is the market leverage defined as the ratio of the book value of debt to the sum of the

market value of equity; (iii) Q-ratio is defined as the ratio of the sum of the market value

of equity and the book value of debt to the book value of the target; (iv) CashFlow is

the cash flow over the last four quarters; (v) Cash is the cash balance, i.e., the sum of

cash, short-term investments, and marketable securities; (vi) R&D is the R&D expenses;

and (vii) Intangibles represents accounting measure for the intangible assets; (viii) Industry

is the industry category as defined by Fama and French (1997).17 In addition, we scale

the CashFlow, Cash, R&D and Intangibles by Size. Standard filters are applied to exclude

unreasonable values of these covariates that are likely to be mistakes. Specifically, we exclude

observations with market leverage below zero and above 100%; Q-ratio in excess of 10; cash

flow in excess of 10; and negative cash.

15 We exclude some anomalous losing cash-only bids from the sample because of its incomparability to
other bids for various reasons: (1) bids are subject to conditions; (2) bidders cannot provide sufficient
financing proofs; (3) bidders quit after winning the auction; etc. In some of these cases, the losing cash bids
could be higher than the winning cash bids.

16See Eckbo and Thorburn (2009) for a discussion on the choice of base prices.
17 The Fama-French five industry classification is used because the twelve industry classification results in

few observations for some industries.
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We also obtain two economy-wide variables from the Center for Research in Security

Prices (CRSP) to control for the general economic environment: (ii)MarketReturn is the

market return defined as the cumulative return on the S&P 500 index over the 12 months

prior to the announcement date; and (iii) CreditSpread is the credit spread defined as the

rate on Moody’s Baa bonds preceding the announcement date minus the rate on 10-year

Treasury bonds on the announcement date.

Finally, our sample consists of 287 takeover auctions with a total of 372 observed bids and

193 auctions with winning bid only. Table I reports some descriptive statistics of the auction

and target characteristics for the full sample and across the Fama-French five industries.

Panel A first confirms the common practice of entry restriction in all industries; the average

invitation rate ranges from 62% to 74% across the five industries. In addition, we observe

substantial takeover premiums across the industries, especially in the HighTech, Health, and

Others. Panel B investigates the accounting features of the target companies. The target

firms in HighTech and Health industries appear to be growth companies, as indicated by

their high Q-ratio, low leverage, and large cash balance. These companies also stand out in

their R&D spending and percentage of intangible assets.

Determinants of Shortlisting Decisions

As mentioned in the institutional background, many factors affect sellers’ shortlisting deci-

sions. To better understand the determinants of the decision, we consider a Probit regression

(Model I) where the dependent variable is a dummy variable equal to 1 if a potential bidders

is shortlisted by the seller and 0, otherwise. Model I includes a set of observed target char-

acteristics and economic conditions described above. To see whether the result of Model I is

driven by industry effects, Model II expands Model I to include industry dummies following

the five-industry classification of Fama and French (1997). Given the panel structure of our

data, we further run a target-specific Random-Effect Probit regression (Model III) to control
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Table I
Descriptive Statistics of Auction and Target Characteristics

This table reports descriptive statistics (mean, standard deviation and median) of the auction and target char-
acteristics for the full sample and across five industries, as classified by Fama and French (1997). Within the
five-industry classification, Consumer includes consumer durables, nondurables, wholesale, retail, and some
services (laundries, repair shops); Manufacturing includes manufacturing and energy; HighTech includes
business equipment, telephone and television transmission; Health includes healthcare, medical equipment,
and drugs; and Others includes mines, construction, construction materials, transportation, hotels, business
services, and entertainment. Panel A reports the means and medians (in brackets) of N (the number of po-
tential bidders), n (the number of final bidders), and n/N (the invitation rate), and the means and standard
deviations (in parentheses) of the takeover premium (winning bid scaled by the target size). Panel B reports
the means and standard deviations (in parentheses) of the target characteristics. The sample contains 287
takeover auctions took place between January 1, 2000 to September 6, 2008.

All Consumer Manufacturing HighTech Health Others
Panel A

N (Potential) 4.7 5.1 6.2 4.3 3.5 4.8
[3] [4] [6] [3] [3] [4]

n (Final) 2.7 2.8 3.1 2.6 2.5 2.7
[2] [2] [2.5] [2] [2] [2]

n/N (Invitation Rate) 0.68 0.62 0.62 0.70 0.74 0.70
[0.67] [0.62] [0.65] [0.71] [0.88] [0.75]

Premium 1.34 1.27 1.22 1.38 1.37 1.40
(0.30) (0.30) (0.21) (0.31) (0.30) (0.28)

Panel B

Size (in millions) 659.0 719.6 731.6 569.5 435.8 975.5
(2345.0) (1400.8) (1898.6) (3103.2) (528.5) (2449.3)

Leverage 0.15 0.23 0.19 0.07 0.13 0.27
(0.22) (0.26) (0.21) (0.13) (0.22) (0.26)

Q-ratio 1.53 1.14 1.28 1.53 2.69 1.17
(1.17) (0.62) (0.50) (0.99) (1.99) (0.81)

CashFlow 0.02 0.07 0.11 -0.03 -0.02 0.05
(0.26) (0.10) (0.08) (0.35) (0.24) (0.21)

Cash 0.25 0.10 0.09 0.37 0.31 0.18
(0.23) (0.09) (0.13) (0.22) (0.25) (0.24)

R&D 0.02 0.00 0.00 0.03 0.03 0.00
(0.03) (0.00) (0.01) (0.04) (0.04) (0.00)

Intangibles 0.15 0.09 0.09 0.19 0.17 0.13
(0.19) (0.15) (0.14) (0.19) (0.22) (0.20)

# of obs. 287 57 36 113 40 41
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for the unobserved heterogeneity.18

The regression results in Table II show that several target characteristics help to pre-

dict sellers’ shortlisting decisions. Among those explanatory variables, we are particularly

interested in the impact of intangible assets, representing accounting measure of many confi-

dential items such as patents and trade secrets. A higher value of intangible assets suggests

that the confidential information is more important to the target value.19 All three regres-

sions show significantly negative effects of intangible assets on the shortlisting probability,

which supports our premise that the seller restricts bidders’ participation concerning the

dissemination of the confidential information.

II. Takeover Auction Model

Based on the institutional background described above, we develop an auction model to

approximate bidders’ behavior in a takeover process. We aim to quantify the seller’s revenue

loss arising from bidders’ value discount due to the release of confidential information. Since

the bids in the final stage determine the revenue, we model the bidding behavior only in

that stage, which is sufficient to achieve our goal.20

To develop an auction model that suits our objective, moreover, it is necessary to un-

derstand how bidders perceive the competition intensity in the final stage of auction. As

mentioned above, the seller’s shortlisting decision depends on many factors, some of which

18 For a given auction, a repeated sample of the shortlisting decision on each potential bidder is observed.
The unobserved target-specific heterogeneity reflects the seller’s private knowledge on the target and private
consideration for the auction, e.g., the speed of sale and the disruption of the business. For a given auction,
we treat the auction as an individual and regard the seller’s shortlisting decision on each potential bidder as
a response in different time.

19 For example, it is well known that Coca-Cola has its own formula for their products, which is confidential.
Its market value is recorded in intangible assets.

20 Given our objective we can abstract away bidders’ entry decision, especially, the decision on whether
to sign the confidentiality agreement. Note also that Gentry and Stroup (2015) explicitly model this entry
decision in their model where bidders who enter choose optimal bids using the value distribution conditional
on their signal being larger than the cut-off point for entry. This conditional distribution amounts to the
distribution of synergy value in this paper.
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Table II
Determinants of Shortlisting Decisions

This table reports estimation results for three Probit regressions on shortlisting decisions. Model I includes
a set of target characteristics and market conditions. Model II expands Model I by including industry
dummies following the five-industry classification by Fama and French (1997). Model III runs a target-
specific Random-Effect Probit regression. t statistics are in parentheses beneath the coefficient estimates
and statistical significance is indicated by ∗∗∗, ∗∗, and ∗ for the 0.01, 0.05, and 0.10 levels. The sample size
(total numbers of potential bidders from 287 takeover auctions) is 1, 339. The sample covers January 1, 2000
to September 6, 2008.

