
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

94
--

FR
+E

N
G

RESEARCH
REPORT
N° 9294
October 2019

Project-Teams TADaaM and
ROMA

Reservation and
Checkpointing Strategies
for Stochastic Jobs
(Extended Version)
Ana Gainaru, Brice Goglin, Valentin Honoré, Guillaume Pallez,
Padma Raghavan, Yves Robert, Hongyang Sun

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

Reservation and Checkpointing Strategies for
Stochastic Jobs (Extended Version)

Ana Gainaru*, Brice Goglin�, Valentin Honoré�, Guillaume

Pallez�, Padma Raghavan*, Yves Robert�, Hongyang Sun*

Project-Teams TADaaM and ROMA

Research Report n° 9294 � October 2019 � 38 pages

Abstract: In this work, we are interested in scheduling and checkpointing stochastic jobs on
a reservation-based platform. We assume that jobs can be interrupted at any time to take a
checkpoint, and that job execution times follow a known probability distribution. The user has to
determine a sequence of �xed-length reservation requests, and to decide whether to checkpoint the
state of the execution, or not, at the end of each request. The execution of the job is successful only
when it terminates within a request, otherwise it must be resubmitted, using the next request in the
reservation sequence, and restarting execution from the last checkpointed state. The cost of each
reservation depends on both its duration and on the actual utilization of the platform during that
request, which includes a restart if some previous reservation was terminated with a checkpoint, and
possibly a checkpoint at the end of the current request. The cost of a job is then the cumulated
cost of all the reservations that were needed until its completion. Overall, the objective is to
�nd a reservation sequence that minimizes the total expected cost to execute a job. We provide
an optimal strategy for discrete probability distributions of job execution times, and we design
fully polynomial-time approximation strategies for continuous distributions with bounded support.
We experimentally evaluate these strategies for jobs following a wide range of usual probability
distributions, as well as one distribution obtained from traces of a neuroscience application. We
compare our strategies with standard approaches that use periodic-length reservations (the next
reservation is longer than the previous one by a constant amount of time) and simple checkpointing
strategies (either checkpoint all reservations, or none).

Key-words: scheduling, checkpointing, stochastic cost, computing platform, sequence of re-
quests, neuroscience applications

* Department of EECS, Vanderbilt University, Nashville, TN, USA
� Inria, LaBRI, Univ. Bordeaux
� Laboratoire LIP, ENS Lyon & University of Tennessee Knoxville, Lyon, France

Stratégies de réservation avec points de sauvegarde pour
l'ordonnancement de tâches stochastiques

Résumé :
Dans ce rapport, nous nous intéressons à l'ordonnancement de tâches stochastiques exécutées

sur une plateforme à réservations, où l'utilisateur réalise des requêtes successives de temps de
calcul. Le temps d'exécution des tâches considérées n'est pas connu à l'avance. Ce temps est
représenté par une loi de probabilité, décrite sous la forme d'une densité de probabilité. Nous
nous intéressons à ordonnancer une instance d'une telle tâche, c'est à dire que nous ne connaissons
pas son temps d'exécution qui reste constant tout au long de l'ordonnancement. Dans ce cas, le
coût de l'ordonnancement dépend à la fois de la durée des requêtes et du temps d'exécution de
la tâche considérée.

Nous supposons de plus que la tâche peut être interrompue à tout instant (tâche divisible)
pour un point de sauvegarde. Nous avons donc la possibilité de prendre un point de sauvegarde
à la �n de certaines réservations bien choisies. L'avantage est de pouvoir repartir de l'état
sauvegardé à la prochaine réservation au lieu de repartir du début, si la tâche ne termine pas
pendant la réservation courante. Le prix à payer est le temps de sauvegarde, et de redémarrage.

