Resilient Scheduling of Moldable Jobs on

Failure-Prone Platforms

Anne Benoit!, Valentin Le Févrel, Lucas Perotin®,
Padma Raghavan?, Yves Robert!:3, Hongyang Sun?

1. Laboratoire LIP, ENS Lyon, France
2. Vanderbilt University, USA

3. University of Tennessee Knoxville, USA

hongyang.sun@vanderbilt.edu

IEEE Cluster 2020

hongyang.sun@vanderbilt.edu

What Is This Paper About?

On large-scale HPC platforms:

@ Scheduling parallel jobs is important to improve application
performance and system utilization;

@ Handling job failures is critical as failure/error rates increase
dramatically with size of system.

This paper combines job scheduling and failure handling for moldable
parallel jobs running on large HPC platforms that are prone to failures. J

Parallel Job Models

In the scheduling literature:

@ Rigid Jobs: Processor allocation is fixed by the user and cannot be
changed by the system (i.e., fixed, static allocation);

@ Moldable Jobs: Processor allocation is decided by the system but
cannot be changed once jobs start execution (i.e., fixed, dynamic
allocation).

@ Malleable Jobs: Processor allocation can be dynamically changed
by the system during runtime (i.e., variable, dynamic allocation).

We consider moldable jobs, because:

@ They can easily adapt to the amount of available resources
(contrarily to rigid jobs);

@ They are easy to design/implement (contrarily to malleable jobs);

@ Many computational kernels in scientific libraries are provided as
moldable jobs.

Scheduling Model

@ n moldable jobs to be scheduled on P identical processors.

@ execution time t;(p;) of each job j (=1,2,...,n) is a function of
processor allocation p; (=1,2,...,P); area is aj(p;) = p; - tj(p;);

@ jobs are subject to arbitrary failure scenarios (defined in next slide),
which are unknown ahead of time (i.e., semi-online);

@ minimize the makespan (i.e., successful completion time of all jobs).

Speedup Models:

@ Roofline model: tj(p;) = —~ 57 for some 1 < p; < P;

max(pj,
@ Communication model: t;(p;) = % + (p; — 1)g;,
where ¢; is the communication overhead;

@ Amdahl's model: t;(p;) = vw(l_pj'” + 7).

where «; is the inherently sequential fraction;

@ Monotonic model: tj(p;) > ti(p; + 1) and a;(p;) < a;j(p; + 1),
i.e., execution time non-increasing and area is non-decreasing;

@ Arbitrary model: tj(p;) is an arbitrary function of p;.

Failure Model

@ Jobs can fail due to silent errors (or silent data corruptions);

@ A lightweight silent error detector (of negligible cost) is available to
flag errors at the end of each job's execution;

@ If a job is hit by silent errors, it must be re-executed (possibly
multiple times) till successful completion.

A failure scenario f = (f1, f2, ..., f,) describes the number of failures each
job experiences during a particular execution.

Example: f =(2,1,0,0,0) for an execution of 5 jobs.

Makespan

Job3

Processors

x Failure ——— Re-execution

Time

Main Results

We proposed two resilient scheduling algorithms with analysis of
approximation ratios* and simulation results.

© A list-based scheduling algorithm, called LPA-LIST, and
approximation results for several speedup models.

@ A batch-based scheduling algorithm, called BATCH-LIST, and
approximation result for the arbitrary speedup model.

© Extensive simulations to evaluate and compare (average and
worst-case) performance of both algorithms against baseline
heuristics.

*A scheduling algorithm ALG is said to be a c-approximation if its
makespan is at most ¢ times that of an optimal algorithm OpT, i.e.,
Tare < ¢ - Topr, for any job set under any failure scenario.

(1) Lra-LisT Scheduling Algorithm

Two-phase scheduling approach:

@ Phase 1: Allocate processors to jobs using the Local Processor
Allocation (LPA) strategy.

e Minimize a local ratio individually for each job as guided by
the property of the LIST scheduling (next slide).

o The processor allocation will remain unchanged for different
execution attempts of the same job.