Model I Model II Model III
Probit Probit (Industry Effect) Random-Effect Probit

Constant -0.811∗∗∗ -0.645∗∗ -0.518
(-2.69) (-2.01) (-1.01)

Log(Size) 0.121∗∗∗ 0.119∗∗∗ 0.133∗∗∗

(4.12) (4.00) (2.95)

Leverage 0.204 0.197 0.188
(1.10) (1.05) (0.60)

Q-ratio 0.211∗∗∗ 0.195∗∗∗ 0.206∗∗∗

(4.19) (3.80) (3.14)

CashFlow -0.371∗ -0.412∗ -0.596
(-1.70) (-1.78) (-1.62)

Cash 0.103 -0.235 -0.040
(0.52) (-1.05) (-0.11)

R&D 3.068 2.057 1.235
(1.57) (1.12) (0.61)

Intangibles -0.580∗∗∗ -0.883∗∗∗ -0.827∗∗

(-3.02) (-4.16) (-2.52)

MarketReturn -0.091 0.110 0.115
(-0.23) (0.27) (0.19)

CreditSpread 5.064 5.676 4.536
(0.60) (0.66) (0.34)

FF-Industry-1 -0.195 -0.263
(-1.61) (-1.37)

FF-Industry-2 -0.229∗ -0.223
(-1.78) (-1.00)

FF-Industry-3 0.120 0.047
(1.01) (0.23)

FF-Industry-4 0.114 -0.002
(0.73) (-0.01)
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can be inferred from the observed target characteristics, but others are private to the seller.

Therefore, we assume that the final bidders regard the shortlisting rule as a random process

and perceive it through learning the number of potential bidders N and the shortlisting

probability

pn := Pr(n bidders are invited out of N potential bidders)

with aids from their financial advisors. Moreover, the financial advisors employ similar

databases and analysis methods to obtain this information and, therefore, we further assume

that N and pn are common knowledge among the final bidders.21 Note that we suppress the

dependence on N in this section for notational simplicity.

Now, consider bidder i in the final bidding stage. After the comprehensive due diligence,

she privately discovers her synergy value and discounts it to reflect the potential damage of

competitive information revelation. To this end, we express bidder i’s net utility when she

wins the auction with n final bidders as

ui = vi −D(n, vi), (1)

where vi is her synergy value upon merging with the target and D(n, vi) denotes her in-

formation disclosure discount. We consider the synergy value as private information to the

bidder because it reflects the bidder’s opportunity costs of merging with the target and

business compatibility that is particular to each bidder-target combination. We also assume

that (v1, . . . , vn) are independent draws from the valuation distribution Fv with density fv

supported on [v, v] ⊂ R+, which is common knowledge among the final bidders. Note that

the bidder symmetry can be justified because bidders do not know the identities of their

opponents. Moreover, we maintain the following assumption regarding the structure of in-

21 A major method adopted by the investment bank is the precedent transactions analysis, where the
information of the previous M&A transactions are collected through SEC filings and business databases such
as SDC Platinum. See Chapter 2 of Rosenbaum and Pearl (2009) for more details.
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formation disclosure discount.

ASSUMPTION 1. D(n, v) satisfies

i. D(n, v) is increasing in n;

ii. D(n, v) is increasing in v, but not faster than the identity;

iii. D(n, v) = 0.

Assumption 1 items (i) and (ii) reflect that a greater discount arises either as more

competitors gain the confidential information or as a larger synergy value is at stake; item

(ii) preserves the order of the bidders’ valuations in the presence of the information disclosure

discount, i.e., vi > vj implies ui > uj; and item (iii) normalizes the discount on the lower

boundary to be zero.

In order to derive the Bayesian equilibrium for the game induced by the auction, we

consider bidder i’s optimal bidding. Suppose that all other bidders follow a strictly increasing

bidding strategy β(·). Since {Fv, D,N, pn} is common knowledge in the bidding game, we

write bidder i’s expected payoff of bidding b as

π(b, v) =
N∑
n=1

pn

[
n∏

j=1,j 6=i

Pr(β(vj) ≤ b)(v −D(n, v)− b)

]

=
N∑
n=1

pnFv(β
−1(b))n−1(v −D(n, v)− b).

By taking a derivative of this payoff function with respect to b, we obtain the first-order

necessary condition for the bidder’s optimization problem as

N∑
n=1

pnFv(v)n−1
(
∂

∂v
β(v)

)
=

N∑
n=2

pn(n− 1)Fv(v)n−2fv(v) (v −D(n, v)− β(v)) . (2)
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Solving the differential equation (2), we obtain an analytical expression for β(v). In order

to simplify the expression, we denote bidder i’s equilibrium winning probability by H(v) :=∑N
m=1 pmFv(v)m−1 and its derivative by h(v) := dH(v)/dv =

∑N
m=2 pm(m−1)Fv(v)m−2fv(v).

We then find the solution to (2) as

β(v) =
H(v)

H(v)
β(v) +

N∑
n=2

pn
H(v)

∫ v

v

(t−D(n, t))dFv(t)
n−1

=
p1
H(v)

v +
N∑
n=2

pnFv(v)n−1

H(v)

∫ v

v

(t−D(n, t))d

[
Fv(t)

Fv(v)

]n−1
,

for which we use the boundary condition, β(v) = v: the bidder with v always bids v, because

any bid lower than v is not accepted and any bid higher than v exceeds her value. We may

write β(v) in a more intuitive form. To do so, we define the contingent bidding function

β̃In(v) :=

v, for n = 1,∫ v
v

(t−D(n, t))d
[
Fv(t)
Fv(v)

]n−1
, for n = 2, . . . , N.

Notice that when there is no information disclosure discount, i.e., D(v, n) = 0, β̃In(v) for

n ≥ 2 is the optimal bidding strategy in the first price auction where the bidders know n.

Hence, we consider β̃In(v) as the bidding strategy that incorporates the value discount for

each contingent n. Using this expression, then, we can re-write β(v) as a weighted average

of the contingent bidding function;

β(v) =
N∑
n=1

wn(v)β̃In(v). (3)

where wn(v) := pnFv(v)n−1/H(v) is a conditional winning probability, i.e., wn(v) ≥ 0 for all

n and v and
∑N

n=1wn(v) = 1 for all v by construction.

Now we establish the existence of a symmetric Bayesian Nash Equilibrium (BNE) char-
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acterized by the bidding strategy (3) by showing no bidder can profitably deviate from it

when all rival bidders follow it.

PROPOSITION 1. Suppose that the bidding strategy (3) is strictly increasing in v, then

β(v;N) characterizes a symmetric monotone BNE.

Proof. See Appendix A.1.

The existence of BNE relies on the presumption of the strict monotonicity of β(v), which

does not follow the strict monotonicity of β̃In(v) because the weights wn(v) may not be

monotone and some of wn(v) even may decrease. We do not establish a sufficient and

necessary condition for the monotonicity at the level of model primitives. Instead, we present

a sufficient condition that only involves a reduced form parameter pn to verify that there

exists a set of structural parameters under which β(v) is strictly increasing. This condition

generally restricts pn but it always holds for N = 2 and 3.

PROPOSITION 2. The bidding strategy (3) is strictly increasing if for any N and m ≤ N ,

p1 ≥ 1(N ≥ 3)×
N∑
m=3

(m− 2)pm. (4)

Proof. See Appendix A.2.

Note that we do not impose the sufficient condition (4) for the identification and estima-

tion of the structural model. Instead, in what follows we establish identification of (Fv, D)

assuming that bidding monotonicity is satisfied and then we develop an empirical method

that rules out (Fv, D) under which bidding monotonicity is violated.

III. Identification of the Structural Model

In this section, we study the identification of the takeover model, in which the observed bids

are generated from the BNE described in Proposition 1. As noted earlier, the final bidders
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observe the confidential information through the due diligence, but since it is confidential,

the econometrician cannot observe it. In order to handle the problem of unobserved hetero-

geneity, we let Z := (X, τ) be the vector of auction characteristics that the bidders observe

in the final stage, where X ∈ Rk is observed by the econometrician but τ ∈ R+ is not, i.e.,

unobserved heterogeneity. Since all the identification arguments are conditional on observed

heterogeneity, we suppress the notational dependence on X in this section.

We consider a two stage valuation updating process: in the first stage, bidder i observes

public information X and obtains an initial assessment νi on her synergy value vi; upon

being shortlisted to the final stage, she examines the confidential information that updates

her value to vi = τ ·νi. This structure then corresponds to the specification of the unobserved

heterogeneity of Krasnokutskaya (2011). Since the synergy value is unique to each bidder-

target pair, we consider νi as private information for bidder i. Moreover, since τ represents

the confidential information, we assume that it is orthogonal to {ν1, . . . , νn}. Furthermore,

we assume that the number of potential biddersN is exogenous to (τ, {ν1, . . . , νn}) because an

acquiring company’s decision to make indication of interest, i.e., becoming a potential bidder,

largely depends on her private opportunity costs, e.g., alternative investment opportunities.