L'objectif de ce travail est de déterminer une stratégie de réservation optimale qui minimise
le coût total de l'ordonnancement. Une stratégie de réservations est une séquence de requêtes
croissantes, qui sont payées les unes à la suite des autres en ordre croissant jusqu'à complétion
de la tâche. Pour chaque réservation, nous indiquons si un point de sauvegarde doit être pris ou
non.

Nous décrivons une telle solution optimale pour des distributions de probabilité discrètes,
et nous donnons un schéma d'approximation polynomial pour les distributions continues à sup-
port compact. Nous comparons expérimentalement ces stratégies aux stratégies usuelles qui
incrémentent la longueur de chaque réservation par une valeur constante, et qui décident de
sauvegarder soit toutes les réservations, soit aucune. Nous utilisons un grand nombre de lois de
probabilité usuelles (i.e. Uniforme, Exponentielle, Log-Normale, Weibull, Beta etc), ainsi qu'une
distribution basée sur l'interpolation de traces d'applications de neurosciences exécutées sur une
plateforme HPC.

Mots-clés : ordonnancement, coût stochastique, plateformes de calcul, séquence de réserva-
tions, point de sauvegarde, applications de neurosciences

Reservation & Checkpointing Strategies for Stochastic Jobs 3

Contents

1 Introduction 4

2 Framework 7
2.1 Stochastic jobs . 7
2.2 Cost model . 7
2.3 Expected cost . 9
2.4 Optimization Problem . 10

3 Algorithms 10
3.1 Expected cost . 10
3.2 Dynamic programming for discrete distributions 12
3.3 Approximation algorithm for continuous distributions 14
3.4 Extensions . 18
3.5 Periodic Heuristics . 19

3.5.1 All-Checkpoint-Periodic for Exponential distributions 19
3.5.2 All-Checkpoint-Periodic for Uniform distributions 20

4 Performance evaluation 21
4.1 Evaluation methodology . 21
4.2 Results for Scenario 1 . 23
4.3 Results for Scenario 2 . 28

5 Experiments 29
5.1 Experimental setup . 32
5.2 Experimental results . 32

6 Related Work 34
6.1 Reservation-based scheduling . 35
6.2 Stochastic scheduling and checkpointing . 35

7 Conclusion and Future Work 35

RR n° 9294

4 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

1 Introduction

In this report, we revisit our recent work on reservation strategies for stochastic jobs [3]. Stochas-
tic jobs originate from Big Data or Machine Learning workloads, whose performance is widely
dependent on characteristics of input data. Figure 1 shows an example of a Neuroscience job.
Reservation strategies provide a sequence of �xed length reservations to execute a stochastic job.
If the reservation is too short for the job, it is restarted in a longer reservation. We extend the
approach to include the possibility of checkpointing at the end of some (well-chosen) reservations.
The idea of checkpointing is very natural and widely used in practice, in particular for long jobs
lasting several hours, but it dramatically complicates the design of scheduling strategies. To the
best of our knowledge, existing approaches either checkpoint at the end of all reservations, or
never checkpoint. For large-scale applications, checkpointing to save intermediate results at the
end of each reservation is the de facto standard approach.

Figure 1: Execution times from 2017 for a Structural identi�cation of orbital anatomy application,
and its �tted distribution (in red).

We use an example to help understand the challenges of the problem under study. Consider
the jobs depicted in Figure 1. We model their execution time with D, a truncated LogNormal
probability distribution on the domain [a, b] = [0, 80h] (mean µ = 21h, standard deviation
σ = 20h). The exact execution time X of the next job to be scheduled is not known until that
job has successfully completed, but instead is randomly and uniformly sampled from the target
probability distribution D. The objective is to minimize the expected cost of scheduling this
job. To do so, we have to derive a sequence of reservations. Then we compute the cost of the
job given that sequence, and aim at minimizing the expected value. To determine the cost of a
reservation, we use the generic model from our previous work [3]. This model has been shown
to encompass a variety of scenarios, ranging from the Reserved Instances of Cloud Computing
where one pays (for a cheaper cost) only the reserved time [2], to High-Performance Computing
(HPC) platforms where one pays the total execution time (wait time and runtime).

