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Abstract—A co-simulation may comprise several heterogeneous
federates with diverse spatial and temporal execution characteris-
tics. In an iterative time-stepped simulation, a federation exhibits
the Bulk Synchronous Parallel (BSP) computation paradigm in
which all federates perform local operations and synchronize with
their peers before proceeding to the next round of computation.
In this context, the lowest performing (i.e., slowest) federate
dictates the progression of the federation logical time. One
challenge in co-simulation is performance profiling for individual
federates and entire federations. The computational resource
assignment to the federates can have a large impact on federation
performance. Furthermore, a federation may comprise federates
located on different physical machines as is the case for cloud and
edge computing environments. As such, distributed profiling and
resource assignment to the federation is a major challenge for
operationalizing the co-simulation execution at scale. This paper
presents the Execution Performance Profiling and Optimization
(EXPPO) methodology, which addresses these challenges by using
execution performance profiling at each simulation execution step
and for every federate in a federation. EXPPO uses profiling
to learn performance models for each federate, and uses these
models in its federation resource recommendation tool to solve an
optimization problem that improves the execution performance of
the co-simulation. Using an experimental testbed, the efficacy of
EXPPO is validated to show the benefits of performance profiling
and resource assignment in improving the execution runtimes of
co-simulations while also minimizing the execution cost.

Index Terms—cyber-physical systems, distributed simulation,
cloud computing, latency, performance, resource management,
gang scheduling

I. INTRODUCTION

Cyber-physical systems (CPS) such as smart city, smart
manufacturing, and transactive energy systems must make
time-sensitive control decisions to ensure their safe operations.
However, such CPS are an amalgamation of multiple dynamic
systems such as transportation systems, vehicle dynamics, con-
trol systems, and power systems with different interconnected
networks of different scales and properties. The assurance
that such complex systems are safe and trustworthy requires
simulation capabilities that can rapidly integrate tools from
multiple domains in different configurations. Co-simulation is
an attractive option for interlinking such multiple simulators
to simulate higher-level, complex system behaviors.

The IEEE 1516-2010 High Level Architecture (HLA) de-
fines the standardized set of services offered to a process in
a distributed co-simulation [1]. A co-simulation in HLA com-
prises individual simulators called federates that are grouped
into a logical entity called a federation. Each federate can have
diverse computation and networking resource requirements,
which must be considered when assigning resources to the
simulators when the federation is deployed to cloud-fog-edge
computation environments. The wall-clock execution time
required for each federate’s computation step varies based on
this resource allocation. The variation in execution times can
result in some federates waiting on others before they can
proceed to the next stage of computation. Federates that re-
quire more wall-clock time for their computation steps (the low
performing federates) increase the overall completion time (or
makespan) of the entire simulation. This can potentially violate
the simulation completion deadline. Thus, resource allocation
and resource configuration selections are very important for
the overall performance of distributed simulations.

Although co-simulations have traditionally been hosted in
high-performance computing (HPC) clusters, there has been an
increasing trend towards the adoption of cloud computing for
simulation jobs. It is in this context that the Docker container
run-time platform [2] provides a solution for running federates
across different computation platforms by providing a unified
packaging of simulation code with its software dependencies.
But recent research [3] has shown that there are operational
challenges, such as performance aware resource assignments,
that need to be considered for running simulations in cloud
environments. Furthermore, there are several infrastructure-
related complexities that must be considered to run these
distributed simulations in a cloud environment.

This work presents a performance profiling, simulation
run-time optimization and resource configuration platform
called EXPPO - (EXecution Performance Profiling and
Optimization). EXPPO uses distributed tracing [4] to assess
federate level performance for each computational step. These
performance characteristics are used at runtime to determine
whether changes to the resource allocation of the federation



could enable shorter makespan for the simulation run. To
enable distributed tracing, EXPPO utilizes the opentracing [5]
specification for measuring the wall-clock time spent in each
computational step of the simulation. To shield the developers
from complexities when embedding tracing code in the sim-
ulation application logic, EXPPO leverages generative aspect
of Model Driven Engineering (MDE) to auto-generate source-
code snippets and configuration files for the simulation run. To
provide resource recommendations for the individual federates,
EXPPO uses the tracing information to build a resource-
performance model and solves an optimization problem to find
the resource allocation with the lowest makespan and cost for
the co-simulation.

