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Anne Benoit∗, Valentin Le Fèvre∗, Padma Raghavan†, Yves Robert∗‡, Hongyang Sun†
∗Laboratoire LIP, ENS Lyon, France

†Vanderbilt University, Nashville, TN, USA
‡University of Tennessee Knoxville, TN, USA

Abstract—This paper focuses on the resilient scheduling of
parallel jobs on high-performance computing (HPC) platforms
to minimize the overall completion time, or makespan. We revisit
the classical problem while assuming that jobs are subject to
transient or silent errors, and hence may need to be re-executed
each time they fail to complete successfully. This work generalizes
the classical framework where jobs are known offline and do not
fail: in the classical framework, list scheduling that gives priority
to longest jobs is known to be a 3-approximation when imposing
to use shelves, and a 2-approximation without this restriction. We
show that when jobs can fail, using shelves can be arbitrarily bad,
but unrestricted list scheduling remains a 2-approximation. The
paper focuses on the design of several heuristics, some list-based
and some shelf-based, along with different priority rules and
backfilling strategies. We assess and compare their performance
through an extensive set of simulations, using both synthetic jobs
and log traces from the Mira supercomputer.

Index Terms—Resilient scheduling, parallel jobs, silent errors,
list schedules, shelf schedules, approximation ratios.

I. INTRODUCTION

One of the main challenges faced by today’s HPC platforms
is resilience, since such platforms are confronted with many
failures or errors due to their large scale [21]. Indeed, the
number of failures is known to grow proportionally with the
number of nodes on a platform [15], and the largest supercom-
puters today experience several failures per day. There are two
main classes of errors that can cause failures in an application’s
execution, namely, fail-stop and silent errors. While fail-stop
errors cause the execution to terminate (e.g., due to hardware
fault), large-scale platforms are also confronted with silent
errors, or silent data corruptions (SDCs). Such errors are
caused by cosmic radiation or packaging pollution, striking
either the cache or memory units (bit flips), or the CPU
operations [24], [33]. Even though any bit can be corrupted,
the execution continues (unlike fail-stop errors), hence the
error is transient, but it may dramatically impact the result of
a running application. Many silent errors can be accurately
detected by verifying the data using dedicated, lightweight
detectors (e.g., [5], [6], [13], [31]). In this work, we focus
on job failures caused by silent errors, and we aim to design
resilient scheduling heuristics while assuming the availability
of ad-hoc detectors to detect such errors.

The problem of scheduling a set of independent jobs on
parallel platforms with the goal of minimizing the total com-
pletion time, or makespan, has been extensively studied (see
Section II). Jobs may be parallel and should be executed on

a given number of processors for a certain duration; both
the processor requirement and the execution time of each job
are known at the beginning. Such jobs are called rigid jobs,
contrarily to moldable or malleable jobs, whose processor
allocations can vary at launch time or during execution [8].
While moldable or malleable jobs offer more flexibility in the
execution, rigid jobs remain the most prevalent form of parallel
jobs submitted on today’s HPC systems, and we focus on rigid
jobs in this paper.

Unlike the classical scheduling problem without job failures,
we consider failure-prone platforms subject to silent errors.
Hence, at the end of each job’s execution, an SDC detector
will flag if a silent error has occurred during its execution.
In this case, the job must be re-executed until it has been
successfully completed without errors. For a set of jobs, each
execution may lead to a different failure scenario, depending
upon the jobs that have experienced failures as well as the
number of such failures. The objective is to minimize the
makespan under any failure scenario, as well as the expected
makespan, averaged over all possible failure scenarios, where
each scenario is weighted by a probability that governs its
occurrence under certain failure assumptions. Since a failure
scenario is unknown a priori, the scheduling decisions must
be made dynamically on-the-fly, whenever an error has been
detected. As a result, even for the same set of jobs, different
schedules may be produced, depending on the failure scenario
that occurred in a particular execution.

Building upon the existing framework for scheduling paral-
lel jobs without failures, we propose two scheduling strategies,
namely, a list-based strategy and a shelf-based strategy. While
list-based schedules have no restrictions on the starting times
of the jobs, shelf-based schedules group all jobs into subsets
of jobs having the same starting time (called shelves); a shelf
of jobs can start its execution once the longest job from
the previous shelf has completed. For list-based scheduling,
practical systems also employ a combination of reservation
and backfilling strategies with different job priority rules to
increase the system utilization. On platforms with no failures,
variants for all of these strategies exist that could achieve
constant approximations for the makespan (see Section II
for details). The main focus of this paper is to extend these
existing heuristics to execution scenarios with job failures, and
to experimentally compare their performance using a variety
of job and platform configurations.



Our main contributions are the following:
• We propose a formal model for the problem of resilient

scheduling of parallel jobs on failure-prone platforms.
The model formulates the performance of an algorithm
under both worst-case and expected executions.

• We design a resilient list-based strategy, and prove that
its greedy variant achieves (2 − 1

P )-approximation, and
its reservation variant is (3− 4

P+1 )-approximation, where
P is the total number of processors. These results apply
to both worst-case and expected makespans.

• We design a resilient shelf-based strategy, but we show
that, under some failure scenarios, any shelf-based algo-
rithm has an unbounded approximation ratio, thus having
a makespan that is arbitrarily higher than the optimal
makespan in the worst case.

• We conduct an extensive set of simulations to evaluate
and compare different variants of these heuristics using
both synthetic jobs and log traces from the Mira super-
computer. The results show that the performance of these
resilient scheduling heuristics is close to the optimal in
practice, even when confronted with failures.