@ Phase 2: Schedule jobs with fixed processor allocations using the
List Scheduling (L1sT) strategy.

e Organize all jobs in a list according to any priority order;

o Schedule the jobs one by one at the earliest possible time (with
backfilling whenever possible);

e If a job fails after an execution, insert it back into the queue for
rescheduling. Repeat this until the job completes successfully.

(1) Lra-LisT Scheduling Algorithm

Given a processor allocation p = (p1, p2,- .-, pn) and a failure scenario
f=(f,fh,...,.f):

o A(f,p) =, aj(p;): total area of all jobs;

@ tmax(f, p) = max; tj(p;): maximum execution time of any job.

Property of LiST Scheduling

For any failure scenario f, if the processor allocation p satisfies:

A(f,p) < a- A(f,p") ,
tmax(f7 p) <B- tmax(f7 p*))

where p* is the processor allocation of an optimal schedule, then a LisT
schedule using processor allocation p is r(«, 3)-approximation:

2 if o >
r(a,ﬂ):{ %Q+P—:2ﬂ, ;fzzg M)

P—1

v

Eq. (1) is used to guide the local processor allocation (LPA) for each job.

(1) Lra-LisT Scheduling Algorithm

Approximation results of LPA-LIST for some speedup models:

| Speedup Model | Approximation Ratio |

Roofline 2

Communication 3f

Amdahl 4
Monotonic o(VP)

Advantages and disadvantages of LPA-LIST:

@ Pros: Simple to implement, and constant approximation for some
common speedup models.

@ Cons: Uncoordinated processor allocation, and high approximation
for monotonic/arbitrary model.

"For the communication model, our approx. ratio (3) improves upon the
best ratio to date (4), which was obtained without any resilience considerations:
[Havill and Mao. Competitive online scheduling of perfectly malleable jobs with setup
times, European Journal of Operational Research, 187:1126-1142, 2008]

(2) BATCH-LIST Scheduling Algorithm

Batched scheduling approach:

@ Different execution attempts of the jobs are organized in batches
that are executed one after another;

@ In each batch k (=1,2,...), all pending jobs are executed a
maximum of 2¥—1 times;

@ Uncompleted jobs in each batch will be processed in the next batch.

Example: an execution of 5 jobs under a failure scenario f = (0,1,2,4,7).

sob2 (—()
Job3 Q——Q—»@

- @00 00
000 0 00 00

Batch 1 Batch 2 Batch 3 Batch 4

(2) BATCH-LIST Scheduling Algorithm

Within each batch k:

@ Processor allocations are done for pending jobs using the
MT-ALLOTMENT algorithm?, which guarantees near optimal
allocation (within a factor of 1+ ¢).

@ The maximum of 2¥~1 execution attempts of the pending jobs are
scheduling using the LIST strategy.

Approximation Result of BATCH-LIST

The BATCH-LIST algorithm is ©((1 + €) log,(fmax))-approximation for
arbitrary speedup model, where fmnax = max; f; is the maximum number
of failures of any job in a failure scenario.

{The algorithm has runtime polynomial in 1/e and works for jobs in
SP-graphs/trees (of which a set of independent linear chains is a special case).
[Lepére, Trystram, and Woeginger. Approximation algorithms for scheduling malleable
tasks under precedence constraints. European Symposium on Algorithms, 2001]

Performance Evaluation

We evaluation the performance of our algorithms using simulations.

@ Synthetic jobs under three speedup models (Roofline,
Communication, Amdahl) and different parameter settings;

@ Job failures follow exponential distribution with varying error rate \;
@ Baseline algorithms for comparison:

e MINTIME: allocates processors to minimize execution time of
each job and schedules jobs using LiST;

e MINAREA: allocates processors to minimize area of each job
and schedules jobs using LisST.

@ Priority rules used in LiST:

o LPT (Longest Processing Time);
o HPA (Highest Processor Allocation);
o LA (Largest Area).