Speci�cally, for a reservation of length W1 and an actual execution duration of length X, the
cost is expressed as:

αW1 + βmin(W1, X) + γ (1)

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 5

where α, β and γ are constant parameters that depend on the platform and the cost model.
The �rst component αW1 is proportional to the reservation length (pay for what you ask). The
second component βmin(W1, X) is proportional to the actual execution time (pay for what you
use). Finally, the third and last component is a start-up time possibly associated with the �rst
and/or second components.

To illustrate the contribution of this work, we use α = 1, β = γ = 0 in the example. In
Figure 2 , we depict three strategies, and their expected costs in hours: (i) S1 (Standard), which
reserves the upper bound of D, W1 = b = 80; (ii) S2 (No Checkpoint), which introduces a �rst
reservation of size W1 = 20 before the second reservation W2 = 80; (iii) S3 (With Checkpoint),
which introduces a �rst checkpointed reservation of size W1 = 20 + 7 (20 to cover jobs shorter
than 20, and 7 (red box) is the cost to checkpoint), then a second non-checkpointed reservation
of size W2 = 7 + 20 (7 (green box) is the cost to restart, 20 to cover jobs larger than 20 and
smaller than 40), and a third reservation of size W3 = 7 + 60 (7 is the cost to restart, 60 to cover
jobs of size up to b). Now, we show how to compute the expected cost of the di�erent strategies.
For S1, there is a unique reservation that represents the total cost:

E(S1) = 80

For S2, the expected cost is decomposed as follows. Either one reservation is su�cient to success,
or the two reservations are needed. In the �rst case, the reservation W1 of size 20 is performed
and is weighted by P (X ≤ 20), the probability of job success with this single reservation. In the
second case, the �rst reservation has failed but has been paid, and one has to perform the second
reservation W2 = 80, for a total cost of 80 + 20 = 100. This scenario occurs only if 20 < X ≤ 80.
Hence, we have

E(S2) = 20 · P (X ≤ 20) + (80 + 20) · P (20 < X ≤ 80)

= 20× 0.66 + 100× 0.34

= 47.2

Regarding the expected cost of S3, we apply the same principle as in the calcultion of S2.
However, we leverage the wastage of failed reservations by using checkpointing (inducing an
extra-cost in the reservation) and updating the probability associated to each reservation:

E(S3) = 27 · P (X ≤ 20) + (27 + 27) · P (20 < X ≤ 40) + (54 + 67) · P (40 < X)

= 27× 0.66 + 54× 0.26 + 121× 0.08

= 41.54

Note that S̃3, the variant of S3 where the second reservation is also checkpointed, would have
a larger expected cost due to this second checkpoint: E(S̃3) = 27×0.66+61×0.26+128×0.08 =
43.92. Similarly one can verify that not performing the second reservation at all would also have
increased the expected cost. This example shows that checkpointing does help for some scenarios
but has too much overhead for others, and suggests that �nding the best trade-o� is di�cult.

Indeed, in the general case, one has to decide which reservations should be checkpointed,
depending on application pro�le and platform parameters. Moreover, determining the expected
cost of a given reservation sequence together with scheduling decisions gets quite complicated.
Section 2 gives a detailed formula for the expected cost, and Theorem 1 in Section 3.1 provides
a simpli�ed version. In our previous work without checkpoints [3], we have been able to analyt-
ically characterize the optimal sequence of reservations for any smooth probability distribution
(except the length of the �rst reservation which had to be found numerically). The problem with

RR n° 9294

6 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

Time8020 54 100 121

Standard
E(S1) = 80

80

No Checkpoint [3]
E(S2) = 47.2

if t ≤ 2020

8020 if t > 20

With Checkpoint
E(S3) = 41.54

720 if t ≤ 20

207720 if 20 < t ≤ 40

607207720 if t > 40

Figure 2: Illustration of di�erent reservation strategies. The checkpoint (red) and restart (green)
costs are equal to 7.