The rest of this paper is organized as follows: Section II de-
scribes the background of parallel job scheduling and presents
some related work. The formal models and the problem
statement are presented in Section III. The key contributions
of the paper are presented in Section IV, where we describe
both list-based and shelf-based strategies, and analyze their
performance. Section V presents an extensive set of simulation
results and highlights the main findings. Finally, Section VI
concludes the paper and discusses future directions.

II. BACKGROUND AND RELATED WORK

This section describes the background of scheduling rigid
parallel jobs and reviews some related work.

1) Different scheduling flavors and strategies: Historically,
scheduling parallel jobs comes in two flavors: if a job requests
p processors, either any subset of p processors can be assigned,
or only subsets of p contiguous processors can be chosen. In
the latter case, processors are organized as a linear array and
labeled from 1 to P , where P is the total number of processors;
then only neighboring processors (whose labels differ by one)
can be assigned to a job. The contiguous variant is equivalent
to the rectangle strip packing problem, where rectangles are
to be stacked (without rotation) within a strip of width P :
rectangle widths represent processor numbers, and rectangle
heights represent execution times.

Most scheduling strategies also come in two flavors: either
the schedule is restricted to building shelves (also referred to as
levels in some literature), or it is unrestricted, in which case the
jobs are often scheduled based on an ordered list. Shelves are
subsets of jobs with the same starting time, and for which each
of the P processors is used at most once: the height of a shelf
is the length of its longest job; when the shorter jobs complete,
their processors become idle, but these processors are not
reassigned to other jobs until the completion of the longest job
of the shelf. Thus, a shelf resembles a bookshelf, hence the

name. Shelf-based schedules play an important role in HPC,
because they correspond to batched execution scenarios, where
jobs are grouped into batches that are scheduled one after
another. Note that for shelf-based algorithms, the contiguous
and non-contiguous variants collapse.

2) Offline scheduling of rigid jobs: To minimize the
makespan for a set of rigid jobs that are known statically
and available initially (i.e., offline), the problem is obviously
NP-complete, as it generalizes the problem of scheduling
independent jobs on two processors, a variant of the 2-
PARTITION problem [11]. Coffman et al. [7] showed that
the Next-Fit Decreasing Height (NFDH) algorithm is 3-
approximation, and the First-Fit Decreasing-Height (FFDH)
algorithm is 2.7-approximation. Both algorithms are shelf-
based. See the survey by Lodi et al. [20] for more results
and lower bounds on the best possible approximation ratio for
shelf-based algorithms, and see Han et al. [14] for the intricate
relationship between strip packing and bin packing.

For list-based scheduling, Baker et al. [2] showed that
the Bottom-up Left-justified (BL) heuristic while ordering
the jobs in decreasing processor requirement achieves 3-
approximation. Turek et al. [29] showed that ordering jobs in
decreasing execution time is also 3-approximation. Moreover,
both algorithms guarantee contiguous processor allocations for
all jobs. Without the contiguous processor constraint, several
works [9], [10], [29] showed that the greedy list-scheduling
heuristic achieves 2-approximation. Finally, Jansen [17] pre-
sented a (3/2 + ε)-approximation algorithm for any fixed
ε > 0. This is the best result possible, since a lower bound
on the approximation ratio is 3/2, which holds even when
considering asymptotic performance [18].

3) Online scheduling of rigid jobs: In the online problem, a
set of rigid jobs arrive dynamically over time and information
of a job is not known until the job has arrived. In this case, the
list-based greedy algorithm maintains a competitive ratio of 2
[18], [23]. Chen and Vestjens [4] showed a 1.3473 lower bound
on the competitive ratio of any deterministic online algorithm
even when all jobs are sequential. Shmoys et al. [25] showed
that by collecting all jobs that arrive during a batch and then
scheduling them together in the next batch, one can transform
any c-approximation offline algorithm into a 2c-competitive
online algorithm. We point out that this technique, however,
does not apply to the model considered in this paper, because
it relies on jobs having fixed, although unknown, release times,
whereas the “new job arrivals” in our model (corresponding to
failed jobs restarting) depend on the decisions made on-the-fly
by the schedulers.

4) Batch schedulers in practical systems: In practical sys-
tems, parallel jobs are often scheduled by batch schedulers
[16], [28], [32] that use a combination of reservation and
backfilling strategies: while high-priority jobs are scheduled by
reserving processors in advance, low-priority ones are used to
fill in the “holes” to improve system utilization. Two popular
backfilling strategies are conservative [22] and aggressive
(a.k.a. EASY) [19], [26]. The former gives a reservation for
every job in the queue, and a lower-priority job is moved



forward as long as it does not delay the reservation for any
higher-priority job. The latter only gives reservation to the
job at the head of the queue (i.e., the one with the highest
priority), and backfilling is allowed without delaying this
highest-priority job. As jobs arrive over time, most practical
schedulers use First-Come First-Serve (FCFS) in conjunction
with these strategies to prevent job starvation, but no worst-
case performance guarantee is known. Various priority rules
have been empirically evaluated to characterize and tune their
performance for different metrics (e.g., [12], [27], [30]).

III. MODELS

In this section, we formally present the models, the problem
statement, and the main assumptions we make in the paper.

A. Job model

We consider a set J = {J1, J2, . . . , Jn} of n parallel jobs to
be executed on a platform consisting of P identical processors.
All jobs are released at the same time, corresponding to the
batch scheduling scenario in an HPC environment. We focus
on rigid jobs, which must be executed with a fixed number of
processors set by the user when the job is submitted1. For each
job Jj ∈ J , let pj ∈ {1, 2, . . . , P} denote its fixed (integral)
processor allocation, and let tj denote its error-free execution
time. The area of the job is defined as aj = pj × tj .