Formally, we make the following assumption,

ASSUMPTION 2. For each auction ,

(i) The joint distribution of (τ, ν1, . . . , νn) has the structure of

F (τ, ν1, . . . , νn|N) = Fτ (τ)
n∏
i=1

Fν(νi),

where Fτ (·) is the marginal distribution of τ with τ ∈ [τ , τ ] and τ > 0; and Fν(·|N) is

the marginal distribution of νi with [ν, ν] and ν > 0;

(ii) D(n, vi) = D(n, τ · νi) = τ ·D(n, νi) for all n ∈ {2, . . . , N};

(iii) pn|N = pn|N,τ , for all n = {1, · · · , N}.
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Assumption 2 item (i) combines the discussion above and our model assumptions in sec-

tion II, item (ii) imposes the multiplicative structure on the information disclosure discount

in the same way as the value, and item (iii) states that τ does not affect bidders’ estima-

tion of the shortlisting probability. As described in section II, bidders obtain the common

knowledge of the shortlisting probability pn|N by studying precedent transactions using their

public information. Therefore, the estimation of the shortlisting probability does not depend

on the confidential information τ .

Our objective is to examine if we can learn (Fν , Fτ , D) from the data (b1, . . . , bn, N, n).

Since the identification is a large sample statement, we assume that we have the bid distri-

bution G(b|N) with density g(b|N) for all N in the sample. The identification consists of two

steps: we first identify Fτ (·) by exploring the within-auction bid variation and then identify

Fν(·) and {D(n, ·)}Nn=2 by the cross-auction bid variation and the exogenous variation of N .

First, we identify Fτ (·) by deconvoluting the joint bid distribution following Krasnokut-

skaya (2011). Since a model with (τ, ν) and a model with (τ/2, 2ν) generate the same bid

distribution, a location normalization is introduced.

ASSUMPTION 3. log(τ) has a non-vanishing characteristic function with E[log τ ] = 0.

This assumption implies that log νi is an unbiased first-stage estimate of the true value

log vi, i.e., log νi = E(log vi). Under Assumption 2, we have bi = β(vi;N) = τ · β1(νi;N),

where β1(νi;N) is a hypothetical bid that bidder i would have submitted if she observed

τ = 1. Let bi := (bi/τ) = β1(νi;N) with an associated density gb(·|N). The following

Proposition provides conditions for identifying fτ (·) and gb(·|N).

PROPOSITION 3. Under Assumptions 2 and 3, Fτ (·) and Gb(·|N) are nonparametrically

identified.

Proof. Under the hypothesis, the joint distribution of (log b1, log b2) is directly identified.

Since log bi has a compact support [log ν, log β(ν;N)], its characteristic function is non-

vanishing ; see Lemma A1 of Krasnokutskaya (2011). Under Assumption 2, the characteristic
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function of log τ is also non-vanishing. Since log bi = log τ + log bi, the joint distribution

of (log b1, log b2) determines the joint distribution of (log τ, log b1, log b2) up to a change of

location; see Kotlarski (1966). We fix the location at E[log τ ] = 0 (Assumption 2), concluding

the proof.

Based on Proposition 3 we regard {Gb(·|N)}N as known and we identify Fν and D(n, ·).

Since we use Gb(·|N), we consider an auction with τ = 1, for which we can rewrite the first

order necessary condition (2) in terms of the bid distribution functions by the change of

variable via the equilibrium bidding strategy, β1(v;N);

N∑
n=2

(n− 1)pn|NGb(b|N)n−2gb(b|N)(v −D(n, v)− b) =
N∑
n=1

pn|NGb(b|N)n−1. (5)

Note that we express the dependence of the shortlisting probability pn|N on the number of

potential bidders, N , which is useful for identification. In order to simplify the equilibrium

relationship between the value and the bid in (5), we define

λN(b) :=

∑N
n=1 pn|NGb(b|N)n−1∑N

m=2(n− 1)pm|NGb(b|N)m−2gb(b|N)
,

which is the ratio of the overall winning probability to its derivative, and

ηn,N(b) :=
(n− 1)pn|NGb(b|N)n−2∑N

m=2(m− 1)pm|NGb(b|N)m−2
,

which forms a probability distribution, as it is positive and sum to 1 over n. Using the

notations, we rewrite (5) as

v = b+ λN(b) +
N∑
n=2

ηn,N(b)D(n, v), (6)

where the second term on the right hand side is the markdown due to competition intensity
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and the third term is the weighted expected value deduction due to information disclosure

discount. Note that λN(·) and ηn,N(·) are directly identified because they are determined

by Gb(b|N). We can construct N − 1 equations from (6), one for each N ∈ {2, . . . , N} with

N ≥ 2. Using the equations, we hope to identify Fν(·) and D(n, ·) for all n ∈ {2, . . . , N},

which gives N unknown functions. Since we have more unknowns than knowns, however,

the model primitives would not be identified without a further structure. To this end, we

consider the following specification.

ASSUMPTION 4. For any v ∈ [v, v] and each n = 2, . . . , N , the information disclosure

discount has the form of D(n, v) = (n− 1) ·D(v) with (n− 1)dD(v)/dv < 1.

Assumption 4 has an intuitive interpretation: since bidders do not know the identities

of their competitors, they naturally treat each rival bidder as a representative competitor,

and discount their synergy values by the same expected loss for each potential competitor.

Accordingly, the discount factor D(v) represents this expected loss per rival bidder. Be-

sides, this specification alleviates the data requirement for identification and the empirical

application later. The identification problem is now boiled down to identifying D(v) and

Fν(·).

PROPOSITION 4. Under Assumptions 2 and 4, D(·) and Fν(·) are identified by Gb(·|N1)

and Gb(·|N2) with N1 6= N2 when pN1|N1 > 0 and pN2|N2 > 0.

Proof. See Appendix A.3.

IV. Estimation Method

A. Estimation Strategy

Now we bring the theoretical model and the data together to recover the model primitives.

We observe a sample of T independent takeover auctions, {b1t, . . . , bn′t, Nt, nt, Xt}Tt=1 where
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n′t ≤ nt denotes the number of observed cash bids, i.e., winning cash bids and some losing

cash bids.22 We postulate that the omitted losing bids are lower than the winning bid

because the target board of directors has the fiduciary duty to accept the superior offer;

and therefore the cash values of the losing bids, reported or not, should be lower than the

observed cash-only winning bid. Given the symmetric IPV paradigm, then, the joint density

of the bids for auction t is given by

n′t∏
i=1

g(bit|Nt, Xt; τt, θ) [G(bwt |Nt, Xt; τt, θ)]
nt−n′t ,

where bwt denotes the winning bid, τt is the unobserved heterogeneity, and θ collects all the

model parameters, which will be specified later. Let y := {b1t, . . . , bn′t}Tt=1, τ := {τt}Tt=1,

n := {nt}Tt=1, and X := {Nt, Xt}Tt=1. Conditional on (τ ,X, θ), then, the joint density of the

observed bids y and the number of final bidders n is given by

L(y,n|τ ,X, θ) =
T∏
t=1

p(nt|Nt, Xt; θ)

n′t∏
i=1

g(bit|Nt, Xt; τt, θ) [G(bwt |Nt, Xt; τt, θ)]
nt−n′t

 , (7)

where p(nt|Nt, Xt; θ) denotes the conditional shortlisting probability.

Now, we specify each element in (7) on the right hand side: the shortlisting probability

and the bid distribution functions. We model the shortlisting probability by the binomial

distribution, i.e.,

p(n = nt|Nt, Xt; δ) :=

 Nt − 1

nt − 1

Φ(X ′tδ)
nt−1 [1− Φ(X ′tδ)]

Nt−nt , (8)

where δ ∈ Rk. In order to construct the bid density, we need to specify several factors. First,

22 Losing bids are omitted mainly for the following reasons: (a) a bidder is invited, but did not submit a
final bid; (b) a submitted bid is not comparable to the winning bid, e.g, not a cash-only bid; and (c) a losing
bid is simply not reported in the SEC filings.
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we consider the valuation premium on target t in the form of

vit :=
Vit
Mt

= τt exp(X ′tγ)εit (9)

where Vit is bidder i’s absolute synergy value and Mt is the observed standalone value of

the target.23 Here, τt exp(X ′tγ) with γ ∈ Rk refers to the common synergy premium and εit

denotes the idiosyncratic synergy premium, specific to each bidder-target combination. We

specify that log vit = X ′tγ + log τt + log εit and

log εit ∼ N (0, h−1ε )1(log εit ∈ [−dh−1/2ε , dh−1/2ε ]), (10)

log τt ∼ N (0, h−1τ ), (11)

where hε and hτ are the precision parameters of the normal distributions and d := Φ−1(99.5%) =

2.576 with Φ(·) being the CDF of N (0, 1). We use Fε(·|hε) and fε(·|hε) to denote the CDF

and PDF of εit and Fτ (·|hτ ) and fτ (·|hτ ) similarly for τt.