checkpoints is dramatically more di�cult, but we provide a holistic approach: we show how to
compute the optimal solution for any discrete probability distribution, using a sophisticated dy-
namic programming algorithm. Then we show how to approximate the optimal solution for any
continuous probability distribution with bounded support, by providing a reservation sequence
(and its checkpointing decisions) whose expected cost is arbitrarily close to the optimal one. In
practice, the restriction to bounded support is not a limitation. Given, say, a Lognormal or
Weibull probability distribution de�ned on [a,∞), it is very natural to truncate it on a bounded
interval [a, b] where b corresponds to the quantile Q(1− ε) for a small value of ε. This amount to
discarding job execution times that are unreasonably too long, and never encountered in practice.

The main contributions of this work are the following:

� The characterization of an optimal reservation sequence, together with its checkpointing
decisions, for any discrete probability distribution, using a sophisticated dynamic program-
ming algorithm.

� An approximation of the optimal solution for any continuous probability distribution with
bounded support, by providing an algorithm to compute a reservation sequence (and its
checkpointing decisions) whose expected cost is arbitrarily close to the optimal one.

� An extensive set of simulation results based on execution times from nine probability dis-
tributions and from neuroscience application traces.

� Experimentation with neuroscience applications on a manycore platform, showing the e�-
ciency of our strategies in a HPC environment.

The rest of the paper is organized as follows. Section 2 introduces the framework and main
notations, and provides a detailed formula for the expected cost of a reservation sequence ant
its checkpointing decisions. Section 3 describes our key algorithmic contributions. Section 4 is
devoted to experimental evaluation and comparison with existing approaches through simulation
process. Section 5 establishes performance evaluation of real applications in an HPC framework.
Section 6 presents the related work. Finally, we provide concluding remarks and hints for future
work in Section 7.

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 7

2 Framework

In this section, we introduce some notations and formally de�ne the optimization problem under
study.

2.1 Stochastic jobs

We consider stochastic jobs whose execution times are unknown but (i) deterministic with respect
to input data, so that two successive executions of the same job will have the same duration;
and (ii) randomly and uniformly sampled from a given probability distribution law D, whose
density function (PDF) is f and cumulative distribution function (CDF) is F . The probability
distribution is assumed to be nonnegative, since we model execution times, and it is de�ned
either on a �nite support [a, b], where 0 ≤ a < b, or on an in�nite support [a,∞) where a ≥ 0.

Hence, the execution time of a job is a random variable X, and

P(X ≤ T) = F (T) =

∫ T

a

f(t)dt

For notational convenience, we sometimes extend the domain of f outside the support of D by
letting f(t) = 0 for t ∈ [0, a] ∪ [b,∞).

In addition, we assume that we can interrupt the jobs at any time (divisible load application)
to take a checkpoint: this will save the current progress of the execution, and enable to restart
from that point on. Divisible load applications can be found, for example, in biological compu-
tations, image and video processing [20]. We assume that the cost of checkpoint and of recovery
is constant throughout the execution: let C be the cost to checkpoint the data at the end of an
execution, and R the cost to read the data to restart a computation.

Remark 1. By setting either C or R to ∞, then it is never useful to checkpoint, hence this
problem can be reduced to the problem without checkpointing.

2.2 Cost model

We use the cost model motivated in our previous work [3]. For a reservation of length W and an
actual execution duration w for the job, the cost is αW + βmin(W,w) + γ, where α > 0, β ≥ 0
and γ ≥ 0. If the job does not complete within W seconds, then another reservation should be
paid for.

However, we take checkpoints into account in this work. If the job did not complete its
execution during the last reservation, but was checkpointed during the last C seconds of that
reservation, then in the current reservation, the job can restart from that checkpoint during
the �rst R seconds, and then continue execution from its saved state. On the contrary, if
no checkpoint was taken during the last reservation, the work done during that reservation is
lost, and the execution must restart from the last checkpoint (or from the very beginning if no
checkpoint was taken yet).