Simulation Results — with P=7500, =500, and A\=10""

@ LprA and BATCH generally perform better than the baselines;

@ MINTIME performs well for Roofline model, but performs badly for
Communication and Amdahl’s models;

@ MINAREA performs the worst for all models;

@ LPT and LA priorities perform similarly, but better than HPA.

mi ! : lllllllll
ol —— ! sy | || »

(a) Roofline model (b) Communication model (c) Amdahl's model

fnnnnnnn
Normalized makespan
Normalized makespan
Normalized makespan

Simulation Results — with varying number of processors P

@ In Roofline model, Lra (and MINTIME) has better performance,
thanks to it simple and effective local processor allocation strategy.

@ In Communication model, BATCH catches up with LPA and
performs better than MINTIME;

@ In Amdahl's model (where parallelizing a job becomes less efficient
due to extra communication overhead), BATCH has the best
performance, thanks to its coordinated processor allocation.

125 .
. E ;
e~ Baton - . L
1.20 - MINTIME ," 2
Pt A - Y

kY

e ——

o
=
w o

>

=
1}
3
=

Normalized makespan
Normalized makespan
Normalized makespan

i

—— Lna
~e Burcn —— Lia

o

o MiNTneE ~e Barci

.00 1.0
5000 10000 15000 5000 10000 15000 5000 10000 15000
P P P

(d) Roofline model (e) Communication model (f) Amdahl’'s model

Simulation Results — with varying number of jobs n

@ Same pattern of relative performance (as in last slide) for the three
algorithms under the three speedup models;

@ In Roofline and Communication models, having more jobs reduces
number of available processors per job, thus reducing the total idle
time between batches = performance gap between BATCH and
LPaA is decreasing (instead of increasing as in last slide).

—— L
—e— Barcn

o
o
)

|

Normalized makespan

—e— MiNTiME

>
>

1.10

R

S
=

\\E

—— Lea
—e— Barcn —— Lra
—e— MTimE —e— Buarci

Normalized makespan
Normalized makespan

o

1

o
o

.00 1.0 1.0
100 300 500 750 1000 100 300 500 750 1000 100 300 500 750 1000
n n n

(g) Roofline model (h) Communication model (i) Amdahl's model

Simulation Results — with varying error rate A

@ Same pattern of relative performance (as in last two slides) for the
three algorithms under the three speedup models;

@ A higher error rate increases the number of failures per jobs, which
has little impact on LrA and MINTIME, but degrades performance
of BATCH (corroborating our approximation results).

—— L

o

551 —— Baren
1.25 —— MNTIME

%
g

o

=

]

—e— Batcn —— Lra
—e— MiNTiE —e— Burci

0 = . = 0 =
10-8 1077 1076 107* 1077 10°° 108 1077 1070
A A

S

Normalized makespan
Normalized makespan
Normalized makespan

o
]

l

(j) Roofline model (k) Communication model (1) Amdahl's model

Simulation Results — Summary

@ Both of our algorithms (LrA and BATCH) perform significantly
better than the baseline (MINTIME and MINAREA);

@ Over the whole set of simulations, our best algorithm (LpPA or
BATcH) is within a factor of 1.47 of the optimal on average, and
within a factor of 1.8 of the optimal in the worst case.

Table: Summary of the performance for three algorithms.

Speedup Model Roofline | Communication | Amdahl
LPA Expected 1.055 1.310 1.960
Maximum 1.148 1.379 2.059

BATCH Expected 1.154 1.430 1.465
Maximum 1.280 1.897 1.799

Expected 1.055 2.040 14.412

MINTIME 7 mum | 1.148 2.184 24813

Conclusion

Take-aways:

@ Future shared clusters demand simultaneous resource scheduling
and resilience considerations for parallel applications;

@ We proposed two resilient scheduling algorithms for moldable
parallel jobs with provable performance guarantees;

@ Extensive simulation results demonstrate the good performance of
our algorithms under several common speedup models.

Future Work:

@ Analysis of average-case performance of the algorithms (e.g., when
some failure scenarios occur with higher probability);

@ Considering alternative failure models (e.g., fail-stop errors), and
the use of checkpointing to improve efficiency of scheduling;

@ Performance validation of our algorithms using datasets with
realistic job speedup profiles and failure traces.

19/20

20/20

