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Abstract—The increasing scale and complexity of today’s high-
performance computing (HPC) systems demand a renewed focus
on enhancing the resilience of long-running scientific applications
in the presence of faults. Many of these applications are iterative
in nature as they operate on sparse matrices that concern
the simulation of partial differential equations (PDEs) which
numerically capture the physical properties on discretized spatial
domains. While these applications currently benefit from many
application-agnostic resilience techniques at the system level, such
as checkpointing and replication, there is significant overhead in
deploying these techniques. In this paper, we seek to develop
application-aware resilience techniques that leverage an iterative
application’s intrinsic resiliency to faults and selectively pro-
tect certain elements, thereby reducing the resilience overhead.
Specifically, we investigate the impact of soft errors on the widely
used Preconditioned Conjugate Gradient (PCG) method, whose
reliability depends heavily on the error propagation through
the sparse matrix-vector multiplication (SpMV) operation. By
characterizing the performance of PCG in correlation with a
numerical property of the underlying sparse matrix, we propose
a selective protection scheme that protects only certain critical
elements of the operation based on an analytical model. An
experimental evaluation using 20 sparse matrices from the
SuiteSparse Matrix Collection shows that our proposed scheme
is able to reduce the resilience overhead by as much as 70.2%
and an average of 32.6% compared to the baseline techniques
with full-protection or zero-protection.

Index Terms—Resilience, soft errors, selective protection, iter-
ative solvers, preconditioned conjugate gradient.

I. INTRODUCTION

Many scientific applications concern the simulation of
partial differential equations (PDEs) that are discretized in
space and time, and solved using explicit, implicit or semi-
implicit methods [24], [25]. While the explicit method of-
fers simplicity, implicit and semi-implicit methods provide
more attractive numerical and convergence properties. Their
underlying solution schemes are typically iterative, with outer
iterations corresponding to time-steps and inner iterations
corresponding to how linear equations related to the spatial
domain are solved. Many of these applications are long-
running, as high resolutions are often needed in space and/or
time to characterize the dynamics at multiple scales and
components for the phenomenon under study (e.g., structural
properties, materials defects, turbulence) [22].

Currently, scientific applications executing on large HPC
systems face serious challenges from both hard failures and
soft faults, which are occurring at increasing rates due to
the combined effects of hardware feature miniaturization and

increased system scale [9], [10], [41]. To protect these ap-
plications, resilience techniques have been proposed at the
application level by using algorithm-based fault tolerance
(ABFT) [11], [12], [28], [42] for matrix algorithms (dense
or sparse) or iterative methods for linear system solutions.
These techniques, however, require tapping into the underly-
ing numerical library and are often not easy to implement.
Alternatively, application-agnostic techniques at the system
level, such as checkpointing and replication [3], [6], [18], [26],
are available as general-purpose and non-intrusive resilience
mechanisms to protect the applications. While these techniques
effectively enable application recovery in the event of faults,
there is significant overhead associated with them, especially
when the application is inherently resilient to faults.

In this paper, we seek to develop low-overhead resilience
techniques against soft errors at the system level while lever-
aging an iterative application’s intrinsic resiliency to faults. We
focus on the widely used Preconditioned Conjugate Gradient
(PCG) method to solve a sparse linear system Ax = b, where
A is an N ×N symmetric positive definite matrix, and both
x and b are N × 1 dense vectors. Many prior studies [8],
[31], [37] have characterized the impact of soft errors on the
performance of PCG, which depends heavily on the error
propagation through the sparse matrix-vector multiplication
(SpMV) operation q ← A · p, a key step performed in every
iteration of PCG. We show that soft errors striking certain el-
ements of SpMV could significantly degrade the performance
of PCG, while errors striking other elements have negligible
impact. Hence, fully protecting the operation could potentially
incur unnecessarily high overhead while not protecting it at all
could cause severe performance degradations.

This observation calls for a selective scheme, which we
propose in this paper, to judiciously protect certain critical ele-
ments of SpMV for a given linear system in order to reduce the
resilience overhead while minimizing the overall performance
degradation. Our scheme is based on a characterization of the
performance of PCG in correlation with a numerical property
of the sparse matrix A, and is further guided by an analytical
model that predicts the overhead with only a small number
of profiling runs. The selected elements are then protected at
the system level via duplication, and soft errors are detected
by comparing the results of the duplicated computation and
mitigated by re-running the last iteration.