Altogether, the user needs to schedule a (possibly in�nite) sequence of reservations W =
(W1,W2, . . . ,Wi,Wi+1, . . .) to execute any job whose execution time follows the distribution
D, and to launch these reservations one after the other, until the job successfully terminates
within the duration of some reservation. In addition, the user should decide whether to take a
checkpoint or not at the end of each reservation.

RR n° 9294

8 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

Elapsed Time

T1 = t1

C

W1

R

T2 = t2 − t1

W2

R

T3 = t3 − t1

C

W3

R

T4 = t4 − t3

W4

Figure 3: Graphical representation of elapsed time for the reservation sequence S =
{(W1, 1), (W2, 0), (W3, 1), (W4, 0)}.

Size of
job

0 t1 t2 t3 t4

T1 T2

T3

T4

Figure 4: Graphical representation of job progress (and showing tk versus Tk) for the reservation
sequence S = {(W1, 1), (W2, 0), (W3, 1), (W4, 0)}.

Reservation-based strategy

De�nition 1 (Reservation sequence for D). Given a probability distribution D, a reservation
sequence S = {(W1, δ1), (W2, δ2), . . . }, is de�ned as a sequence of reservation lengths Wk and a
sequence of checkpointing decisions δk ∈ {0, 1}: δk = 1 means the kth reservation ends with a
checkpoint, and δk = 0 means it does not.

Then, the kth reservation can be decomposed into:

Wk = Rk + Tk + Ck (2)

where Rk is the time spent for restart, Tk for actual job execution, and Ck for checkpoint. We
have Ck = δkC by de�nition. There is a restart if and only if there has been a checkpoint at
some point before, hence

Rk = (1−
k−1∏
i=1

(1− δi))R

(assuming R1 = 0 for the �rst reservation).
It is hard to keep track of actual job progress when using only the (Wk, δk) values. Consider

for instance the following sequence S = {(W1, 1), (W2, 0), (W3, 1), (W4, 0)}, which is depicted in
Figure 3. If the actual job duration is X = t, during which reservation will the job complete
its execution? We introduce another view of the reservation sequence S by introducing the
milestones (tk's) as shown in Figure 4. A milestone tk represents the amount of work that has
actually been executed at the end of the kth reservation. Then, the last reservation for the job
of length t is Wk, where tk−1 ≤ t ≤ tk. Of course, we need that t ≤ t4 for all values of D
(equivalently, the upper bound of the support of D is b ≤ t4) for all jobs to complete successfully
with the four reservations of S.

The relationship between the milestone tk (actual work progress) and the value of Tk (time
spent computing during reservation Wk; see Equation (2)) is the following:

tk = Tk +

k−1∑
i=1

δiTi (3)

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 9

Indeed, the work actually progresses only from the last checkpoint, while the work executed
during the previous non-checkpointed reservations is lost whenever these non-checkpointed reser-
vations do not allow for the full completion of the job. Another way to express the relationship
between tk and Tk is the following:

tk = Tk + max{ti
∣∣∣ 1 ≤ i ≤ k − 1 and δi = 1} (4)

Indeed, Equation (4) gives a recursive way to compute tk from its de�nition. We recapitulate
the relations between all notations introduced in Figures 3 and 4:

Wk = Rk + Tk + Ck (5)

Rk = (1−Πi<k(1− δi))R (6)

Tk = tk −
∑
i<k

δiTi

= tk −max{ti
∣∣∣ 1 ≤ i ≤ k − 1 and δi = 1} (7)

Ck = δkC (8)

In the following, we use milestones tk rather than reservation lengths Wk to characterize a
reservation sequence, and we write

S = {(t1, δ1), (t2, δ2), . . . }

instead of

S = {(W1, δ1), (W2, δ2), . . . }

because it is easier to use milestones when computing the expected cost of a sequence, as shown
below. For notational convenience, we de�ne t0 = 0 as the �rst milestone of each sequence S.
Note also that we can restrict to sequences where tk−1 < tk, because otherwise (if tk−1 = tk),
the execution does not progress during the kth reservation.