The main contributions of EXPPO are:
1) Demonstration that the default resource configuration

for a federation has scenarios where a federate with a
longer wall-clock execution time for its computational
step increases the makespan of the co-simulation;

2) Development of an approach to generate tracing probes
inside the source code of the simulation logic, which is
required to perform distributed simulation profiling;

3) Development of a new resource recommendation engine
which uses an optimization algorithm for finding the
resource configuration for a federation that minimizes
its overall makespan and cost; and

4) Validation of EXPPO showing its benefits on the per-
formance of distributed simulation execution.

The rest of the paper is organized as follows. Section II
provides a motivating use-case for EXPPO and lists its key
requirements. Section III provides an overview of the EXPPO
framework. Section IV describes the key EXPPO components
and its resource configuration and optimization algorithms.
EXPPO ’s cloud architecture and co-simulation framework
are described in Section V. The experiment evaluation results
are described in Section VI, related works are described in
Section VII and Section VIII concludes the paper.

II. MOTIVATION AND SOLUTION REQUIREMENTS

The computation pattern of many time-stepped co-
simulations follows the Bulk Synchronous Parallel (BSP)
model [6]. In this model, every participating simulation com-
pletes its computation for a given time step, waits for the
other participating simulations to complete their computations,
exchanges new state information with its peers, and only then
proceeds to the next time step. Thus, if one simulation takes
more time to execute, the other simulations are forced to
wait for it and remain idle. This is illustrated in Figure 1
which shows an HLA federation with three federates. Each
federate executes one computation task repeated each time
step. Federate 1 takes the longest to execute, and the other two
federates are waiting for Federate 1 to complete before moving
to the next computation step. This increases the makespan of
the entire simulation, thereby decreasing the performance of
the simulation execution.

Recently, co-simulations have been deployed using con-
tainer management solutions [7] [8], such as Docker Swarm

Fig. 1: Performance visualization of an example federation.

[9], Kubernetes [10], Mesos [11]. However, these solutions use
queue-based scheduling, wherein the containers are allocated
to machines one at a time. Hence, there could be instances
where there may not be enough resources available in the
cluster to schedule all the federates of the federation. However,
a few federates may still get deployed while the remaining
federates are stuck in the scheduler queue until more resources
are available. This will cause the entire simulation to stall,
since all the federates are required to participate in the
simulation to progress. For instance, from Figure 1, if there
are resources to deploy Federate 1 and Federate 3, and not
sufficient resources to deploy Federate 2, the job scheduler
should not deploy any federates and should wait until more
resources are available. Hence, there is a need for bag-of-
tasks scheduling mechanism for deploying these federates on
the cloud computing environments.

The resource configuration also plays an important role in
the execution time of the federates. Figure 2(a) depicts the
performance of a federate when assigned different numbers
of cores for executing a computation step. This federate is
running a Freqmine application from the Princeton Application
Repository for Shared-Memory Computers (PARSEC) bench-
mark [12] as its computation task. This figure shows that the
execution time generally decreases with the increasing amount
of resources assigned to the federate. Thus, there is a potential
for minimizing the wait time by appropriately configuring
the resources assigned to the federates. Minimizing the wait
time can be done either by providing the highest resource
configuration for all the federates, or finding a resource con-
figuration that considers the cost of assigning the resources to
the federates. However, deciding what resource configuration
to select for a given computation is a non-trivial task for a
simulation developer who may not have the domain expertise
of configuring and running applications in cloud computing
environments. Performance profiling of the federates can help
in understanding the relation between the resource assignment
and the execution performance. However, these simulations
might be deployed across different physical and/or virtual host
environments when running in cloud computing platforms;
performance profiling for such distributed simulations can be
very challenging.