An experimental evaluation using 20 sparse matrices from
the SuiteSparse Matrix Collection [1] shows that our proposed



scheme is able to reduce the resilience overhead by as much
as 70.2% and an average of 32.6% compared to the baseline
techniques with full-protection or zero-protection.

Our main contributions are summarized as follows:
• A characterization of the impact of soft errors on the

performance of PCG in correlation with a numerical
property of the sparse matrix A;

• A selective protection scheme for certain critical compo-
nents of the key SpMV operation in PCG based on an
analytical performance model;

• An experimental validation to demonstrate the benefit
of the proposed scheme as a low-overhead resilience
technique at the system level.

The rest of this paper is organized as follows. Section
II introduces the background of sparse linear systems and
the PCG algorithm. Section III characterizes the impact of
soft errors on the performance of PCG, and presents our
selective protection scheme based on an analytical model.
Section IV evaluates the performance of our proposed scheme
using a sample of the SuiteSparse Matrix Collection. Section
V reviews some related work on protecting sparse iterative
solvers and resilience techniques in general. Finally, Section
VI concludes the paper and discusses future work.

II. BACKGROUND

In this section, we provide a brief background on using
sparse linear systems to numerically solve PDEs and give an
overview of the PCG algorithm.

A. Sparse Linear Systems

Many large-scale scientific applications involve solving
PDE-based systems, such as those found in heat diffusion,
computational fluid dynamics (CFD) and structural mechanics
[24], [25]. Such applications compute solutions using explicit,
implicit or semi-implicit methods, with the latter two requiring
the use of sparse linear solvers.

As a concrete example, consider a PDE-based application
such as a heat equation [24] applied to a set of N discretized
grid points in space. Let uk, an N × 1 vector, denote the
temperature at time step k on all the grid points, and A, an
N×N sparse matrix, represent the dependencies in space and
physical properties. To compute the temperatures at next time
step k + 1, an explicit method calculates uk+1 = uk + Auk,
whereas an implicit method calculates Auk+1 = uk. While
both methods consider the temperature evolution across time,
the implicit methods requires a sparse linear system solution
as an important inner step.

B. The PCG Algorithm

The Preconditioned Conjugate Gradient (PCG) algorithm
[32] is one of the most widely used solvers for a sparse
linear system of the form Ax = b, where A is an N × N
symmetric positive definite (SPD) matrix, and both x and b
are N × 1 dense vectors. Algorithm 1 shows the pseudocode
of PCG. The algorithm takes, as input, the coefficient matrix
A, a known vector b, an initial guess of the solution vector

Algorithm 1: Preconditioned Conjugate Gradient (PCG)
Input: A,M, b, x0, tol,maxit

1 begin
2 r0 ← b−Ax0; // Initial residual

3 z0 ←M−1r0; // Preconditioning
4 p0 ← z0;
5 i← 0;
6 while i < maxit and ‖ri‖/‖b‖ > tol do
7 qi ← Api;
8 vi ← rTi zi;
9 α← vi/(p

T
i qi);

10 xi+1 ← xi + αpi; // Improve approximation
11 ri+1 ← ri − αqi; // Update residual

12 zi+1 ←M−1ri+1; // Preconditioning

13 vi+1 ← rTi+1zi+1;
14 β ← vi+1/vi;
15 pi+1 ← zi+1 + βpi; // New search direction
16 i← i+ 1;
17 end
18 end

x0, a preconditioner matrix M , the maximum number of
iterations allowed maxit, and a tolerance tol to detect the
convergence of the solution. At each iteration i, the algorithm
computes a new search direction (pi) that is A-orthogonal
to the previous search directions, and uses it to update the
approximate solution (xi+1) and the residual (ri+1).

A key operation in each iteration of the PCG algorithm is
the sparse matrix-vector multiplication (SpMV) (Line 7). It
is also the most compute-intensive operation taking O(nnz)
time, where nnz represents the number of nonzeros in matrix
A. Preconditioning (Line 12) is another important part of PCG,
as it ensures faster convergence of the algorithm. Although
computing the inverse of a matrix is generally expensive,
simple yet effective preconditioners are typically chosen to
speed up the computation1. Other operations in PCG, including
the inner products (Lines 8 and 13), vector additions (Lines
10, 11 and 15), and scalar operations (Lines 9 and 14), are
relatively inexpensive, taking O(N) time.