B. Error model

We consider failures that manifest as silent errors or silent
data corruptions (SDCs) [21] that could corrupt a job during
execution. A silent error detector is assumed to be available for
each job, which is triggered at the end of the job’s execution. If
an error is detected, the job needs to be re-executed, followed
by another error detection. This process repeats until the job
completes successfully without errors. Current state-of-the-art
SDC detectors are typically lightweighted (e.g., ABFT for
matrix computations [6], [31], data analytics for scientific
applications [5], [13]), and hence incur a negligible cost
compared to the job’s overall execution time.

All the list-based and shelf-based scheduling heuristics
introduced and compared in this paper are agnostic of the
probability of each job to fail any given number of times.
Specifically, for a job Jj , consider a particular run where it
fails fj times before succeeding on the (fj + 1)-th execution.
The probability that this happens is denoted as qj(fj). Let
f = (f1, f2, . . . , fn) denote a failure scenario, i.e., a vector of
the number of failed execution attempts for all jobs, during
a particular run. Assuming that errors occur independently
for different jobs, the probability that this combined failure
scenario happens can be computed as Q(f) =

∏
j=1...n qj(fj).

The failure scenario f , as well as the associated probabilities
qj(fj) and Q(f) may be unknown to the scheduler.

1Other parallel job models include moldable and malleable models, which
allow the processor allocation of a job to vary at launch time or during
execution [8]. Considering alternative job models will be part of our future
work.

C. Problem statement

We study the following resilient scheduling problem: Given
a set J of parallel jobs, find a schedule for J on P identical
processors under any failure scenario f = (f1, f2, . . . , fn).
Here, a schedule for f is defined by a collection s =
(~s1, ~s2, . . . , ~sn) of starting time vectors for all jobs, where
vector ~sj = (s

(1)
j , s

(2)
j , . . . , s

(fj+1)
j ) specifies the starting times

for job Jj at different execution attempts until success.
The objective is to minimize the overall completion time of

all jobs, or the makespan. Suppose an algorithm ALG makes
scheduling decision s during a failure scenario f , then the
makespan of the algorithm for this scenario is defined as:

TALG(f , s) = max
j=1...n

(
s

(fj+1)
j + tj

)
. (1)

All scheduling decisions should be made while satisfying
the following two constraints:

1) Processor constraint: The number of processors used at
any time t by the set Jt of running jobs should not
exceed the total number P of available processors on the
platform, i.e.,

∑
Jj∈Jt

pj ≤ P,∀t.
2) Re-execution constraint: A job cannot be re-executed if its

previous execution attempt has not yet been completed,
i.e., s(i+1)

j ≥ s(i)
j + tj ,∀j = 1 . . . n, ∀i ≥ 1.

This scheduling problem, encompassing the failure-free
problem as a special case, is clearly NP-hard. A scheduling
algorithm ALG is said to be c-approximation if its makespan
is at most c times that of an optimal scheduler for all possible
sets of jobs under for all possible failure scenarios, i.e.,

TALG(f , s) ≤ c · TOPT(f , s∗) , (2)

where TOPT(f , s∗) denotes the optimal makespan with schedul-
ing decision s∗ under failure scenario f . Clearly, this optimal
makespan admits the following two lower bounds:

TOPT(f , s∗) ≥ tmax(f) , (3)

TOPT(f , s∗) ≥ A(f)

P
, (4)

where tmax(f) = maxj=1...n(fj + 1) · tj is the maximum
cumulative execution time of any job under f , and A(f) =∑n
j=1(fj + 1) · aj is the total cumulative area.
In Section IV, we establish several approximation results,

which are valid for any failure scenario regardless of its
individual probability. This is the strongest result that can
be obtained from a theoretical perspective. However, from a
practical perspective, given a set of jobs, it is not easy to assess
the performance of a scheduling heuristic if the probability
Q(f) =

∏
j=1...n qj(fj) of each failure scenario f is not

known. Thus, for the experiments in Section V, we report
the expected makespan of each heuristic under the standard
Exponential probability distribution, as explained below.

D. Expected makespan

Suppose the occurrence of silent errors striking the jobs
follows an Exponential probability distribution, and that the
mean time between error (MTBE) of an individual processor



is µ, so the error rate of the processor is given by λ = 1/µ.
For a job Jj executed on pj processors, the probability that the
job is struck by a silent error during execution is then given
by qj = 1− e−λpj ·tj = 1− e−λaj [15]. Then, the probability
for job Ji to fail fj times before succeeding on the (fj+1)-th
execution is qj(fj) = q

fj
j (1− qj).

Given a set J of jobs, we can now define the expected
makespan of an algorithm ALG, taken over all possible failure
scenarios weighted by their probabilities, as:

E(TALG) =
∑

f
Q(f) · TALG(f , s) . (5)

In this case, an algorithm is a c-approximation if we have:

E(TALG) ≤ c · E(TOPT) , (6)

for all possible sets of jobs, where E(TOPT) denotes the optimal
expected makespan. This is because the inequality is true for
each failure scenario, hence for the weighted sum. Obviously,
the converse is not true: an algorithm could satisfy Equa-
tion (6) (thus achieving c-approximation in expectation) but be
arbitrarily worse than the optimal on some (low probability)
failure scenarios. Still, expected makespan provides a synthetic
indicator on the performance of an algorithm under study,
enabling easy and quantitative comparisons. Thus, we use it
for the experimental evaluations in Section V.