Second, we specify the discount factor D(vit) as a linear function of vit which is zero

at the lower bound, i.e., D(vit|η) = η[vit − vt]1(η > 0), where the event that η ≤ 0 which

corresponds to no information discount. Then, together with Assumptions 2 and 4, the

information disclosure discount is written as

D(nt, vit|Xt; η) = (nt − 1)τt exp(X ′tγ)η[εit − εit]1(η > 0),

where (nt − 1)η < 1 for any given nt to be consistent with Assumption (1) that valuation

order is preserved in the presence of information disclosure discounts.

Now, we use θ := (γ, δ, η, hε, hτ ) to index the model primitives. We interpret observed

bids as equilibrium outcomes, i.e., the latent synergy values are linked to the observed

23Gorbenko and Malenko (2014) and Gentry and Stroup (2015) use a similar synergy value structure but
without the unobserved heterogeneity τt.
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bids through the strictly increasing bidding function. Then, we derive the bid distribution

functions in (7) by change of variables under each parameter θ.24 Finally, given the data

z := (y,n,X) and a prior π(θ), the posterior density is

π(τ , θ|z) ∝ π(θ)×
T∏
t=1

fτ (τt|hτ )× L(y,n|τ ,X, θ),

and the posterior predictive mean is given as

E[c(τ , θ)|z] =

∫∫
c(τ , θ)π(τ , θ|z)dτdθ. (12)

for a measurable function of interest, c(τ , θ).

B. Implementation

The posterior predictive mean (12) requires the integration of a high-dimensional function.

To overcome the computational difficulty, we draw a sample {τ (s), θ(s)}Ss=1 from the poste-

rior distribution π(τ , θ|z) using Metropolis-within-Gibbs algorithm, then approximate the

equation (12) by

1

S

S∑
s=1

c(τ (s), θ(s))
a.s−→ E[c(τ , θ)|z]. (13)

The algorithm is summarized as follows with details given in Appendix B.2.

Prior We use the following prior distributions for θ = (γ, δ, η, hε, hτ ): hτ ∼ Ga(ατ , λ
−1
τ ),

hε ∼ Ga(αε, λ
−1
ε ), γ ∼ N (µγ, σ

2
γIk), δ ∼ N (µδ, σ

2
δIk), and η = η∗1(η∗ > 0) with πη∗(η

∗) ∝

1(η∗ > η∗) for some η∗ < 0, where Ik is a k-dimensional identity matrix and ατ , λτ , αε, λε, µγ, σγ, µδ, σδ

and η∗ are known parameters. It is worth emphasizing that we set η∗ < 0 to allow the de-

24 See Appendix B.1 for the detailed derivation of bid distribution functions.
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tection of no information disclosure discounts, and thus no information cost.

Gibbs Sampling At each iteration s = 1, . . . , S, we split θ into scalar blocks and sam-

ple each scalar parameter separately, conditional on the most recent values of the other

parameters.

Metropolis-Hastings Updating An adaptive Gaussian Metropolis-Hastings algorithm

is used to update the parameters within each block sampling. We use Gaussian proposal

distribution for all the parameters except γ = (γ1, . . . , γk) and hε, for which truncated

Gaussian proposal distributions are used by incorporating theoretical parameter bounds in

order to improve computational efficiency. For each iteration, we tune the variance of the

proposal distribution following Haario et al. (2001, 2005). In particular, the variance is

updated according to the variance of the parameter values sampled so far.

V. Estimation Results

In this section, we present the estimation results from our structural analysis. We run

the sampling algorithm for 500, 000 iterations, then keep every 10th draw after an initial

100, 000 burn-in period. This procedure gives a sample of M = 40, 000 draws from the

posterior distribution.25

A. Parameter Estimates

The key model primitive of our interest is the information disclosure discount, which is

summarized by the parameter η, the percentage synergy value discount for each additional

competitor learning the confidential information. The posterior mean of η is 7.6% with

25The thinning procedure reduces the autocorrelation of the posterior sample and reduces computing time
of the counterfactual analyses.
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the 95% credible interval of [6.1%, 9.2%], which amounts to tens of millions of dollars for a

typical takeover transaction worth billions of dollars. For example, for an average firm in

our sample, the 7.6% of discount translates to $67 million synergy value loss.26

Table III summarizes the posterior distribution of the coefficients attached to auction

covariates Xt by their posterior means and 95% credible intervals. The left panel reports the

parameter estimate of γ, which represents the direct association of synergy values with the

target characteristics and market conditions; see our specification (9). The estimation result

shows that Log(size) and Q-ratio are negatively associated with synergy value. The negative

effect of target size on the synergy value is likely due to decreasing returns to scale.27 The

negative association with Q-ratio may reflect high takeover premiums for undervalued target

firms, proxied by low Q-ratio. In addition, the positive predictive coefficients of R&D and

Intangibles are intuitive: a main source of synergy value creation comes from technological

enhancement in the combined entity.

The estimate of δ, reported in the right panel of Table III, demonstrates that a few

observed target characteristics help to predict the shortlisting probability. This result sup-

ports our early assertion in section II that bidders can estimate the shortlisting probability

by studying the precedent transactions using their public information, i.e., observed target

characteristics. Moreover, we find that the company-specific characteristics, i.e., Log(Size),

Q-ratio, CashFlow, Cash and Intangibles, rather than the general market conditions and in-

dustry factors, are more relevant to seller’s shortlisting decisions. In particular, the negative

association of intangible assets with the shortlisting probability suggests that bidder’s entry

is more tightly regulated for target companies with more intangible assets. This result is

coherent with our premise of information costs.

26 The average firm is defined as a target company with an average size, leverage, Q-ratio, CashFlow,
Cash and R&D in our sample.

27 An alternative explanation of the negative size coefficient could be due to our focus on takeovers with
cash-only bids. Cash bidders usually finance the acquisition through investment banks and the cost of cash
financing increases with the size.
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Table III
Posterior Estimation of Parameters

This table reports the posterior means and 95% credible intervals of the coefficients on a set of target
characteristics and market conditions for valuation and shortlisting estimation; see specification (8 and 9).
The results are calculated based on 40, 000 draws from the posterior distribution.

γ’s in valuation δ’s in shortlisting

Variables Mean 95% Credible Interval Mean 95% Credible Interval
Constant 0.761 [0.560, 0.957] -0.792 [-1.215, -0.530]

Log(Size) -0.043 [-0.068, -0.015] 0.150 [0.094, 0.223]

Leverage 0.029 [-0.221, 0.243] 0.028 [-0.353, 0.408]

Q-ratio -0.045 [-0.087, -0.001] 0.177 [0.053, 0.291]

CashFlow 0.031 [-0.150, 0.222] -0.854 [-1.416, -0.305]

Cash 0.052 [-0.184, 0.313] -0.506 [-0.936, -0.070]

R&D 0.712 [-0.491, 1.878] 0.673 [-0.953, 2.281]

Intangibles 0.070 [-0.190, 0.342] -0.904 [-1.354, -0.437]

CreditSpread 0.250 [-1.618, 2.017] 0.166 [-1.740, 2.072]

MarketReturn -0.320 [-0.655, 0.034] -0.213 [-0.856, 0.426]

FF-Industry-1 -0.064 [-0.213, 0.083] -0.228 [-0.487, 0.053]

FF-Industry-2 -0.114 [-0.278, 0.048] -0.201 [-0.466, 0.065]

FF-Industry-3 -0.034 [-0.174, 0.102] 0.155 [-0.090, 0.398]

FF-Industry-4 0.031 [-0.130, 0.205] 0.082 [-0.271, 0.429]

B. Predictive Densities of τt and εit

Our specification (9) forms bidder i’s synergy value by three components: the idiosyncratic

bidder-target synergy εit, observed target heterogeneity X ′tγ, and unobserved target hetero-

geneity τt. Our specification along with the identification result allows us to measure the

contribution of each of the three components on the variation of the bid data. To this end,

we define the (posterior) predictive density of τ as

fτ (τ |z) :=

∫
fτ (τ |hτ )π(hτ |z)dhτ . (14)

where fτ (·|hτ ) is the density of τ in (11) and π(hτ |z) is the marginal posterior density of

hτ . We approximate (14) by an ergodic sample, {h(m)
τ }Mm=1 drawn from the posterior, i.e.,
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for each τ

1

M

M∑
m=1

fτ (τ |h(m)
τ )

a.s−→ f(τ |z),

and summarize its uncertainty by a pointwise 95% credible interval [a, b] such that

95% =
1

M

M∑
m=1

1
{
fτ (τ |h(m)

τ ) ∈ [a, b]
}
.

which forms a credible band as we vary τ . Specifically, we use the 2.5 and 97.5 percentiles

for a and b. We similarly construct the predictive density of εit denoted by fε(·|z) and its

95% credible band.