III. A SELECTIVE PROTECTION SCHEME

In this section, we introduce a selective protection scheme
to reduce the resilience overhead of the PCG algorithm. The
scheme is motivated by characterizing the impact of soft errors
on the performance of PCG (Section III-A) and its correlation
with a numerical property of the sparse matrix (Section III-B).
Based on these, we build an analytical model to estimate the
optimal selective protection pattern (Section III-C).

A. Impact of Soft Errors

Many prior works (e.g., [8], [31], [37]) have studied the
impact of soft errors on the performance of PCG. In particular,
it has been shown [37] that SpMV, which is the most expensive
operation performed in every iteration of the algorithm, is most
prone to errors. Furthermore, any error in the other operations
will eventually show up in an element of the vector p in the

1For instance, computing the inverse of a diagonal preconditioner takes
only linear time, and for preconditioners that use the incomplete Cholesky or
LU factorization, the inverse can be computed using triangular solve, whose
complexity is proportional to the number of nonzeros in M .



Fig. 1. Slowdowns in convergence of PCG for two matrices (bcsstk18 and
t2dah e) in 100 sample runs, where each run has an error injected in a random
element of vector p in the SpMV operation.

following iteration. Hence, we focus on soft errors that occur
in the SpMV operation, in particular in the vector p.

However, errors that strike different elements of the vector,
might have very different impacts. This is illustrated in Figure
1, which shows the slowdowns in convergence of PCG in 100
sample runs for two matrices (bcsstk18 and t2dah e) from the
SuiteSparse Matrix Collection [1]. In each of the 100 runs, an
error (of the same magnitude) is injected in a random element
of vector p. The slowdown is measured against the error-free
run as follows:

slowdown = Ie/Io , (1)

where Ie and Io denote the number of iterations for the
algorithm to converge with and without errors, respectively. In
Figure 1, the slowdowns are sorted in ascending order. As we
can see, a soft error striking certain elements of p significantly
slows down the convergence (by more than 20× for bcsstk18
and 40× for t2dah e), while an error striking many other
elements of p has negligible impact on the convergence.

Hence, to protect the SpMV operation and the PCG al-
gorithm from soft errors, neither full-protection nor zero-
protection would be ideal: the former will likely incur un-
necessarily high overheads during the majority of runs when
the impact of error is small, and the latter will cause severe
performance degradations when the impact of error is high.
This motivates the design of a selective protection scheme,
which we will discuss in the rest of this section.

B. Performance Characterization

As soft errors striking different elements of the vector will
degrade the performance of PCG to different degrees, one
promising approach is to protect only those elements that will
cause more severe performance degradations. It is, however, a
challenge to dynamically identify such elements in an online
manner as the execution of the algorithm progresses.

To address this challenge, we characterize the performance
degradation of PCG by correlating it with a numerical property
of the sparse matrix A, namely, its row 2-norms, which is static
information that can be pre-computed offline. Specifically, the
2-norm for the i-th row of matrix A is given by:

‖Ai∗‖2 =

√√√√ N∑
j=1

A2
i,j . (2)

It has been shown [37] that, for repeated SpMV operations
to compute a sequence of vectors {y0, y1, y2, . . . , yk, . . . },
where yk ← Ayk−1 (e.g., when it is used as an explicit method
to numerically solve a PDE), the magnitude of an error in the
i-th element of the initial vector y0 will propagate and grow
non-linearly with the 2-norm of the i-th row of matrix A. Since
PCG contains an SpMV operation in a similar repeated fashion
over iterations, we posit that the row 2-norms of matrix A
could serve as a good indicator on the performance degradation
of PCG as well, when an error occurs in the corresponding
elements of the vector p.

Figure 2 illustrates this correlation for four representative
matrices (bcsstk18, t2dah e, cvxbqp1 and Trefethen 20000)
from the SuiteSparse Matrix Collection [1]. We run 100
experiments with random error injections in the vector p and
each point in the figure represents one run. The figure also
indicates the Pearson correlation coefficient r (in red). It can
be seen that errors in positions with larger row 2-norms of
matrix A indeed lead to more slowdowns in the convergence
of the PCG algorithm. Similar results have also been observed
for many other matrices in the collection.