E. Static vs. dynamic scheduling

As all the information regarding the set of jobs (except the
failure scenario f ) is available, one approach would be to make
all scheduling decisions (i.e., starting times s) statically at the
beginning, and then execute the jobs according to this static
schedule. While this approach works for failure-free execu-
tions, it is problematic when jobs can fail and re-execute. In
particular, a static schedule needs to pre-compute a (possibly
infinite) sequence of starting times for all jobs to account for
every possible failure scenario, while ensuring the satisfaction
of the constraints. Pre-computing such a static schedule would
be computationally intractable, especially when there turn out
to be only a few failures in a run.

In contrast, another more flexible approach is to make
scheduling decisions dynamically depending on the particular
failure scenario that is unveiled from an execution. For exam-
ple, a scheduling algorithm may decide the starting time for
the next execution attempt of a job depending on the failure
scenario and schedule so far. As a result, even for the same
set of jobs, the algorithm may produce different schedules in
response to the different failure scenarios that could arise at
runtime. In this paper, we adopt this dynamic approach.

IV. RESILIENT SCHEDULING HEURISTICS

In this section, we present a resilient list-based heuristic
(R-LIST) and a resilient shelf-based heuristic (R-SHELF) for
scheduling rigid parallel jobs that could fail due to silent
errors. We show that the greedy variant of R-LIST without
reservation is 2-approximation, and a variant with reservations
is 3-approximation. For R-SHELF, even though it achieves 3-
approximation in the failure-free case, we show through an

Algorithm 1: R-LIST

Input: a set J = {J1, J2, · · · , Jn} of rigid jobs, with processor
allocation pj and error-free execution time tj for each job
Jj ∈ J , a platform with P identical processors, parameter m;

Output: a list schedule with starting times for all jobs in J till they
complete successfully.

begin
Insert all jobs into a queue Q according to some priority rule;
whenever an existing job Jk completes do

if error detected for Jk then
Q.insert with priority(Jk);

end
// schedule high-priority jobs using reservation
for j = 1, 2 . . . ,min(m, |Q|) do

Jj ← Q(j);
Give job Jj an earliest possible reservation without

delaying the reservation of job Jj′ , ∀j′ = 1, . . . , j − 1;
end
// schedule low-priority jobs using backfilling
for j = m+ 1, . . . , |Q| do

Jj ← Q(j);
if Job Jj can be scheduled at the current time without

delaying the reservation of job Jj′ ,∀j′ = 1 . . .m then
execute job Jj at the current time;

end
end

end
end

example that any resilient shelf-based algorithm may have an
approximation ratio of Ω(lnP ) compared to the optimal in
some failure scenario.

A. R-LIST scheduling heuristic

We first present a resilient list-based scheduling heuristic,
called R-LIST, that schedules any set of jobs with the capabil-
ity to handle failures. Algorithm 1 shows the pseudocode of
R-LIST. It extends the classical batch scheduler that combines
reservation and backfilling strategies. The algorithm first orga-
nizes all jobs in a list (or a queue) based on some priority rule.
Then, whenever an existing job Jk completes and hence re-
leases processors (at time 0, a virtual job J0 can be considered
to complete), the algorithm schedules the remaining jobs in the
queue. First, it checks if job Jk completes with error. If so, the
job will be inserted back into the queue, based on its priority,
to be rescheduled later. All jobs in the queue are divided into
two groups: the first m jobs with the highest priorities are each
given a reservation at the earliest possible time, provided that
any reservation made should not delay the starting times of
the higher-priority jobs; the subsequent jobs in the queue (if
any) are then examined one by one and backfilled to start at
the current time, again if such backfilling does not affect any
reservations for the higher-priority jobs.2

The R-LIST heuristic takes a parameter m, and depending
on the value of m chosen, it resembles several scheduling
strategies known in theory and practice:
• m = |Q| (Conservative backfilling [22]): this strategy

makes reservations for all pending jobs in the queue;
• m = 1 (Aggressive or EASY backfilling [19], [26]): this

strategy makes a reservation only for the job at the head of

2For practical schedulers, this is typically implemented using two separate
job queues, one for reservation and one for backfilling.



the queue, and uses backfilling to schedule all remaining
jobs in the queue;

• m = 0 (Greedy scheduler [9], [10], [29]): this strategy
does not make any reservation, and uses backfilling to
schedule all jobs in the queue.

Note that, when m > 0 and when a job Jk with high priority
fails, it may be re-inserted back into the first part of the queue
(i.e., among the top m jobs). This may require recomputing
the existing reservations (made previously) for some jobs that
have lower priority than Jk. From an analysis point of view, we
can think of each job completion as a trigger, which deletes all
previous reservations and makes a fresh round of reservation
and backfilling decisions based on the updated queue.

In the following, we denote by RESERVATION this variant
of R-LIST with reservations (m > 0), and by GREEDY the
variant with m = 0.

B. Approximation ratios of R-LIST

We show that, under any failure scenario, RESERVATION
with a particular priority rule is a (3 − 4

P+1 )-approximation,
and that GREEDY with any priority rule is a (2 − 1

P )-
approximation. According to Equation (6), these results di-
rectly imply the same approximation ratios for the respective
heuristic variants in terms of the expected makespan.

1) Result for RESERVATION: We first consider the RESER-
VATION variant, while applying a priority rule that favors large
jobs and uses any priority for small jobs. We call this rule
Large Job First (LJF). Specifically, a job is said to be large if
its processor allocation is at least P+1

2 , and small otherwise.
The LJF rule specifies that: (1) all large jobs have higher
priority than all small jobs; (2) the priorities for large jobs are
based on decreasing processor allocation; and (3) the priorities
for small jobs are defined arbitrarily.