2.3 Expected cost

Given a reservation sequence S = {(ti, δi)}i and a job with execution time t such that tk−1 <
t ≤ tk, the cost of the sequence for that job is given by:

CS(k, t) =

k−1∑
i=1

(αWi + βWi + γ) + αWk + β(Rk + t− (tk − Tk)) + γ (9)

where the �rst part is the total cost from the k − 1 �rst reservations that did not allow the job
to complete, and the second part is the cost of the kth reservation. The actual execution time
during the kth reservation is t − (tk − Tk), because tk − Tk is the amount of work done up to
the beginning of that reservation; we add the restart time (Rk) but do not need to checkpoint
(if δk = 1) because the job successfully completes before it is taken.

We let k(t) = k for a job of length t such that tk−1 < t ≤ tk. Now, the expected cost of the
reservation sequence S over a job whose execution time is a random variable X is

E(S(X)) =

∫ ∞
0

CS(k(t), t)f(t)dt =

∞∑
k=1

∫ tk

tk−1

CS(k, t)f(t)dt (10)

RR n° 9294

10 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

2.4 Optimization Problem

We are now ready to state the optimization problem:

De�nition 2 (Stochastic). Given a random variable X following the distribution D (with
PDF f and CDF F) for the execution times of stochastic jobs, and given a cost function given
by Equation (9) (with parameters α > 0, β ≥ 0 and γ ≥ 0), �nd a reservation strategy S with
minimal expected cost E(S(X)) as given in Equation (10).

We further de�ne ReservationOnly to be the instance of Stochastic where the cost is a
linear function of the reservation length only, i.e., when β = γ = 0. For ReservationOnly, we
can further consider α = 1 without loss of generality. For instance, such costs are incurred when
making reservations of resources to schedule jobs on some cloud platforms, with hourly or daily
rates. Throughout the paper, we focus on the usual probability distributions, hence we assume
that the density function f and the CDF F of D are smooth (in�nitely di�erentiable), and that
D has �nite expectation.

3 Algorithms

In this section, we establish some key properties of an optimal solution in the general setting.

3.1 Expected cost

We start by establishing a simpler expression for the expected cost function of Stochastic.

Theorem 1. Given a random variable X and a reservation sequence S = {(t1, δ1), (t2, δ2), . . . },
the expected cost E(S(X)) of a strategy S given by Equation (10), with parameters α, β and γ,
can be rewritten as:

E(S(X)) = β · E[X] + α
(
t1 + δ1C

)
+ γ

+

∞∑
i=2

(
αWi + β

(
Ri + (1− δi−1)Ti−1 + Ci−1

)
+ γ
)
· P (X > ti−1) (11)

For simplicity, when there is no ambiguity on the random variable X, we denote E(S(X)) = E(S).

Proof. Firstly we rewrite Equation (11) as follows:

E(S) = β · E[X] +

∞∑
i=1

(
αWi + β

(
Ri + (1− δi−1)Ti−1 + Ci−1

)
+ γ
)
· P (X > ti−1) (12)

with initialization δ0 = W0 = R1 = 0 and t0 = 0.