We further correlate the row 2-norms of matrix A with
two additional metrics on the intermediate performance of
the algorithm to confirm that it can indeed be used as a
reliable performance indicator. The two metrics are the relative
residual norm and A-norm of errors, which, for the i-th
iteration, are defined as follows:

relative residual norm = ‖ri‖/‖b‖ , (3)

A-norm of errors =
√

(xi − x̂)TA(xi − x̂) , (4)

where xi and ri denote the intermediate solution and residual
at the i-th iteration, respectively, and x̂ denotes the true
solution to the system. Both metrics indicate the quality of
the solution at an intermediate step. In particular, the relative
residual norm is directly used as a convergence criterium
(in Algorithm 1), and the A-norm of errors is known as an
important indicator on the algorithm’s convergence [30], [37].

Figures 3 and 4 show strong correlations of both metrics
with the row 2-norms of matrix A for the same four matrices.
Again, the Pearson’s r values are indicated in red, and similar
strong correlations have also been observed for many other
matrices. All the results are measured at the Io-th iteration
of PCG (when an error-free run converges). These strong
correlation results indicate that we can indeed use the row
2-norms of matrix A to reliably estimate the impact of soft
errors on the performance of the PCG algorithm.

C. Predicting the Optimal Protection Pattern

The previous characterizations on the impact of soft errors
and performance correlation suggest that we could selectively
protect the elements in the SpMV operations corresponding
to those rows with larger 2-norms in matrix A. The question
remains to determine how many elements to protect in order
to minimize the overall resilience overhead. To this end, we
develop an analytical model to predict the optimal protection



Fig. 2. Correlation between the row 2-norm of matrix A and the slowdown in convergence of PCG for four matrices with 100 runs.

Fig. 3. Correlation between the row 2-norm of matrix A and the relative residual norm of PCG for four matrices with 100 runs at the Io-th iteration.

Fig. 4. Correlation between the row 2-norm of matrix A and the A-norm of errors of PCG for four matrices with 100 runs at the Io-th iteration.

pattern. This is done in two steps, which are performance
prediction and overhead optimization.

1) Performance Prediction: The first step aims at learning
a function F that predicts the performance degradation of the
algorithm (in terms of slowdown), given the row in which an
error would occur. Due to its strong correlation with the row
2-norms of matrix A, we can learn such a function by profiling
the algorithm’s performance with a small number of sample
runs followed by curve fitting.

Specifically, we inject errors in m� N randomly selected
elements, whose corresponding 2-norm values in matrix A
are evenly distributed across the range. Note that the row
2-norms of A, and hence its range, are static, so they only
need to be pre-computed once offline. We then measure the
slowdown of the algorithm corresponding to each injected
error. Since the function F may not be linear, we predict it by
using polynomial regression to fit the data. In the performance
evaluation (Section IV), we use m = 20 samples and fit a
polynomial function of degree 2 or 3 (using higher degrees
tends to overfit the data with high variance).

2) Overhead Optimization: After predicting the perfor-
mance degradation function F , the second step builds an

analytical model to optimize the resilience overhead. For
convenience, we use ai to denote the 2-norm of the i-th
row of matrix A, i.e., ai = ‖Ai∗‖2, and let σ denote a
permutation that arranges the ai’s in non-increasing order, i.e.,
aσ(1) ≥ aσ(2) ≥ · · · ≥ aσ(N).

Suppose soft errors strike all elements of the vector with
equal probability (i.e., 1/N ). Then, by protecting k elements
with the largest ai values, the expected performance degrada-
tion (or slowdown) when an error strikes is given by:

De(k) =
1

N

(
k +

N∑
i=k+1

F (aσ(i))

)
, (5)

and the normalized computational cost per iteration is:

Ce(k) = 1 +
k

N
. (6)

Note that both quantities in Equations (5) and (6) are
normalized with respect to an error-free execution without
protection, which is assumed to have no slowdown, i.e.,
Do = 1, and a unit computational cost per iteration, i.e.,



Fig. 5. Trade-off between the normalized cost per iteration and expected
slowdown when optimizing the overall resilience overhead.