Figure 1 presents the predictive densities fτ (·|z) and fε(·|z) in solid lines with their 95%

credible band in dashed lines. It shows that fτ (·|z) is more diffuse than fε(·|z), implying

that a bidder can dramatically change her evaluation on the synergy value after examining

the confidential information. More specifically, we find that the confidential information

would raise the target value by more than half with probability of 11.2% and it would lower

by more than half with probability of 2.0%. In contrast, the effect of bidder-specific synergy

is relatively small: it raises the target value more than half with probability of 1.8% and

lowers more than half with essential zero probability. We further consider the ratio of the

variance of τ to the sum of variances of log(τ) and log(ε);

1/hτ
1/hτ + 1/hε

,

which can be interpreted as the relative variation of the confidential information conditional

on the observed target heterogeneity Xt. The posterior mean of the ratio is 75.3% with the

95% credible interval of [70.6%, 79.7%]. This result provides a quantitative support of our

conjecture that the unobserved confidential information plays an essential role in the target
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Figure 1. Predictive Densities of τt and εit. This Figure shows the predictive densities
of the unobserved heterogeneity and the idiosyncratic synergy, based on 40, 000 draws from
the posterior distribution.

valuation process and raises doubts on the models ignoring the latent factor.

C. Counterfactual Analyses

In this subsection, we conduct a range of counterfactual analyses. First, we disentangle the

information cost and the competition gain. Then, we show that the English auction may

reduce information cost and thus increase the seller’s expected revenue. Finally, we bound

the operation cost by exploring the seller’s shortlisting decision.

Let R(X, τ, n|N, θ) denote the expected revenue (i.e., takeover premium) when the seller

of a target with (X, τ) invites n final bidders out of N potential bidders under the parameter
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θ. The multiplicatively separable valuation structure implies that the expected revenue

is also multiplicatively separable, i.e., R(X, τ, n|N, θ) = τ · R(X, τ = 1, n|N, θ). For the

counterfactual analyses, we consider a range of auctions in the Consumer and HighTech

industries with τt = 1 and other covariates equal to their sample medians, and suppress the

dependence of R(X, τ, n|N, θ) on (X, τ). Formally,

R(n|N, θ) :=

∫
bwgw(bw|N, n, θ)dbw, (15)

where bw is the winning bid from the auction and gw(·|N, n, θ) is the corresponding proba-

bility density. Moreover, we define the posterior predictive revenue as

R(n|N, z) :=

∫ {[∫
bwgw(bw|N, n, θ)dbw

]}
π(θ|z)dθ

=

∫
bw

{∫
[gw(bw|N, n, θ)] π(θ|z)dθ

}
dbw

=

∫
bwgw(bw|N, n,z)dbw

where the second equality applies the Fubini’s theorem and the last uses the definition of the

posterior predictive density of bw. That is, R(n|N, z) is the posterior mean of the winning

bid. Hence, we approximate it by M−1∑M
m=1 b

(m)
w with b

(m)
w ∼ gw(bw|N, n, θ(m)) for each

draw θ(m) from the posterior, and summarize its uncertainty by the 95% credible interval

based on the 2.5 and 97.5 percentiles of {b(m)
w }Mm=1.

C.1. Information Cost and Competition Effect

Our structural model allows us to disentangle two opposing effects, i.e., competition effect

and information cost, on the takeover premium when one more bidder is invited. Denote the

revenue in the absence of information disclosure discount by R0(n|N, θ), which is identical

to R(n|N, θ) except that η is restricted to be zero. Then we define the total information
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cost (TIC ) incurred when n final bidders are invited as the revenue loss induced by the

information disclosure discount, i.e.,

TIC(n;N) := R0(n|N, θ)−R(n|N, θ).

Then the (marginal) information cost (IC ) by inviting an additional bidder is

IC(n, n+ 1;N) :=TIC(n+ 1;N)−TIC(n;N). (16)

We also define the competition effect (CE ) as the revenue difference in the absence of the

information disclosure discount, i.e.,

CE(n, n+ 1;N) := R0(n+ 1|N, θ)−R0(n|N, θ). (17)

Then, we can decompose the revenue change into the competition effect and the information

cost:

R(n+ 1|N, θ)−R(n|N, θ) =R0(n+ 1|N, θ)−R0(n|N, θ)

− [R0(n+ 1|N, θ)−R(n+ 1|N, θ)]

+ [R0(n|N, θ)−R(n|N, θ)]

= CE(n, n+ 1;N)− IC(n, n+ 1;N).

Considering a series of auctions in the Consumer and HighTech industries with N = (2, 4, 8),

Table IV reports the predictive revenue along with its 95% credible intervals and the change

of revenue along with its decomposition into competition effect and information cost. First,

column (A) shows that acquirors generally value HighTech targets more than the Consumer

targets ceteris paribus. This posterior prediction is consistent with the observed premium
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difference in Table I; for example, on average a HighTech target receives 11% higher pre-

mium than a Consumer target, i.e., 138% v.s. 127%. Second, column (C) shows that the

information cost reduces a substantial portion of the takeover premium; for example, for

the median participation of (N, n) = (4, 2) in Consumer industry, the predictive premium

decreases by 2.6%, which amounts to $23 millions for a firm with average size, i.e., $719.6

millions. Finally, column (F) separates the positive competition effect by explicitly singling

out the change of information cost calculated in column (E).

C.2. Operation Cost

Suppose that the sellers choose the optimal number of final bidders to maximize their expect

revenue. We can bound the operation cost by contrasting the theoretical prediction on the

sellers’ revenue against the observed number of shortlisted bidders.

Recall that n is unknown whereas N is common knowledge among the bidders, and the

bidding strategy depends on N , but not on n. However, since R(n|N, θ) is the expectation

of the highest bid among submitted n bids, we have R(n|N, θ) > R(n − 1|N, θ) for all

n ≤ N . Now let OC be the operation cost for inviting an additional bidder. Then, the

seller would invite the nth bidder if the expected revenue increment is larger than OC, i.e.,

R(n|N, θ) − R(n − 1|N, θ) ≥ OC. Similarly, he would not invite (n + 1)th bidder if the

marginal revenue is smaller than OC, i.e., R(n+1|N, θ)−R(n|N, θ) < OC. Therefore, when

the seller chooses to invite n bidders, it must be that

R(n+ 1|N, θ)−R(n|N, θ) < OC ≤ R(n|N, θ)−R(n− 1|N, θ). (18)

From the inequality (18), we can bound OC by contrasting the theoretical revenue and

observed n. Formally, we have OC ∈ [OC,OC] where

OC := R(min{n+ 1, N}|N, θ)−R(n|N, θ) (19)
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Table IV
Predictive Revenue, Information Cost and Competition Effect

This table reports the posterior results for a range of hypothetical auctions with the median values of
explanatory variables and the unobserved heterogeneity τ = 1 for Consumer and HighTech industries.
Columns (A)&(B) report the predictive revenue and its 95% credible interval; column (C) reports the
predictive change of revenue when the number of final bidders increases from n− 1 to n; columns (D)&(E)
decompose the revenue change into the information cost and competition effect. The results are calculated
based on 40, 000 draws from the posterior distribution.