The following proposition shows the performance of
RESERVATION in any failure scenario using the above LJF
rule. The result matches the 3-approximation ratio [2], [29]
known for failure-free jobs.

Proposition 1. For any set of rigid parallel jobs under any
failure scenario f , the makespan of RESERVATION with the
LJF priority rule satisfies:

TR(f , s) ≤ (3− 4

P + 1
) · TOPT(f , s∗) . (7)

Proof Sketch. Due to the lack of space, we only sketch the
proof here; the complete proof can be found in [3].

Since R-LIST only allocates and de-allocates processors
upon job completions (the starting time of a reservation is
necessarily at a future job completion time as well), the entire
schedule can be divided into a set of consecutive and non-
overlapping intervals I = {I1, I2, . . . , Iv}, where jobs only
start (or complete) at the beginning (or end) of an interval.
Let Jj be a last successfully completed job in the schedule.
We can divide I into two disjoint subsets I1 and I2, where I1

contains the intervals in which job Jj is executing (including
all of its execution attempts), and I2 = I\I1.

We show that the cumulative length T1 of all intervals in I1

satisfies T1 ≤ tmax(f), and the number of utilized processors
p(I) in any interval I ∈ I2 satisfies p(I) ≥ P+1

2 . This gives
rise to a makespan at most (3− 4

P+1 ) times the optimal.

2) Result for GREEDY: We now consider the GREEDY
variant. The following proposition shows the performance of
GREEDY in any failure scenario regardless of the priority rule.
The result generalizes the 2-approximation ratio [9], [10], [29]
known for failure-free jobs.

Proposition 2. For any set of rigid parallel jobs under any
failure scenario f , the makespan of GREEDY regardless of the
priority rule satisfies:

TG(f , s) ≤ (2− 1

P
) · TOPT(f , s∗) . (8)

Proof Sketch. The proof is similar to that of Proposition 1. Let
Imin denote the last-executed interval that has the minimum
processor utilization pmin = min` p(I`) among all intervals
in I. Consider a job Jj that is running during interval Imin.
We now define I1 to be the subset of intervals in which job
Jj is executing (including all of its execution attempts), and
I2 = I\I1. We show that the cumulative length T1 of all
intervals in I1 satisfies T1 ≤ tmax(f), and the number of
utilized processors p(I) in any interval I ∈ I2 satisfies p(I) ≥
P −pmin +1. This leads to a makespan at most (2− 1

P ) times
the optimal. The complete proof can again be found in [3].

C. R-SHELF scheduling heuristic

We now present a shelf-based scheduling heuristic, called
R-SHELF, that schedules any set of parallel jobs onto a series
of shelves while handling job failures.

a) Heuristic description: Algorithm 2 shows the pseu-
docode of R-SHELF. As in R-LIST, the algorithm starts by
organizing all jobs in a queue based on some priority rule.
Whenever the jobs in the preceding shelf all complete (at
time 0, a virtual shelf S0 with no job in it can be considered
to complete), the algorithm builds a new shelf and adds the
remaining jobs to it. First, any job in the preceding shelf that
completes with error will be inserted back into the queue based
on its priority. Then, the algorithm scans the queue and adds
a job to the new shelf if the job can fit in without violating
the processor constraint. R-SHELF takes a binary parameter b
that determines if backfilling is used in the process:
• b = 0 (No backfilling): the heuristic closes the new shelf

upon encountering the first job in the queue that does not
fit in the shelf. This resembles the Next-Fit (NF) strategy
for bin-packing.

• b = 1 (Backfilling): the heuristic scans all the jobs in the
queue until no more job can be added to the new shelf.
This resembles the First-Fit (FF) strategy for bin-packing.

Once the jobs in the new shelf have been selected, they will
simultaneously start their executions.



Algorithm 2: R-SHELF

Input: a set J = {J1, J2, · · · , Jn} of rigid jobs, with processor
allocation pj and error-free execution time tj for each job
Jj ∈ J , a platform with P identical processors, parameter b;

Output: a shelf schedule with starting times for all jobs in J till they
complete successfully.

begin
Insert all jobs into a queue Q according to some priority rule;
i← 0, Si ← ∅;
whenever all jobs in Si complete do

if error detected for Jk ∈ Si then
Q.insert with priority(Jk);

end
i← i+ 1 and Si ← ∅; // start a new shelf
for j = 1, 2 . . . , |Q| do

Jj ← Q(j);
if Job Jj can fit in shelf Si then

Si ← Si
⋃
{Jj};

else if b = 0 then
break ; // no backfilling

end
end
execute all jobs in Si at the current time;

end
end

b) Inapproximability result: For failure-free jobs, the
variant of R-SHELF without backfilling and considering jobs
in the non-increasing execution time order is equivalent to the
Next-Fit Decreasing Height (NFDH) [7] algorithm for strip
packing. The algorithm starts with the longest job J1, which
is put on the first shelf, whose height is t1. Then, the next
job J2 is put on the same shelf if it fits in, meaning that
p1 + p2 ≤ P , otherwise a new shelf is started for J2, whose
height is t2. The algorithm proceeds like this, either putting
the next job on the last shelf if it fits in, or creating a new
shelf otherwise. Despite its simplicity, the algorithm is shown
to be a 3-approximation for failure-free jobs [7], [29].

Now, when jobs can fail, we show that there exists a job
instance J and a failure scenario f such that any shelf-based
algorithm has a makespan TS(f , s) that is arbitrarily higher
than the optimal makespan TOPT(f , s∗) regardless of the job
priority used. This is in clear contrast with the 3-approximation
result for the failure-free case. Note that TOPT(f , s∗) is not
necessarily the optimal makespan of a shelf-based schedule.