Building on the above use-case, below are the four key
requirements EXPPO aims to satisfy:
• Requirement R1. Conduct distributed performance trac-

ing of the federates: To understand the bottlenecks in
federation performance, there is a need for logging and



Fig. 2: (a) Performance of the federate running the PARSEC Freqmine application using 8 threads for different resource
configuration selections. (b) Performance of five PARSEC benchmark applications for different resource configuration selections.

gathering execution performance traces of the federates.
The tracing infrastructure needs to handle federates which
are distributed across multiple physical hosts. Hence, the
tracing infrastructure should be able to correlate traces
from different federates of a federation.

• Requirement R2. Reduce complexity in provisioning
software probes: Requiring the developer to manually
write source code for performance tracing for the fed-
eration can result in complexities and errors which need
to be minimized. The developer needs to understand the
tracing software and write code which adheres to the
tracing software requirements. This is tedious for the de-
veloper, who now apart from writing the simulation logic
must also setup and configure the tracing infrastructure.
EXPPO should reduce the manual configuration of the
tracing information, thereby reducing repeated effort by
the developer.

• Requirement R3. Recommend resource configuration to
minimize the co-simulation makespan and cost: It can
be challenging for an end user to determine the resource
requirements for a federation because each federate can
be configured differently. A bad resource configuration
can have inadvertent effect on the completion time of the
simulation. However, the choice of resource configuration
also has an associated cost. Hence, the configuration must
be chosen such that it satisfies both quality of service
(QoS) and cost factors.

• Requirement R4. Provide a gang-scheduling algorithm
for executing simulations: The runtime platform should
support deployment of multiple federate using bag-of-
tasks scheduling (or gang scheduling) algorithm.

III. OVERVIEW OF EXPPO

Figure 3(a) shows the workflow and components of
EXPPO. The design phase requires the developer to model
the federation using the federation development toolkit. This
toolkit is based on the Web-based Generic Modeling Envi-

ronment (WebGME) [13]. To measure the execution time of
a federate in a time step, the simulator needs to embed a
tracing code initializer and logger to record the execution time
completion of the computation step. The tracing initialization
code and the tracer configuration files are auto-generated by
the custom WebGME model interpreters. Once the required
code is generated and the user has implemented the necessary
simulation logic, the federate is compiled into an executable
image, which is then packaged inside a Docker container.

During the profiling phase, each federate is executed and
profiled under different resource configurations. The execution
time for each federate is logged using the tracing informa-
tion, and this tracing information is stored in a centralized
database. The resource configuration tuner uses the recorded
logs together with user provided objectives to optimize the
resource configuration for each federate. Finally, the optimized
resource configuration is used to configure the co-simulation
deployment accordingly.

During the runtime phase, the simulation job information
for the federates in the co-simulation is submitted to the
deployment manager. The job information includes the name
of the federate Docker image, resource configuration require-
ments, etc. The deployment manager submits the scheduling
information to the job scheduler, which handles the execution
of the jobs on the co-simulation runtime execution platform.

IV. DESIGN ELEMENTS OF EXPPO

EXPPO allows users to design and deploy co-simulations
on distributed compute infrastructures supported by Docker-
based virtualization. Its generative capabilities simplify the
auto-generation of performance monitoring instrumentation,
configuration and probing for the different federates. Its re-
source configuration tuner optimizes resource allocations to
federates to lower the makespan and execution cost for the
federation execution. Its runtime platform supports parallel
execution of different federations on its shared compute infras-
tructure. This section details each of the EXPPO components.



Fig. 3: (a) Workflow of EXPPO illustrating the connections between different components of the system. (b) Profiling code
snippet in Java language generated leveraging the MDE techniques.