Co = 1. The expected overhead when protecting these k
elements is therefore given by:

He(k) = De(k) · Ce(k)−Do · Co

=
1

N

(
k +

N∑
i=k+1

F (aσ(i))

)(
1 +

k

N

)
− 1 . (7)

Equation (7) provides an analytical model for estimating
the expected overhead of a selective protection scheme. The
goal is to find the optimal protection pattern (i.e., the optimal
number k∗ of protected elements) that minimizes the expected
overhead. Given all row 2-norms and a predicted function F
for a particular matrix A, the solution can be computed in
O(N) time by evaluating all values of k ∈ {1, 2, . . . , N}.

Figure 5 illustrates the trade-off involved in this optimiza-
tion. In particular, protecting all elements (k = N ) doubles the
computational cost per iteration, i.e., Ce(N) = 2Ce(0) = 2Co,
while causing almost no slowdown, i.e., De(N) = Do. This
results in 100% overhead (indicated by the magenta area)
compared to the cost of an error-free run (indicated by the
grey area). On the other hand, protecting no element (k = 0)
incurs no extra cost per iteration, i.e., Ce(0) = Co, but could
lead to a large slowdown De(0) and hence a large expected
overhead (indicated by the cyan area). An optimal scheme
protects a certain number of k∗ elements that minimizes the
overhead (corresponding to the difference between the area of
the dashed rectangle and the grey area).

We point out that the model and approach proposed above
apply to system-level protection of the iterative solver, hence
a full protection corresponds to duplicating the entire compu-
tation. Soft errors are detected by comparing the results of the
duplicated computation and mitigated by re-running the last it-
eration. Despite the availability of application-level techniques
(e.g., ABFT [11], [38], [42]), which could further reduce the
overhead by tapping into the numerical libraries, system-level
protection remains the most transparent, least intrusive, and
easy-to-implement technique to protect an application [2], [3],
especially when accessing the internals of numerical libraries
is limited. Investigating selective protection schemes at the
application level will be part of our future work.

Table I. 20 matrices from the SuiteSparse Matrix Collection [1].

Id Matrix N nnz Density
1 t2dah e 11445 176117 0.13%
2 bcsstk18 11948 149090 0.1%
3 cbuckle 13681 676515 0.36%
4 Pres Poisson 14822 715804 0.33%
5 gyro m 17361 340431 0.11%
6 nd6k 18000 6897316 2.1%
7 bodyy5 18589 128853 0.037%
8 raefsky4 19779 1316789 0.34%
9 Trefethen 20000 20000 554466 0.14%

10 msc23052 23052 1142686 0.22%
11 bcsstk36 23052 1143140 0.22%
12 wathen100 30401 471601 0.051%
13 vanbody 47072 2329056 0.11%
14 cvxbqp1 50000 349968 0.014%
15 ct20stif 52329 2600295 0.095%
16 thermal1 82654 574458 0.0084%
17 m t1 97578 9753570 0.1%
18 2cubes sphere 101492 1647264 0.016%
19 G2 circuit 150102 726674 0.0032%
20 pwtk 217918 11524432 0.024%

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed selective protection scheme, and compare its resilience
overhead against those of some baseline techniques.

A. Experimental Setup

In the experiments, the sparse matrix A is selected from 20
symmetric positive definite (SPD) matrices in the SuiteSparse
Matrix Collection [1] (formerly known as the University of
Florida Sparse Matrix Collection). Table I lists these matrices
and their properties, including matrix dimension (N ), number
of nonzeros (nnz), and matrix density (nnz/N2).

We run the PCG algorithm with incomplete Cholesky fac-
torization as the preconditioner [29], where threshold dropping
is used with the threshold set to be 10−3, and the convergence
tolerance is set to be 10−6. The vector b is set as A · 1, where
1 denotes an all-one vector, and the initial guess x0 of the
solution is set as an all-zero vector 0. The same setting has
been used in some prior works [8], [31].

As stated in Section III-A, we focus on soft errors that
manifest in the SpMV operation due to the important role
it plays in the PCG algorithm. Instead of performing actual
bit-flips, we simulate a soft error by perturbing the value of
a randomly selected element in the vector p. This approach
has been proposed in some previous studies [37], [42] as a
systematic approach to investigate the impact of soft errors.
In particular, the value in a random position k of the vector
p is perturbed in the very first iteration by an error e, i.e.,
p1[k] = p1[k] + e. The magnitude of the error is generated
uniformly at random from the range of all values in vector p
in that iteration. Our experiments show the same results if the
error is injected in later iterations. All results are obtained by
averaging over 100 experiments and error injections.