Proposition 3. There exists a job instance and a failure
scenario such that any shelf-based algorithm has an approxi-
mation ratio of Ω(lnP ).

Proof. Consider a set J = {J1, . . . , JP } of P uniprocessor
jobs, where tj = P/j and pj = 1 for 1 ≤ j ≤ P . For the
failure scenario f , we let fj = j − 1 for 1 ≤ j ≤ P ; hence
job J1 does not fail, job J2 fails once before success, and
job JP fails fP = P − 1 times before success.

We first consider the R-SHELF algorithm. Because the
problem instance above has only P uniprocessor jobs, R-
SHELF has no freedom at all: it schedules the first execution
of all P jobs in the first shelf of height t1, then the second
execution of jobs J2 to JP in the second shelf of height t2,
and so on until the last shelf of height tP , which includes
only the P -th execution of job JP . Therefore, the makespan
of R-SHELF is TS(f , s) = P + P

2 + · · · + 1 = P
∑P
j=1

1
j ,

while the optimal algorithm schedules the different executions
of all jobs right after each other, thus having a makespan of
TOPT(f , s∗) = P . The ratio TS(f ,s)

TOPT(f ,s∗)
tends to ln(P ) when P

tends to infinity, hence it is not bounded.
Furthermore, since the P jobs have decreasing execution

time and increasing number of failures, any shelf-based algo-
rithm will have at least one shelf of height tj , for all 1 ≤ j ≤
P , thus having a makespan that is at least TS(f , s). Therefore,
the same ratio applies to any shelf-based algorithm.

We conclude this section with an open problem. Instead of
a single failure scenario, consider an Exponential probability
distribution and the expected makespan as defined in Sec-
tion III-D. Will R-SHELF or any shelf-based algorithm admit
a constant approximation ratio in expectation? To answer
this question seems difficult, because computing the expected
makespan seems out of reach analytically. Given P = 10 in
the above example, we find numerically (using a computer
program) that the expected makespan ratio of R-SHELF is
1.00005 for λ = 10−7 and 1.07 for λ = 10−3. We have
not been able to build an example where this ratio (computed
numerically) is greater than 3.

V. PERFORMANCE EVALUATION

We now evaluate and compare the performance of all
heuristics presented in Section IV, using different job priority
rules and backfilling strategies. The evaluation is performed by
simulation using both synthetic jobs and jobs extracted from
the log traces of the Mira supercomputer.

A. Simulation setup

We compare five different heuristics combined with seven
different priority rules. The five heuristics are:
• R-LIST-0: The list-based algorithm with m = 0;
• R-LIST-1: The list-based algorithm with m = 1;
• R-LIST-Q: The list-based algorithm with m = |Q|;
• R-SHELF-B: The shelf-based algorithm with b = 1.
• R-SHELF-NB: The shelf-based algorithm with b = 0.

For each of these five heuristics, we consider seven different
job priority rules:
• LPT/SPT (Longest/Shortest Processing Time): a job with

a longer/shorter processing time will have higher priority;
• HPA/LPA (Highest/Lowest Processor Allocation): a job

with a higher/lower number of requested processors will
have higher priority;

• LA/SA (Largest/Smallest Area): a job with a
larger/smaller area will have higher priority;

• Random (RANDOM): the priorities are determined ran-
domly for all jobs.

We simulate two different settings, one using synthetic jobs
and the other using real job traces from the Mira logs.
• Synthetic jobs: We generate 30 different job sets, each

containing 100 jobs. For each job, the processor allo-
cation is generated uniformly at random between 50
and 2000, while the execution time is generated uniformly
at random between 100 and 20000 seconds. The total
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Fig. 1. Data from the trace logs of the Mira supercomputer.

number of processors is set to be P = 10000. In the
experiments, we also vary P to study its impact.

• Jobs from Mira logs: We generate jobs by extracting
from the log traces [1] (of June 2019) of the Mira
supercomputer, which has P = 49152 compute nodes.
There were 4699 jobs submitted in June 2019, and we
group the ones submitted each day as a set to form 30 sets
of jobs. Figure 1(a) plots the number of jobs in each day
of the month, varying between 66 and 277. The processor
allocations of the jobs vary between 512 and 49152, and
the execution times vary between 37 and 86494 seconds.
Figure 1(b) plots these two parameters for all jobs in the
month (with each point representing a job).

In both settings, silent errors are injected to the jobs based
on the Exponential distribution as described in Section III-D.
To study the impact of error rate, we further define the average
failure probability for a set of jobs to be q̄ = 1−e−λā, where
ā =

∑n
j=1 aj/n is the average area of all jobs in the set. Intu-

itively, q̄ represents the probability that a job with the average
area over all jobs would fail due to silent errors. For a given
value of q̄, we can compute the error rate as λ = − ln(1−q̄)/ā,
and hence the failure probability of any job Jj with area aj
to be qj = 1− e−λaj = 1− (1− q̄)aj/ā. Based on this q̄, we
then randomly generate 1000 failure scenarios for the set of
jobs following the probabilities. For each failure scenario f ,
we evaluate the makespans of the heuristics, normalized by
the lower bound L(f) = max(tmax(f), A(f)/P ) as defined
in Equations (3) and (4). The normalized makespans are then
averaged over the 1000 failure scenarios for comparison.

The simulation code for all experiments is publicly available
at http://www.github.com/vlefevre/job-scheduling.