A. Performance Profiling of Federates

Understanding the performance characteristics of the co-
simulation execution is of paramount importance when decid-
ing how to run federates in runtime execution environments.
Individual federates have different resource needs, and their
execution performance will vary depending on how the re-
sources are assigned. Thus, understanding the performance
profiles of each federate is critical to the problem of optimizing
the resource allocation and thereby lowering the makespan and
execution cost of the federation execution. EXPPO leverages
distributed tracing to assist in the logging of time stamps of
distributed events generated in the federation (Requirement
R1). It leverages Opentracing instrumentation [5] to track
execution time spent during each computation time step of the
federate. The execution time is then logged into a timeseries
database for conducting performance analysis. It leverages
MDE technologies [14] such as Domain Specific Modeling
Language (DSML), code generators and model interpreters to
synthesize performance profiling software artifacts which can
be used for performance profiling of federates (Requirement
R2). An example code snippet is shown in Figure 3(b).

B. Federation Resource Configuration Optimization

When running a federate in a Docker container, cloud
providers usually have multiple resource configurations from
which the user can select for their application. However,
without analyzing the resource dependency of the application,
it may be challenging for the user to select the resource
configuration that meets the application’s quality of service
(QoS) requirement while at the same time minimizing the
execution cost in terms of the cost of resources utilized.
Figure 2(b) shows how the different resource configuration
impacts the execution time of the federate which is running
applications from the PARSEC benchmark. Furthermore, in a
co-simulation, the resource selection becomes critical as every
federate’s execution time will contribute to the co-simulation’s
performance. To address this issue (Requirement R3), EXPPO

provides a resource configuration recommendation system that
selects the resource assignment which optimizes the applica-
tion’s QoS performance and user’s budget requirements.

Consider the following optimization problem: Suppose the
system has a set of homogeneous machines, each with k
processing cores. Let F = {f1, f2, . . . , fn} denote a feder-
ation (co-simulation) that consists of a set of n federates.
Given a resource assignment R = [r1, r2, . . . , rn] to each
federate, the execution time of federate fj ∈ F can be
expressed as tj(rj) when assigned rj cores. For performance
reasons, assume a federate cannot be split among two or
more machines, so we have 1 ≤ rj ≤ k. The makespan
M for every computation step for the entire federation F is
dictated by the slowest running federate (i.e., the straggler),
and is defined as M = maxj tj(rj). The execution cost C
is given by the total resource used by all the federates over
the makespan duration. Since the cores will be reserved for
the federation until the slowest federate is done executing, the
cost is defined as C =M ·

∑
j rj . The resource configuration

recommender needs to find a resource assignment R∗ that
minimizes G = αM+βC =M(α+β

∑
j rj), where α and β

denote the user-defined weights to the application’s QoS and
the execution cost, respectively.

Two additional assumptions are made to solve this optimiza-
tion problem: (1) federate execution time does not increase
with the amount of resources (number of cores) assigned, i.e.,
rj ≤ r′j implies tj(rj) ≥ tj(r

′
j); (2) federate execution cost

does not decrease with the amount of resources assigned, i.e.,
rj ≤ r′j implies cj(rj) ≤ cj(r′j), where cj(r) = r·tj(r). These
are realistic assumptions as many practical applications have
monotonically increasing and sublinear speedup functions
[15], [16], such as those that follow Amdahl’s law [17]. As
such, the optimization problem can be solved by examining
all possible makespan values while guaranteeing the minimum
cost. Algorithm 1 presents the pseudocode of this solution with
a time complexity of O(n log n) by maintaining a priority
queue for all jobs. Similar approaches can be applied to



Algorithm 1: Resource Configuration Tuner
Input : Execution time tj(r) for each federate fj in

federation F when allocated different amounts of
resources r, where 1 ≤ r ≤ k.

Output: A resource assignment R∗ = [r1, r2, . . . , rn] for
each federate in the federation that minimizes a
linear combination of makespan and cost.