From Equations (9) and (10), we have

E(S) = E1 + E2 + E3 (13)

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 11

where

E1 =

∞∑
k=1

∫ tk

tk−1

(k∑
i=1

(αWi + γ)
)
f(t)dt

E2 =

∞∑
k=1

∫ tk

tk−1

(k−1∑
i=1

βWi

)
f(t)dt

E3 =

∞∑
k=1

∫ tk

tk−1

β
(
t+Rk + Tk − tk

)
f(t)dt

Using t0 = 0, we compute the �rst term as

E1 =

∞∑
k=1

k∑
i=1

(αWi + γ)

∫ tk

tk−1

f(t)dt

=

∞∑
k=1

k∑
i=1

(αWi + γ) · P (tk−1 < X ≤ tk)

=

∞∑
i=1

(αWi + γ)

∞∑
k=i

P (tk−1 < X ≤ tk)

=

∞∑
i=1

(αWi + γ) · P (X > ti−1)

Similarly, using W0 = 0, we express the second term as:

E2 =

∞∑
i=1

βWi · P (X > ti)

Finally, we derive the third term as:

E3 =

∫ ∞
t0

βtf(t)dt+

∞∑
k=1

∫ tk

tk−1

β
(
Rk + Tk − tk

)
f(t)dt

= β · E[X] +

∞∑
i=1

β
(
Ri + Ti − ti

)
· P (ti−1 < X ≤ ti)

Plugging these three terms back into Equation (13), we get:

E(S) = β · E[X] +

∞∑
i=1

(αWi + βWi−1 + γ) · P (X > ti−1) +

∞∑
i=1

β (Ri + Ti − ti) · P (ti−1 < X ≤ ti)

= β ·E[X]+

∞∑
i=1

(αWi+β(Ri+Ti−1+Ci−1)+γ)·P (X>ti−1)−
∞∑
i=1

β (ti−Ti)·P (ti−1<X≤ ti)

(14)

For the last derivation, we used

RR n° 9294

12 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

∞∑
i=1

(Ri−1 · P (X > ti−1) +Ri · P (ti−1 < X ≤ ti)) =

∞∑
i=1

(Ri · P (X > ti−1)

Now, we study the second part of Equation (14) above. For all j ≤ 1, let φo(j) denote the
index of the jth checkpointed reservation of S. For instance in the example of Figures 3 and 4,
φo(1) = 1 and φo(2) = 3. Then, using Equation (7), we have

∞∑
i=1

(ti − Ti) · P (ti−1 < X ≤ ti) =

∞∑
j=1

tφ(j) · P
(
tφ(j) < X ≤ tφ(j+1)

)
=

∞∑
j=1

Tφ(j) · P
(
X > tφ(j)

)
=

∞∑
i=1

δiTi · P (X > ti)

Plugging the above back into Equation (14), we get the desired result shown in Equation (12).

3.2 Dynamic programming for discrete distributions

We study the problem for a �nite discrete distribution: Y ∼ (vi, fi)1≤i≤n, where vi < vi+1 for all
1 ≤ i ≤ n−1 and fi = P (Y = vi). We assume that fn 6= 0 and

∑n
i=1 fi = 1. Consider a strategy

S = {(t1, δ1), (t2, δ2), . . . , (t|S|, δ|S|)}, where ti = vπ(i) and ti < ti+1 for all 1 ≤ i ≤ |S| − 1. Also,
the last reservation is necessarily t|S| = vn to ensure that the expected cost of the strategy is
�nite. By convention, we let t0 = v0 = a, hence P (Y > t0) = 1. Note that we can safely restrict
to strategies where each milestone ti is equal to some threshold vj of the discrete distribution:
otherwise, replacing ti by the largest vj such that vj ≤ ti leads to a smaller cost.

Rewriting Equation (11) with Wi = Ri + Ti + Ci, and since W0 = 0, the expected cost of
strategy S can be expressed as:

E(S) = β · E[Y]

+

|S|∑
i=1

(
α (Ri + Ti + Ci) + βRi + γ

)
· P (Y > ti−1)

+

|S|−1∑
i=1

β
(
(1− δi)Ti + Ci

)
· P (Y > ti) (15)

Based on Equation (15), and using Equations (6) to (8), we construct a dynamic programming
algorithm to compute the optimal reservation sequence:

Theorem 2. For a discrete distribution Y ∼ (vi, fi)1≤i≤n, the optimal expected cost is returned