B. Results for synthetic jobs

We first compare the performance of different heuristics
using synthetic jobs. Here, we focus on assessing the impact
of two parameters: the average failure probability q̄, and the
total number of processors P . The results are averaged over
the 30 different sets of jobs.

Figure 2 shows the performance of different heuristics when
q̄ varies from 0 to 0.9. First, we can see that, for all list-based
heuristics, the normalized makespans first increase with q̄ and
then decrease. Indeed, a higher failure probability will result
in a larger number of errors, thus increasing the difficulty
of scheduling and hence the makespan. However, when the
probability is too high, an excessive number of errors will
occur, making the optimal scheduler perform equally worse

and thus reducing the makespan ratios for the heuristics.
For the shelf-based heuristics, the performance appears to be
independent of the failure probability. Here, tasks that fail
need to wait for the completion of the current shelf to be
re-executed, so the number of shelves is mainly determined
by the number of re-executions, which influences both the
makespan and an optimal scheduler. The normalized makespan
is thus mainly decided by the efficiency of the heuristic to fill
one shelf, which does not depend on the failure probabilities.
Second, the LPT and LA priorities lead to the best performance
for all list-based heuristics, with LPT performing better when q̄
is low for R-LIST-1 and R-LIST-Q, and LA performing better
for R-LIST-0 under any q̄. For the shelf-based heuristics, LPT
and SPT are the two best priorities, which is not surprising as
the performance of these algorithms is mainly determined by
the duration of each shelf.

Figure 4(a) further compares the performance of the five
heuristics using some of the best priorities. While most list-
based heuristics behave similarly when there is no failure (i.e.,
q̄ = 0), R-LIST-0 clearly outperforms the rest when jobs
can fail. This corroborates the theoretical result that R-LIST-0
(i.e., GREEDY) has the lowest approximation ratio regardless
of the priority rule and failure scenario. Moreover, R-LIST-
0 is also the heuristic that is least affected by job failures,
with an increase in normalized makespan by less than 10%
compared to the case of q̄ = 0, while the other heuristics
experience 20-30% increase in normalized makespan. Finally,
R-SHELF-NB appears to be the worst heuristic for small and
high probabilities of failure with a makespan that is up to 15%
higher than that of R-LIST-0 (when q̄ = 0.9), while R-LIST-Q
is the worst for medium probabilities (e.g., 26% higher than
that of R-LIST-0 for q̄ = 0.5). The results are likely due
to: (i) the restriction of R-SHELF-NB for building shelves
in a schedule, which leads to poor performance for some
failure scenarios (such as the one discussed in Section IV-C),
and hence an increase in the expected makespan, and (ii) the
fact that R-LIST-Q is more affected by the increasing failure
probability.

Figure 3 shows the performance of different heuristics when
the number of processors P varies from 5000 to 20000 while
the failure probability is fixed at q̄ = 0.3. Again, we can
see that LA and LPT are the two best priority rules for all
heuristics, with LA performing better for R-LIST-0 and R-
LIST-1, and LPT performing better for other heuristics under
all P . Also, the normalized makespans of the heuristics first
increase with the number of processors and then tend to
decrease. This is because when P is either too small (i.e.,
total resource is constrained) or too big (i.e., total resource
is almost unconstrained), the optimal scheduler tends to have
very similar performance as the heuristics.

We further compare the performance of the five heuristics
using some of the best priorities in Figure 4(b). As in the
previous experiment, the best heuristic is R-LIST-0 with
the LA priority, which is the least impacted by the total
number of processors (with < 10% variations in normalized
makespan). Also, R-LIST-Q gives the worst performance (with

http://www.github.com/vlefevre/job-scheduling
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(d) R-SHELF-B
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(e) R-SHELF-NB

Fig. 2. Normalized makespans of different heuristics and priority rules over 30 sets of jobs when q̄ varies between 0 and 0.9, and P = 10000.
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(a) R-LIST-0
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(d) R-SHELF-B
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Fig. 3. Normalized makespans of different heuristics and priority rules over 30 sets of jobs when P varies between 5000 and 20000, and q̄ = 0.3.
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Fig. 4. Comparison of different heuristics with the best priority rules LPT
and/or LA when: (a) q̄ varies between 0 and 0.9, and P = 10000; and (b)
P varies between 5000 and 20000, and q̄ = 0.3.

a 23% increase in makespan compared to R-LIST-0 with LA
when P = 15000) and has the largest variation (∼20%) in
normalized makespan as the number of processors changes.

From these experiments, we can see that job failures and
processor variations do have an impact on the relative perfor-
mance of different heuristics. Nevertheless, the makespans of
all the heuristics (with good priorities) are never more than
40% worse than the theoretical lower bound, which can be
much less than the optimal makespan. The results suggest the
robustness of these heuristics, and that they should actually
perform really well in practice, even with job failures.

C. Results for jobs from Mira

We now evaluate the performance of different heuristics
using real jobs from the Mira trace logs. Figures 5 and 6 show
the normalized makespans of all heuristics and priority rules
under all 30 days (sets) of jobs with and without failures. We
observe that the LPT and LA priorities again offer the best
performance, with LPT performing better this time for most
job sets. This holds for every heuristic on average, especially
when there is no failure (i.e., q̄ = 0). As the failure probability
increases, both LPT and LA (and even HPA) give similar
performance. The reason is that the processor allocations and
execution times of the jobs in Mira are more skewed than
those of the synthetic ones. Here, some jobs use a very large

number of processors and have long execution times, which
make them fail more often even with small values of q̄. As a
result, the makespan lower bound is largely determined by the
total execution times of these jobs, thus any priority rule that
favors these jobs will achieve similar performance. Comparing
different heuristics, we can see that R-LIST-0 again performs
the best and R-SHELF-B the worse, especially with higher
failure probability (q̄ = 0.1). This is consistent with the
previous findings and corroborates the analysis.