1 Initialize rj ← 1 for all 1 ≤ j ≤ n;
2 Compute G← (maxj tj(rj)) · (α+ β

∑
j rj);

3 R∗ ← [r1, r2, . . . , rn] and G∗ ← G;
4 while

∑
j rj < nk do

5 j ← Index of a federate with longest execution time;
6 if rj = k then
7 break;
8 else
9 Increment rj to the next higher profiled resource

amount;
10 Update G← (maxj tj(rj)) · (α+ β

∑
j rj);

11 if G < G∗ then
12 R∗ ← [r1, r2, . . . , rn] and G∗ ← G;

find the minimum makespan subject to a cost budget or the
minimum cost for a target makespan.

C. Federation Machine Scheduling Heuristics

A custom scheduler is required to deploy all the federates
in the federation to their respective distributed computing
environments. Since the federates cannot run independently of
the federation, the scheduling scheme must simultaneously run
all of the federates of the federation (Requirement R4). This is
referred to as Gang scheduling or Bag-of-tasks scheduling in
the literature. To achieve this, EXPPO supports two heuristics
to simultaneously schedule the federates on a fixed number
m of available machines while utilizing the resource config-
uration results obtained from Section IV-B. These approaches
handle the case where some of the machines are loaded with
other compute tasks unrelated to the federation.

The first heuristic is inspired by the First-Fit Decreasing
(FFD) algorithm for bin packing and is described in Algorithm
2. The heuristic first sorts all the federates in decreasing order
of resource assignment and then tentatively allocates each
one of them in order onto the first available machine. If all
federates in the federation can be successfully allocated, then
the schedule is finalized; otherwise, the entire federation will
be temporarily put in a waiting queue to be scheduled later.
The time complexity of the heuristic is O(n(log n+m)). The
other heuristic is based on the Best-Fit Decreasing (BFD)
algorithm that works similarly to FFD, except that it finds,
for each federate, a best-fitting machine (i.e., with the least
remaining resource after hosting the federate). Note that since
finding the optimal schedule (or bin packing) is an NP-
complete problem, these heuristics may not always find a
feasible allocation for a federation even if one exists. However,
once an allocation has been found, it is guaranteed to produce
the optimal makespan and cost for the federation by using the
resource configuration from Section IV-B.

Algorithm 2: First Fit Decreasing (FFD)
Input : Resource assignment R = [r1, r2, ..., rn] for all

federates in a federation. Current available
resource A = [a1, a2, ..., am] of all m machines
in the system.

Output: Machine allocation L = [`1, `2, . . . , `n] of all
federates in the system.

1 Sort all resource assignments in decreasing order, i.e.,
r1 ≥ r2 ≥ · · · ≥ rn;

2 Initialize `j ← 0, ∀1 ≤ j ≤ n;
3 for j = 1, 2, . . . , n do
4 fit← false;
5 for i = 1, 2, . . . ,m do
6 if rj ≤ ai then
7 Update ai ← ai − rj ;
8 Set `j ← i;
9 fit← true;

10 break;

11 if fit = false then
// revert allocations done so far

12 for k = 1, 2, . . . , j − 1 do
13 i← `k;
14 ai ← ai + rk;
15 `k ← 0;

16 break;

V. CO-SIMULATION AS A SERVICE MIDDLEWARE

Figure 4 shows the different components and workflow
of the EXPPO co-simulation framework. It is called the
Co-simulation-as-a-Service (CaaS) middleware because it en-
ables users to automatically deploy groups of service-based
applications to a cloud environment without any concern
of resource allocation, application lifecycle monitoring, and
cluster management. The functionality of each component is
described below.