(A) (B) (C) (D) (E)
(N,n) Revenue 95% CI for (A) ∆ Revenue Info. Cost Comp. Effect

Consumer Industry
(2,1) 1.015 [0.866, 1.191] – – –
(2,2) 1.055 [0.902, 1.214] 0.040 0.001 0.041

(4,1) 1.140 [0.886, 1.448] – – –
(4,2) 1.225 [0.954, 1.481] 0.085 0.006 0.091
(4,3) 1.269 [1.013, 1.498] 0.044 0.002 0.047
(4,4) 1.297 [1.058, 1.509] 0.028 0.001 0.029

(8,1) 1.240 [0.904, 1.616] – – –
(8,2) 1.348 [1.011, 1.657] 0.108 0.021 0.129
(8,3) 1.402 [1.099, 1.678] 0.054 0.010 0.063
(8,4) 1.435 [1.161, 1.693] 0.033 0.005 0.038
(8,5) 1.458 [1.206, 1.706] 0.024 0.003 0.027
(8,6) 1.476 [1.237, 1.713] 0.017 0.002 0.019
(8,7) 1.489 [1.258, 1.721] 0.013 0.001 0.014
(8,8) 1.501 [1.276, 1.725] 0.011 0.001 0.012

HighTech Industry
(2,1) 1.094 [0.897, 1.326] – – –
(2,2) 1.151 [0.949, 1.352] 0.057 0.002 0.059

(4,1) 1.242 [0.920, 1.607] – – –
(4,2) 1.344 [1.018, 1.646] 0.103 0.009 0.112
(4,3) 1.396 [1.097, 1.666] 0.051 0.003 0.055
(4,4) 1.428 [1.158, 1.679] 0.032 0.001 0.033

(8,1) 1.309 [0.942, 1.691] – – –
(8,2) 1.414 [1.082, 1.738] 0.106 0.034 0.139
(8,3) 1.465 [1.174, 1.763] 0.051 0.016 0.066
(8,4) 1.497 [1.231, 1.779] 0.032 0.009 0.041
(8,5) 1.519 [1.263, 1.791] 0.022 0.005 0.028
(8,6) 1.536 [1.287, 1.801] 0.017 0.003 0.020
(8,7) 1.550 [1.305, 1.808] 0.014 0.002 0.016
(8,8) 1.562 [1.322, 1.816] 0.012 0.001 0.013
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OC := R(n|N, θ)−R(n− 1|N, θ) (20)

are the implied lower and upper bounds of OC, respectively, for n ∈ {1, . . . , N}. Here we

assume the expected revenue is 1 under the current management, R(0|N, θ) = 1, which

corresponds to the scenario of inviting no bidders (n = 0).

Table V reports the predictive lower and upper bounds of the marginal operation costs

OC, defined in (19) and (20), for a series of hypothetical auctions with N = (2, 4, 8) in

Consumer and HighTech industries. The result indicates a substantial marginal operation

cost to accommodate bidders in the final due diligence. For example, for the median par-

ticipation of (N, n) = (4, 2) in consumer industry, the marginal operation cost consumes

on average 4.4% to 8.5% of the takeover premium, which amounts to $35 to $79 millions.

This estimate is substantially higher than the reported advisory fee, e.g., 0.84% in Hunter

and Jagtiani (2003), indicating the importance of other economic cost, such as foregoing of

business opportunities, in the process of sales of companies. The operation cost and the

information cost together explain the practice of entry regulation by the seller.

C.3. English Auction of Companies

The English auction reveals the number of final bidders to all competitors in the bidding

game. By dissolving bidders’ uncertainty on the number of bidders, the English auction can

increase the seller’s revenue when the actual pool of bidders is not large. For a series of

auctions with the number of final bidders n ranging from 2 to 8, we report the predictive

revenues and their 95% credible intervals in Table VI.28

In contrast to the predictive revenues in column (A) of Table IV, where the first-price

takeover auctions are conducted, we find that the English auction increases the revenue for

28 We omit the counterfactual comparison of the English auction with only one bidder because it would
never improve the takeover revenue than the current first-price auction, as the single bidder would bid the
reserve price.
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Table V
Estimated Bounds on Operation Cost

This table reports the predictive lower bound (OC) and upper bound (OC) of operation cost for a range
of hypothetical auctions with the median values of explanatory variables and the unobserved heterogeneity
τ = 1 for Consumer and HighTech industries. The results are calculated based on 40, 000 draws from the
posterior distribution.

(A) (B)
Consumer Industry HighTech Industry

(N,n) OC OC OC OC
(2,1) 0.040 0.015 0.057 0.094
(2,2) 0.000 0.040 0.000 0.057

(4,1) 0.085 0.140 0.103 0.242
(4,2) 0.044 0.085 0.051 0.103
(4,3) 0.028 0.044 0.032 0.051
(4,4) 0.000 0.028 0.000 0.032

(8,1) 0.108 0.240 0.106 0.309
(8,2) 0.054 0.108 0.051 0.106
(8,3) 0.033 0.054 0.032 0.051
(8,4) 0.024 0.033 0.022 0.032
(8,5) 0.017 0.024 0.017 0.022
(8,6) 0.013 0.017 0.014 0.017
(8,7) 0.011 0.013 0.012 0.014
(8,8) 0.000 0.011 0.000 0.012

some takeovers. For example, for an auction with (N, n) = (4, 2) in the Consumer industry,

the first price auction would generate the revenue of 1.225. On the other hand, the seller

would earn higher revenues of 1.265, i.e., extra $35, 000 on an average firm, by switching to

the English auction.

VI. Concluding Remark

This study finds that the information cost and operation cost incurred by the seller of

a company can be economically significant, which explains the common practice that the

seller limits bidders’ participation. Our findings provide a few policy implications to the
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Table VI
Predictive Revenue for English Auctions

This table reports the predictive revenue and its 95% credible interval for a series of hypothetical English auc-
tions with the median values of explanatory variables and the unobserved heterogeneity τ = 1 for Consumer
and HighTech industries. The results are calculated based on 40, 000 draws from the posterior distribution.

(A) (B)
Consumer Industry HighTech Industry

n Revenue 95% CI Revenue 95% CI
2 1.265 [0.912, 1.709] 1.305 [0.937, 1.764]
3 1.286 [0.975, 1.673] 1.324 [1.004, 1.723]
4 1.236 [0.958, 1.581] 1.273 [0.985, 1.626]
5 1.154 [0.905, 1.466] 1.189 [0.928, 1.511]
6 1.055 [0.825, 1.343] 1.087 [0.846, 1.383]
7 0.944 [0.721, 1.220] 0.973 [0.741, 1.255]
8 0.825 [0.601, 1.094] 0.850 [0.618, 1.125]

regulatory and judiciary authorities; and our structural method can be useful in resolving

some legal disputes related to takeover transactions.

The large amount of the information cost, e.g., $23 millions for a firm with the aver-

age size in the Consumer industry, indicates a substantial loss of social welfare due to the

informational externality. It advocates the reinforcement of regulation on the use of infor-

mation acquired from the takeover process.29 Moreover, our quantitative approach can be

useful in settling some takeover lawsuits. In particular, a seller’s shortlisting decision is of-

ten challenged in court by its shareholders, who argue that the entry restriction discourages

competition and hurts the shareholders’ benefits. Given the observed target characteristics,

our method provides a reasonable range of operation costs for similar transactions. These

estimates may serve to guide the court judgment by checking whether the implied operation

cost lies in the reasonable range.

In addition, the large seller’s cost also explains why a target company is willing to sign

29 It is beyond the scope of the paper to develop a formal decision method to choose a policy parameter
because it requires additional elements outside the auction framework, e.g., the probability of detecting
violation of the agreement and the socially desirable level of economic efficiency.
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an exclusivity agreement with a single bidder. The exclusivity agreement sends a credible

signal to the bidder that no confidential information is exposed to other competitors, and

thus prevents the information disclosure discounts. In addition, although we focus on suc-

cessful takeovers in the analyses, the implication of information cost on failed takeovers is

straightforward. When a deal fails to consummate, the market value of the target company

is expected to fall because the target firm, as the eventual owner, bears the information cost.

Appendix A: Technical Proofs

This Appendix provides the proofs of Propositions 1, 2 and 4.

A.1. Proof of Proposition 1

Proof. This proof extends Proposition 2.2 in (Krishna, 2002) to our model with uncertain

number of bidders and varying valuation.

Suppose that all but bidder i follow the bidding strategy (3). We argue that it is optimal

for bidder i to follow (3) as well. Assuming that the bidding strategy (3) is an increasing

and continuous function. Thus, in equilibrium the bidder with the highest value submits the

highest bid and wins the auction. It is not optimal for any bidder to bid over β(v;N).

First, with the rank preserving property assumed in Assumption 1, we are able to rewrite

the β̃In(·) as

β̃In(v) = βIn(ṽ) :=

ṽ, for n = 1

1

F̃n(ṽ)

∫ ṽ
ṽ
t̃dF̃n(t̃), for n ∈ {2, . . . , N},

where ṽ := v−D(n, v) with a CDF F̃ṽ(·), and F̃n(·) := F̃ṽ(·)n−1.30 Then, let y := β−1(b;N).