Table I summarizes the results of the five heuristics using the
LPT priority (which is overall the best one) over 30 days (sets)
of jobs, which have an average of 157.63 jobs per day (set). As
q̄ increases to 0.05 and 0.1, the average number of failures rises
to around 15 and 254, respectively. All list-based heuristics
have good average makespan ratios that are very close to 1
(with low standard deviations), as well as good maximum
makespan ratios that are lower than 1.5, while the two shelf-
based heuristics have worse performance in comparison, even
when failures are not present. The maximum makespans,
however, are never more than 80% of the theoretical lower
bound. This again corroborates the results in Section V-B.

Overall, these results confirm the efficacy and robustness
of the resilient scheduling heuristics, not only for synthetic
jobs, but also for real sets of jobs. In particular, both theory
and practice have suggested that R-LIST-0 is the best heuristic
when silent errors are present, and LPT and LA are the two
best priorities for most cases. In all experiments we have
conducted, this heuristic achieves a makespan that is within a
few percent of the lower bound on average, and never more
than 50% in the worst case.

VI. CONCLUSION

In this paper, we have investigated the problem of schedul-
ing rigid jobs onto a parallel platform subject to silent errors.
We have revisited the classical scheduling algorithms in this
new framework, where jobs that have been struck by errors
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(a) R-LIST-0 (with q̄ = 0)
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(b) R-LIST-0 (with q̄ = 0.05)
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(c) R-LIST-0 (with q̄ = 0.1)
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(d) R-LIST-1 (with q̄ = 0)
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(e) R-LIST-1 (with q̄ = 0.05)
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(f) R-LIST-1 (with q̄ = 0.1)
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(g) R-LIST-Q (with q̄ = 0)
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(h) R-LIST-Q (with q̄ = 0.05)
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(i) R-LIST-Q (with q̄ = 0.1)

Fig. 5. Performance of list-based heuristics for 30 job sets using the Mira trace logs (June 2019) with and without failures. Each row represents a different
heuristic (R-LIST-0, R-LIST-1 and R-LIST-Q), and each column represents a different failure probability (q̄ = 0, q̄ = 0.05 and q̄ = 0.1). The average
number of failures for each job set is indicated on top of each plot.
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(a) R-SHELF-B (with q̄ = 0)
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(b) R-SHELF-B (with q̄ = 0.05)
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(c) R-SHELF-B (with q̄ = 0.1)
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(d) R-SHELF-NB (with q̄ = 0)
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(e) R-SHELF-NB (with q̄ = 0.05)
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(f) R-SHELF-NB (with q̄ = 0.1)

Fig. 6. Performance of shelf-based heuristics for 30 job sets using the Mira trace logs (June 2019) with and without failures. Each row represents a different
heuristic (R-SHELF-B and R-SHELF-NB), and each column represents a different failure probability (q̄ = 0, q̄ = 0.05 and q̄ = 0.1). The average number
of failures for each job set is indicated on top of each plot.



Table I. Performance of different heuristics using LPT priority for all 30 days (sets) of jobs from June 2019 on the Mira supercomputer.

q̄
Average
#failures

Average makespan ratio Standard deviation Maximum makespan ratio
R-LIST R-SHELF R-LIST R-SHELF R-LIST R-SHELF

0 1 Q B NB 0 1 Q B NB 0 1 Q B NB

0 0 1.067 1.051 1.051 1.407 1.441 8.78× 10−2 8.19× 10−2 8.23× 10−2 1.29× 10−1 1.45× 10−1 1.425 1.425 1.425 1.633 1.760
0.05 15.2913 1.031 1.049 1.061 1.129 1.141 6.72× 10−2 6.87× 10−2 7.76× 10−2 1.30× 10−1 1.40× 10−1 1.278 1.292 1.292 1.489 1.510
0.1 254.453 1.016 1.025 1.028 1.071 1.073 4.66× 10−2 4.54× 10−2 4.97× 10−2 1.03× 10−1 1.06× 10−1 1.249 1.224 1.245 1.398 1.413

must be re-executed (possibly many times) until success.
We designed resilient list-based and shelf-based scheduling
heuristics, along with different priority rules and backfilling
strategies. On the theoretical side, we proved that variants
of the list-based heuristic achieve a constant approximation
ratio (2 or 3 depending whether reservation is used or not).
We also showed that any shelf-based heuristic is no longer
a constant-factor approximation, while a failure-free variant
was known to be a 3-approximation. Extensive simulations
conducted using both synthetic jobs and real traces from
the Mira supercomputer demonstrate that these heuristics are
quite robust, and achieve makespans close to the optimal.
As highlighted by the theoretical analysis, the best strategy
remains the unrestricted greedy list-based scheduling with no
reservations, and good results are obtained in practice when
job priorities are assigned by processing times (favoring jobs
with long execution times) or by areas (favoring jobs with
many processors and/or long execution times).

Some problems remain open, in particular for the study
of shelf-based algorithms, whose expected makespan under
the Exponential probability distribution is not known to be
bounded by a constant factor of the optimal or not. A natural
extension of this work would be to consider moldable jobs,
whose processor allocations can be decided at launch time.
However, for jobs with nonlinear speedup curves, changing
the number of processors assigned to a job also changes its er-
ror probability under the Exponential probability distribution,
thereby severely complicating the problem, and thus calling
for the design of novel heuristics.
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