In 1©, the FrontEnd component allows a user to submit
a simulation job descriptor in JavaScript Object Notation
(JSON) using a Representational State Transfer (REST) Ap-
plication Programming Interface (API). Each simulation job
contains a list of federates, and each federate is run on an
individual Docker container. The simulation job descriptor
also includes meta-information for each federate, for example,
resources required, running status, container image details,
etc. The FrontEnd creates a record in a database 4© for each
incoming job, then relays the job identifier to JobManager
2© which handles resource management. Instead of deploying
jobs immediately, the JobManager stores received jobs in a
local queue and consults the database about the latest status of
cluster resources. It then periodically transfers the information
of pending jobs and available resources to JobScheduler 3©,
which is a pluggable component that implements multiple
scheduling algorithms. The JobScheduler either replies with
a scheduling decision if the submitted jobs are deployable,
or returns a KeepWaiting signal to notify the JobManager
that resources are insufficient. The JobManager then forwards
deployable jobs to GlobalManager 5©, synchronizes job status



Fig. 4: Co-simulation-as-a-Service.

with the database, and deletes the deployed jobs from its
queue. The GlobalManager is responsible for managing partic-
ipants of the Docker Swarm Runtime Platform 6©. It launches
the master node of the Docker Swarm cluster and accepts
registration requests sent from worker nodes. Every joined
Worker Node runs a CaaS-Worker daemon that is used to
receive and perform commands sent from the GlobalManager.
The GlobalManager parses received deployment requests and
spawns containers in specific Worker Nodes. Additionally, the
Worker Nodes employ a CaaS-Discovery daemon to track the
status of containers, and reports a StatusChanged signal to the
Discovery component 7© when a task is completed.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

EXPPO was validated using seven homogeneous compute
servers with a configuration of 12-core 2.1 GHz AMD Opteron
central processing units, 32 GB memory, 500 GB disk space,
and the Ubuntu 16.04 operating system. The runtime platform
was based on Docker engine version 19.0.5 with swarm
mode enabled. There was one client machine that submitted
simulation job requests. The front end, job manager, job
scheduler and the global manager components were running
on a single shared compute server, and five compute worker
servers were deployed for running the simulation jobs.

The simulation job consisted of three federates each running
a unique application from the PARSEC benchmark: freqmine,
blackscholes and ferret. These applications were chosen as
they are realistic representations of real-world simulation tasks
[12]. During the federation execution, each federate executed
its application at every logical time step, for a total number
of 100 logical time steps. The implementation of the co-
simulation federation was done using Portico HLA [18]. The

BFD scheduler was used in the experiments (as it was found to
have better performance than FFD). The weights for the QoS
and the cost were set to α = 1 and β = 0.5. These weights
are chosen so that they correspond to a specific brand of QoS
that prioritizes low makespan over resource usage, which is
representative of CPS applications.

B. Experimental Results

EXPPO recommended a resource configuration of 4 cores
for freqmine federate, 4 cores for ferret federate and 1 core for
blackscholes federate. Two baseline approaches were used to
compare the performance of resource configuration selection
of EXPPO. In the first approach (least configuration), all the
federates were assigned the lowest possible configuration of
1 core each. In the second approach (max configuration), all
the federates were assigned the highest possible configuration
of 10 cores each. The performance data was collected over 10
simulation jobs.

Figure 5(a) shows the cumulative distribution function
(CDF) of the execution time of EXPPO compared to the
other two approaches. The resource configurations selected by
EXPPO for the federation had a 90th percentile execution time
of around 230 seconds, which was significantly better than
the 320 seconds for the least configuration. Its performance
was close to that of the max configuration (90th percentile
execution time of around 200 seconds), with the difference
due to its lower resource allocation to conserve the cost.

Figure 5(b) shows the cost analysis of the three strategies
using the cost function defined in Section IV-B. As can be
seen, resource configuration selected by EXPPO incurred
a larger cost than the min configuration due to the higher
resource allocation to reduce execution time, but it had a
substantially lower cost compared to the max configuration.



Fig. 5: (a) Execution time for the EXPPO resource configuration compared to other strategies. (b) Cost for the EXPPO
resource configuration compared to other strategies.

Overall, the results show that EXPPO is able to select
resource configurations and schedule the federates in such a
way that minimizes the combination of execution time and
cost of the simulation successfully.