B. Experimental Results

We first evaluate the performance prediction model (the first
step of our scheme), where we used m = 20 random points



Fig. 6. Average overhead and 95% confidence interval (in blue) for four matrices when varying the fraction of protected elements using our selective protection
scheme. The red dashed line represents the predicted overhead using our analytical model.

Fig. 7. Average slowdown with 95% confidence interval for two matrices
when varying the fraction of protected elements using our selective protection
scheme (in blue) and the random selective protection scheme (in red).

Fig. 8. Average overhead and 95% confidence interval (in red) for two
matrices when varying the fraction of protected elements using the random
selective protection scheme.

to do curve fitting. Despite the use of only a small number of
points, the model is able to accurately predict the slowdown,
thanks to its strong correlation with the row 2-norms of matrix
A. Figure 2 shows the fitted curves (in red lines) for the four
presented matrices. Furthermore, for all the 20 matrices, the
r2-score (i.e., the coefficient of determination that measures
the fitness of the function) obtained from the 100 points, is
above 0.9, which validates the accuracy of the performance
prediction model.

To evaluate the analytical model on the resilience overhead
(Equation (7)) and our overhead optimization procedure (the
second step), we plot in Figure 6 the average overhead
measured from the 100 runs (in blue with the 95% confidence
interval) along with the model-predicted overhead (in red
dashed line) for the four matrices, as the fraction of protected
elements is varied from 0 (i.e., zero-protection) to 1 (i.e., full-
protection). First, we can observe that the predicted overhead
matches closely the average overhead obtained from the ex-
periments. Furthermore, our optimization procedure suggests

protecting about 28% and 51% of all elements for matrices
bcsstk18 and t2dah e, resulting in an average overhead of
52% and 69%, respectively. The results represent significant
performance improvements over the zero-protection scheme
(whose overhead is more than 100% for both matrices) and
the full-protection scheme (with 100% overhead).

For matrix cvxbqp1, the optimal strategy is to protect no
element (zero-protection), and this is because all of them
will induce a relatively mild slowdown (<2), as shown in
Figure 2. On the other hand, the optimal strategy for matrix
Trefethen 20000 is to protect all elements (full-protection),
because most of the elements will induce a large slowdown
(>2), again as shown in Figure 2. In both cases, however,
our selective protection scheme is able to find the optimal
protection pattern based on the established analytical model.

To further illustrate the benefit of our selective protection
scheme, we plot in Figure 7 its average slowdown for two
matrices (bcsstk18 and t2dah e) in comparison with that of
a random selective protection scheme [39], which protects a
certain fraction of randomly selected elements2. The figure
shows that, as we increase the fraction of protected elements,
our scheme is able to reduce the slowdown much faster and
with less variation compared to the random scheme. This is a
direct consequence of our scheme’s more targeted approach,
which judiciously protects those elements that would cause
larger slowdowns. As a result, the optimal random protection
(among all protection fractions) still yields an average over-
head close to 100% for the two matrices (as shown in Figure
8), while our scheme is able to reduce the overheads to 52%
and 69%, respectively (as shown in Figure 6).

Finally, Figure 9 compares the average overheads of our
selective protection scheme with those of the optimal random
protection, zero-protection and full-protection for all the 20
matrices. For matrices cvxbqp1, thermal1 and nd6k (left-most
three), the minimal overhead is achieved by the zero-protection
scheme, due to the small impact of soft errors on all the
elements. On the other hand, for matrices Trefethen 20000,
vanbody and wathen100 (right-most three), the minimal over-
head is achieved by the full-protection scheme, due to the
large impact of soft errors on most of the elements. For all of

2This random protection scheme was originally proposed in [39] to augment
the traditional ABFT technique applied at the application level to reduce the
resilience overhead of sparse linear solvers.



Fig. 9. Comparison of the average overheads for all 20 matrices using our selective protection scheme, the optimal random protection scheme, the zero-
protection scheme and the full-protection scheme.

the other matrices, our scheme leads to the best performance,
with an average overhead that improves upon that of the best
of these baseline schemes by as much as 70.2% and an average
of 32.6%. The results demonstrate the benefit of our proposed
scheme as a general resilience technique for PCG that can be
applied at the system level to reduce the overhead.