30 To see this, note that the rank preserving assumption implies that

Fv(t) = Pr(v ≤ t) = Pr(ṽ ≤ t̃) = F̃ṽ(t̃).
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The expected payoff of bidder i with value v ∈ (v, v) if he bids an amount b = β(y;N) is

π(β(y;N), v;N) =
N∑
n=1

pn|NFv(y)n−1 [v −D(n, v)− β(y;N)]

=
N∑
n=1

pn|NFv(y)n−1ṽ −H(y|N)β(y;N)

=
N∑
n=1

pn|NFv(y)n−1ṽ −
N∑
n=1

H(y|N)wn(y)βIn(ỹ)

=
N∑
n=1

pn|NFv(y)n−1
[
ṽ − βIn(ỹ)

]
= p1|N(v − v) +

N∑
n=2

pn|N F̃n(ỹ)

[
ṽ − 1

F̃n(ỹ)

∫ ỹ

ṽ

t̃dF̃n(t̃)

]

= p1|N(v − v) +
N∑
n=2

pn|N

[
F̃n(ỹ)ṽ −

∫ ỹ

ṽ

t̃dF̃n(ỹ)

]

= p1|N(v − v) +
N∑
n=2

pn|N

[
F̃n(ỹ) (ṽ − ỹ) +

∫ ỹ

ṽ

F̃n(t)dt̃

]

Observe that π(β(v;N);N), v;N) = 0, so bidding β(v;N) = v is incentive compatible

for the bidder with the lowest value. Next, we exam the change of profit by deviating from

the bidding strategy (3),

π(β(v;N), v;N)− π(β(y;N), v;N) =
N∑
n=2

pn|N

[
F̃n(ỹ)(ỹ − ṽ) +

∫ ṽ

ỹ

F̃n(t̃)dt̃

]
≥ 0,

regardless of whether ỹ ≤ ṽ or z̃ ≥ ṽ because the term in the square brackets is non-negative

for n = 2, . . . , N .

We have thus shown that if all other bidders are following the strategy (3), an arbitrary

bidder with a value of v ∈ [v, v] cannot benefit by bidding anything other than β(v;N).
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Therefore, β(·;N) given by (3) characterizes a symmetric equilibrium bidding strategy for

the model.

A.2. Proof of Proposition 2

Proof. We rewrite (3) as follows,

β(v;N) =

(
1−

N∑
n=2

wn|N

)
v +

N∑
n=2

wn|N(v)β̃In(v)

= v +
N∑
n=2

wn|N(v)
(
β̃In(v)− v

)
(A.1)

Since β̃In(v)− v(≥ 0) is strictly increasing in v for all n ≥ 2, then (3) is strictly increasing as

long as ωn|N(v) is nondecreasing in v for all n ≥ 2. To simplify, we suppress dependence of

v and N in ωn|N(v).

d

dv
ωn =

1

H2

[
(n− 1)pnF

n−2f
N∑
m=1

pmF
m−1 − pnF n−2F

N∑
m=2

pm(m− 1)Fm−2f

]

=
1

H2

[
(n− 1)pnF

n−2f
N∑
m=1

pmF
m−1 − pnF n−2f

N∑
m=2

pm(m− 1)Fm−1

]

=
pnF

n−2f

H2

[
N∑
m=1

pm(n− 1)Fm−1 −
N∑
m=2

pm(m− 1)Fm−1

]

=
pnF

n−2f

H2

[
N∑
m=1

pm(n−m)Fm−1

]
.

Therefore, for n = 2, we obtain

d

dv
ω2 =

pnF
n−2f

H2

[
p1 −

N∑
m=3

pm(m− 2)Fm−1

]
≥ pnF

n−2f

H2

[
p1 −

N∑
m=3

pm(m− 2)

]
≥ 0,

where the last inequality is due to (4).
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Note that pnF
n−2f/H2 ≥ 0 and

∑N
m=1 pm(n −m)Fm−1 is increasing with respect to n

for any n ≥ 2. So, dω2/dv ≥ 0 implies dωn/dv ≥ 0 for all n > 2, which in turn implies the

strict monotonicity of equation (A.1).

A.3. Proof of Proposition 4

Proof. Let v(α) be the α-quantile of Fv(·). Then bN(α) = β(v(α);N) because bN = β(v;N)

and β(v;N) is strictly increasing in v. Therefore, from equation (6), we have,

v(α) = bN(α) + λN(bN(α)) +
N∑
n=2

ηn,N(bN(α))D(n, v(α)) (A.2)

for any α ∈ (0, 1] and an N ≥ 2.

Now suppose we observe two distinct numbers, N1 and N2, of potential bidders and let

N2 > N1 ≥ 2 without loss of generality. Under the Assumption (4), we can substitute

D(n, v(α)) = (n− 1)D(v(α)) into the equation (A.2). Then for N = N1 and N2, we have

v(α) = bN(α) + λN(bN(α)) +

[
N∑
n=2

(n− 1)ηn,N(bN(α))

]
D(v(α)). (A.3)

First note that
∑N

n=2(n−1)ηn,N(bN(α)) 6= 0 given pN |N 6= 0. Then by taking a difference

of the two equations, we get

(bN2(α)− bN1(α)) + (λN2(bN2(α))− λN1(bN1(α)))

+

N2∑
n=2

(n− 1)ηn,N2(bN2(α))D(v(α))−
N1∑
n=2

(n− 1)ηn,N1(bN1(α))D(v(α)) = 0,

which leads to

D(v(α)) =
(bN1(α)− bN2(α)) + (λN1(bN1(α))− λN2(bN2(α)))∑N2

n=2(n− 1)ηn,N2(bN2(α))−
∑N1

n=2(n− 1)ηn,N1(bN1(α))
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=
(bN1(α)− bN2(α)) + (λN1(bN1(α))− λN2(bN2(α)))∑N2

n=2 n · ηn,N2(b2(α))−
∑N1

n=2 n · ηn,N1(bN1(α))
.

The last equation is arrived by recognizing that
∑N

n=2 ηn,N(b) = 1 for any b ∈ (b, b] and

any N ≥ 2 when p1|N < 1. This concludes the identification of D(v(α)) at α-quantile.31

WithD(v(α)) identified at each quantile α ∈ (0, 1], we can identify v(α) for each α ∈ (0, 1]

by equation (A.3). As an immediately result, the valuation distribution Fv(·) is nonpara-

metrically identified on (v, v]. And the information disclosure discount factor D(v) is also

nonparametrically identified on (v, v] by equation (A.3).

Appendix B: Estimation Methodology

B.1. Derivation of Bid Distribution Functions

In order to construct the bid density, consider an auction with characteristics (τ,X) = (1, 0)

and N potential bidders. Notice that the success rate of the shortlisting probability (8)

for this auction is q := Φ(X ′δ) = Φ(0). We let (hε, η) index (Fε, D), respectively. For this

auction, we use β(·|q,N, hε, η) to denote the equilibrium bidding strategy. Then, interpreting

observed bids in data as equilibrium outcomes, we may write

bit = β(vit|Φ(X ′δ), N, hε, η)

= β(τ exp(X ′γ)εit|Φ(X ′δ), N, hε, η)

= τ exp(X ′γ)β(εit|Φ(X ′δ), N, hε, η)

31
∑N2

n=2 n ·ηn,N2(b2(α))−
∑N1

n=2 n ·ηn,N1(bN1(α)) 6= 0. If it is zero, then the bidding strategy is not strictly
monotone.
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for the auction with characteristics (X, τ). The bid density can then be written as The bid

density can then be written as

g(bit|N,X; τ, θ) =
fε

[
β−1

(
bit

τ exp(X′γ)

∣∣Φ(X ′δ), N, hε, η
) ∣∣hε]

τ exp(X ′γ)β′
[
β−1

(
bit

τ exp(X′γ)

∣∣Φ(X ′δ), N, hε, η
) ∣∣Φ(X ′δ), N, hε, η

]
× 1

{
bit

τ exp(X ′γ)
∈ [ε, β(ε|Φ(X ′δ), N, hε, η)]

}
,

where θ := (γ, δ, η, hε, hτ ). Accordingly, the distribution function of bit is

G(bit|N,X; τ, θ) := Fε

[
β−1

(
bit

τ exp(X ′γ)

∣∣Φ(X ′δ), N, hε, η

) ∣∣hε] .
B.2. Posterior Sampling

This Appendix provides details on sampling {τ (s), θ(s)}Ss=1 from the posterior distribution

π(τ , θ|y) using Metropolis-within-Gibbs algorithm. Suppose the current parameter value

is θ(s) = (γ(s), δ(s), η(s), h
(s)
ε , h

(s)
τ ) and τ (s), we describe how we draw θ(s+1) and τ (s+1) for

s = 1, . . . , S.