VII. RELATED WORK

In [7], the authors presented a Kubernetes co-simulation
execution platform for cloud computing environments. Simi-
larly, [8] presented a Docker swarm co-simulation platform for
running mixed electrical energy systems simulations. However,
these platforms do not use a gang-scheduling based simulation
deployment strategy.

For resource recommendation, [19] presented a data-driven
approach for selecting the best resource configuration for a
virtual machine from a set of different configuration options.
[20] explored the cost-sensitive allocation of independent tasks
to cloud computing environments. However, these approaches
are different from EXPPO as they focus on a single task rather
than a pool of BSP tasks.

In [21], the authors proposed a scientific workflows schedul-
ing algorithm to minimize the execution time under budget
constraints for deploying to cloud computing environments.
[22] proposed an advance-reservation scheduling strategy for
message passing interface (MPI) applications. Similarly, [23]
presented an approach for gang-scheduling of jobs with
different resource needs, such as a compute intensive task
paired with a network or I/O intensive task. In [24], the
authors present scheduling of multiple container workloads
on shared cluster as a minimum cost flow problem (MCFP)
constraint satisfaction problem. In [25], the authors proposed a
locality-based process placements for parallel and distributed
simulation. The evaluation of the proposed framework was
carried out using the OMNET++ network simulator.

Compared to related work, EXPPO provides a resource
recommendation engine which tries to minimize the makespan
and cost for the entire federation (BSP tasks) rather than a
single task. EXPPO uses a gang scheduling scheme based on

heuristic bin packing techniques to deploy the entire federation
on Docker container platform as one batch job. Furthermore,
EXPPO provides automatic code generation of distributed
tracing probes for performance profiling of the federates
which maybe deployed on a distributed infrastructure, thereby
relieving the developers from incurring complexities in writing
code for the profiling of federates [26].

VIII. CONCLUSION & FUTURE WORKS

Resource allocation plays a critical role in co-simulation
performance. However, the end user is not necessarily well-
equipped to determine what resource allocations work best
for their co-simulation jobs given the various resource con-
figuration options (and associated costs) available from the
cloud provider. To address these challenges, this paper presents
EXPPO, which is a Co-simulation-as-a-Service (CaaS) plat-
form for executing distributed co-simulations in cloud com-
puting environments. EXPPO provides performance profiling
capabilities for federates which help in the understanding of
the relationship between resource allocations and the simula-
tion performance. Similarly, it addresses performance profiling
challenges for a simulation job comprising heterogeneous
computation tasks or federates deployed across distributed
systems. Furthermore, EXPPO selects the resource configu-
rations for these federates in a way that not only minimizes
the makespan of the co-simulation, but also satisfies the cost
budget of the user.

Future work will address the following:
• The assumption that federate computations have identical

wall-clock execution times across all iterations restricts
the generality of the approach to a subset of application
use cases. For hybrid simulations or simulations with non-
linear dynamics, the execution times of the involved sim-
ulation steps will vary at each iteration. Future work must
explore dynamic resource allocation for federates which
have different work loads for different computation steps.
Reinforcement learning approaches which can monitor



the federates and dynamically adjust resource allocations
based on the varying demand of a federate over time offer
a promising approach that remains to be explored.

• EXXPO only considers workloads that are CPU bound.
It assumes constant communication costs during each
computation step for all the federates. Future work must
consider the different communication costs for simula-
tions which may need to be constantly updating states or
sending messages for triggering discrete events.

• When other applications are co-located in the cluster
environments, the effects of noisy-neighbors [27], [28]
can also affect federation performance. Thus, future work
could consider the effect of noisy-neighbors for resource
scheduling and simulation placement in the cluster.

• EXPPO assumes the use of homogeneous servers for
running simulations to simplify its algorithms, and could
be extended to include heterogeneous systems. Also, with
the growing relevance of edge computing and digital twin
techniques, efficient resource allocation and scheduling of
the simulations at the edge will be necessary.
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