V. RELATED WORK

In this section, we review some related work on application-
level techniques to protecting sparse iterative solvers, as well
as general resilience techniques for scientific applications.

A. Resilience Techniques for Sparse Iterative Solvers

There has been considerable interest in developing resilient
sparse iterative solvers, including multiple variants of CG or
PCG, and different flavors of GMRES. Most of these works
aim at designing low-overhead resilience techniques at the
application level to make the solvers robust against faults.

One widely used technique is ABFT-enabled checksums
and checkpointing. Bronevestky et al. [8] used a combination
of matrix encoding schemes and checkpointing methods to
build resilient CG solvers. Shantharam et al. [38] relied on the
symmetric positive definite and diagonally dominant properties
of the sparse matrices to develop a checksum encoded fault-
tolerant PCG. Tao et al. [42] combined roll-back and roll-
forward techniques with both lazy and eager checksums to
provide complete protection of the PCG solver. A similar
checksum technique was developed by Fasi et al. [17] to pro-
tect CG with both error detection and correction capabilities.
Without using checkpointing, Sloan et al. [40] proposed partial
recomputation by performing a binary search on the location
of errors. Schöll et al. [35] applied a similar technique while
relying on a blocked checksum approach for PCG.

In addition to checksum encoding and checkpointing tech-
niques, many researchers have also explored the numerical and
convergence properties of the underlying solvers to make them
resilient to faults. Chen [11] designed an error detection and
checkpointing technique by verifying the orthogonality and
residual properties of the Krylov subspace iterative methods.

Sao and Vuduc [33] proposed self-stabilizing iterative solvers
by periodically checking and restoring the orthogonality prop-
erty. Schöll et al. [34] combined orthogonality restoration and
periodic checkpointing to achieve both roll-back and roll-
forward recoveries for PCG. Bridges et al. [7] and Elliott et
al. [15] designed fault-tolerant GMRES by applying selective
reliability to its inner and outer loops.

B. General Resilience Techniques for Scientific Applications

Resilience solutions seek effective and efficient management
of faults or errors to ensure the reliable outcomes of scientific
applications. In general, resilience techniques for HPC systems
are based on one or several methods of detection [5], [43],
containment [23], [36] and recovery [16].

The most popular general-purpose resilience technique is
checkpointing and rollback-recovery (C/R), which enables a
scientific application to capture a snapshot of its state, save
the checkpoint file, and recover from it in case of a fault.
A comprehensive survey of application and system-level C/R
methods can be found in [14], [26]. In recent years, incre-
mental or differential checkpointing [19] has been proposed
to avoid re-writing identical data between two consecutive
checkpoints, either by tracking dirty memory pages in the
system and only updating those within the checkpoint or by
partitioning the application datasets (not memory pages) in
blocks and keep track of the changes of each block [27].
Another general resilience technique is replication [2], [3],
[26], which runs two or more copies of the application
and compares their results to detect errors and/or to correct
them via majority voting. Different flavors of replication have
been proposed, including replicating individual processes of
the application [18] and collectively replicating a group of
processes [6]. Dichev and Nikolopoulos [13] applied process
duplication to detect errors for the PCG solver.

For scientific applications using MPI, an addition layer
of fault tolerance can be included within the MPI runtime
system through the ULFM interface [4]. ULFM is a low-level
API that provides resilience constructs to support a variety of
fault tolerance models, either specific to one application [20]



or a set [21]. Our work is complementary to these general
resilience methods, since it can inform the MPI runtime, the
C/R protocol, or the replication process on the application
specific data that needs protection.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a selective protection
scheme for the widely used PCG solver to reduce the resilience
overhead at the system level while leveraging the application-
level resiliency characteristics. Our scheme is motivated by
the different impacts of soft errors on the performance of
PCG and its strong correlation with the row 2-norms of the
underlying sparse matrix. We have built an analytical model
that accurately predicts the convergence performance, and used
it to estimate the optimal protection pattern. Experimental
results based on a sample of the SuiteSparse Matrix Collection
have confirmed the benefit of our selective protection scheme
with significant reduction in overhead compared to some
baseline techniques. Future work will be devoted to the design
of selective protection schemes for other iterative solvers and
the use of selective protection at the application level to further
reduce the resilience overhead.
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