1. Draw γ(s+1) = (γ
(s+1)
1 , . . . , γ

(s+1)
k ): For each j starting from 1 to k, we update γ

(s+1)
j

using a slightly modified Gaussian Metropolis-Hastings algorithm. In order to improve

computational efficiency, we compute the conditional support [γ(s)
j
, γ

(s)
j ] and draw a

candidate γ̃j from the truncated normal distribution.

Let bmin and bmax be the lowest and the highest (i.e. winning) observed bids in auction

t respectively. Theoretically, any bid bit is bounded by

ε(s) = b(s) ≤ bit
τ (s) exp(xγ(s))

≤ b
(s)

:= β(ε(s)|Φ(x′δ(s)), N, h(s)ε , η(s)),

where ε(s) = exp(−dh(s)ε −1/2) and ε(s) = exp(dh
(s)
ε
−1/2). Then if xjt > 0, from the first
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inequality, we have

γ
(s)
j := min

t∈{1,··· ,T}

 1

xjt
log

 bmin

b(s)τ (s) exp
(∑

j′ 6=j xj′tγ
(s)
j′

)


and from the second inequality,

γ(s)
j

:= max
t∈{1,··· ,T}

 1

xjt
log

 bmax

b
(s)
τ (s) exp

(∑
j′ 6=j xj′tγ

(s)
j′

)
 .

For xjt < 0, we obtain similar support [γ(s)
j
, γ

(s)
j ], and do not repeat it here.

We draw a candidate γ̃j ∼ N (γ
(s)
j , σ2

γj
)1(γ̃j ∈ [[γ(s)

j
, γ

(s)
j ]). In particular, we draw

u ∼ Unif(0, 1), then let

γ̃j := γ
(s)
j + σγjΦ

−1

u ·
Φ

(
γ
(s)
j − γ

(s)
j

σγj

)
− Φ

γ(s)j − γ(s)j
σγj

+

γ(s)j − γ(s)j
σγj

 .

We then set γ
(s+1)
j := γ̃j with probability

min

1,
π(θ̃)L(y,n|τ (s),X, θ̃)

π(θ̂(s))L(y,n|τ (s),X, θ̂(s))
×

Φ

(
γ
(s)
j −γ̃j
σγj

)
− Φ

(
γ
(s)
j −γ̃j
σγj

)
Φ

(
γ
(s)
j −γ

(s)
j

σγj

)
− Φ

(
γ
(s)
j −γ

(s)
j

σγj

)
 ;

otherwise, γ
(s+1)
j := γ

(s)
j , where θ̃ := (γ

(s+1)
1 , . . . , γ

(s+1)
j−1 , γ̃j, γ

(s)
j+1 . . . , γ

(s)
k ; δ(s), η(s), h

(s)
ε , h

(s)
τ )

contains the most recent updated values for all other parameters but γ̃j; and θ̂(s) :=

(γ
(s+1)
1 , . . . , γ

(s+1)
j−1 , γ

(s)
j , γ

(s)
j+1 . . . , γ

(s)
k ; δ(s), η(s), h

(s)
ε , h

(s)
τ ) contains the most recent updated

values for all other parameters but γ
(s)
j .32

32Without confusion, we recycle the notations θ̃ and θ̃(s) for each parameter updating.
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Finally, we tune σγj following Haario et al. (2001, 2005). In particular, for the first

10 iteration s = 1, . . . , 10, we use σγj = 0.01; then for s = 11, . . . , S, we use σγj =

1.54 × Ŝtd(γ
(1)
j , . . . , γ

(s−1)
j ) with probability 95% and σγj = 0.0001 with probability

5%.33

2. Draw δ(s+1) = (δ
(s+1)
1 , . . . , δ

(s+1)
k ): For each j starting from 1 to k, we update δ

(s+1)
j by

drawing a candidate δ̃j ∼ N (δ
(s)
j , σ2

δj
) We then set δ

(s+1)
j := δ̃j with probability

min

{
1,

π(θ̃)L(y,n|τ (s),X, θ̃)

π(θ̂(s))L(y,n|τ (s),X, θ̂(s))

}
;

otherwise, δ
(s+1)
j := δ

(s)
j , where θ̃ and θ̂(s) are defined similarly for parameter δj. As

before, we tune σδj by setting σδj = 0.01 for first ten iterations, after which we use

σδj = 1.54×Ŝtd(δ
(1)
j , . . . , δ

(s−1)
j ) with probability 95% and σδj = 0.0001 with probability

5%.

3. Draw η(s+1): Similarly, we draw a candidate η̃ ∼ N (η(s), σ2
η) and update η(s+1) = η̃

with probability

min

{
1,

L(y,n|τ (s),X, θ̃)

L(y,n|τ (s),X, θ̂(s))

}
;

where θ̃ and θ̂(s) are defined similarly for parameter η. We tune the scale parameter

ση as before.

4. Draw h
(s+1)
ε : Similar to step 1, we use the theoretical restrictions to truncate the

proposal density in order to improve computational efficiency. From the following

restriction,

ε(s) = exp(−dh(s)ε −1/2) ≤
b

τ exp(xγ(s))
≤ b

(s)
:= β(ε(s)|Φ(x′δ(s)), N, h(s)ε , η(s)).

33 The reference proves the convergence of the algorithm and provide a recursive formula to compute

Ŝtd(γ
(1)
j , . . . , γ

(s−1)
j ) at each s.

45



we obtain

h
(s)

ε = min
t∈{1,...,T}

d2
{

log

[
bmin

τ (s) exp(xγ(s))

]}−2
.

Similarly, we could obtain the exact lower bound from the second inequality, but we

do not because it requires us to compute the equilibrium bidding strategy for each

t ∈ {1, . . . , T}. Instead, we only use the fact that hε > 0. We draw the candidate

h̃ε ∼ N (h
(s)
ε , σ2

hε
)1(h̃ε ∈ [0, h

(s)

ε ]). In particular, we let

h̃ε := h(s)ε + σhεΦ
−1

{
u ·

[
Φ

(
h
(s)

ε − h
(s)
ε

σhε

)
− Φ

(
0− h(s)ε
σhε

)]
+

(
0− h(s)ε
σhε

)}

with u ∼ Unif(0, 1). We then update h
(s+1)
ε = h̃ε with probability

min

1,
π(θ̃)L(y,n|τ (s),X, θ̃)

π(θ̂(s))L(y,n|τ (s),X, θ̂(s))
×

Φ

(
h
(s)
ε −h̃ε
σhε

)
− Φ

(
0−h̃ε
σhε

)
Φ

(
h
(s)
ε −h

(s)
ε

σhε

)
− Φ

(
0−h(s)ε
σhε

)


where θ̃ and θ̂(s) are defined similarly for parameter hε. We tune the scale parameter

σhε as in the previous steps.

5. Draw h
(s+1)
τ : hτ is the hyperparameter that governs the distribution of the unobserved

heterogeneity τ . Hence we draw h
(s+1)
τ from its conditional density given τ (s). Using

the conjugacy of gamma prior for normal precision, the conditional density of hτ is

proportional to

πτ (hτ )
T∏
t=1

fτ (τ |hτ ) ∝ hατ−1τ exp(−λτhτ )
T∏
t=1

h
1
2
τ exp

(
−hτ

2
(log τ)2

)

∝ h
ατ+

T
2
−1

τ exp

[
−

(
λτ +

1

2

T∑
t=1

(log τ)2

)
hτ

]
.
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Hence, we draw

h(s+1)
τ ∼ Ga

(
α̂τ , (λ̂

(s)
τ )−1

)
where α̂τ = ατ + T

2
and λ̂

(s)
τ := λτ + 1

2

∑T
t=1(log τ (s))2.

6. Draw τ (s+1): we draw τ̃ simultaneously for each t ∈ {1, . . . , T}. Since τ has to be

positive, we draw τ̃ ∼ N (τ (s), σ2
τ ) individually and collect τ̃ = {τ̃}Tt=1. Then we

update τ (s+1) = τ̃ with probability

min

{
1,

fτ (τ̃ |h(s+1)
τ )L(y,n|τ̃ ,X, θ(s+1))

fτ (τ (s)|h(s+1)
τ )L(y,n|τ (s),X, θ(s+1))

}
.

We tune the scale parameter στ as in the previous steps.
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