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 13

by Eckpt(0, 0), where, for 0 ≤ ic ≤ il ≤ n, Eckpt(ic, il) is:

=β · E[Y], if il = n

= min
il+1≤j≤n,
∆j∈{0,1}

(
Eckpt

(
∆jj, j

)
+
(
α
(
vj + ∆jC

)
+ γ
)
·

n∑
k=il+1

fk + β
(
(1−∆j)vj + ∆jC

)
·

n∑
k=j+1

fk

)
if ic = 0

= min
il+1≤j≤n,
∆j∈{0,1}

(
Eckpt

(
(1−∆j)ic + ∆jj, j

)
+
(
α
(
R+ (vj − vic) + ∆jC

)
+ βR+ γ

)
·

n∑
k=il+1

fk

+ β
(
(1−∆j)(vj − vic) + ∆jC

)
·

n∑
k=j+1

fk

)
, otherwise

The optimal solution can be computed in O(n3) time.

Intuitively, ic denotes the index of the last checkpointed value, while il denotes the index of
the last value that was tried before we try the next one with index j. Here, ∆j indicates whether
the value vj will be checkpointed or not.

Proof. To prove the optimality, consider E(S) given in Equation (15) for any reservation sequence:

S = {(t1, δ1), . . . , (t|S|, δ|S|)}
= {(vπ(1),∆π(1)), . . . , (vπ(|S|),∆π(|S|))}

and de�ne E` as the following partial sum:

E` = β · E[Y]

+

|S|∑
i=`+1

(
α (Ri + Ti + Ci) + βRi + γ

)
· P (Y > ti−1)

+

|S|−1∑
i=`+1

β
(
(1− δi)Ti + Ci

)
· P (Y > ti) (16)

Note that E0 = E(S). We show by induction that the following invariant is true for all
` = |S|, |S| − 1, . . . , 0:

E` ≥ Eckpt(π(`), π(`)) (17)

where π(`) is the index of the last reservation not larger than π(`) and such that ∆π(`) = 1. We
denote the corresponding reservation by t` = vπ(`).

For the base case with ` = |S|, we have π(|S|) = n, and E|S| = β · E[Y] = Eckpt(π(|S|), n).

Now, suppose E`+1 ≥ Eckpt(π(`+ 1), π(` + 1)) for ` + 1 ≤ |S|. Here, we note that π(`+ 1) =
π(` + 1) if ∆π(`+1) = 1 (i.e., if vπ(`+1) is checkpointed). Otherwise, we have π(`+ 1) = π(`).

RR n° 9294

14 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

Then, from Equation (16), we derive:

E` = E`+1 +
(
α (R`+1 + T`+1 + C`+1) + βR`+1 + γ

)
· P (Y > t`)

+ β
(
(1− δ`+1)T`+1 + C`+1

)
· P (Y > t`+1)

≥ Eckpt(π(`+ 1), π(`+ 1)) +
(
α
(
R`+1 + (t`+1 − t`) + C`+1

)
+ βR`+1 + γ

)
· P
(
Y > vπ(`)

)
+ β

(
(1− δ`+1)(t`+1 − t`) + C`+1

)
· P
(
Y > vπ(`+1)

)
= Eckpt

(
(1−∆π(`+1))π(`) + ∆π(`+1)π(`+ 1), π(`+ 1)

)
+
(
α
(
1π(`)6=0R+ (vπ(`+1) − vπ(`)) + ∆π(`+1)C

)
+ β1π(`) 6=0R+ γ

)
·

n∑
k=π(`)+1

fk

+ β
(

(1−∆π(`+1))(vπ(`+1) − vπ(`)) + ∆π(`+1)C
)
·

n∑
k=π(`+1)+1

fk

≥ Eckpt

(
π(`), π(`)

)
In the derivation above, the �rst inequality is due to the inductive hypothesis, and using

T`+1 = t`+1− t` from Equation (7). The last inequality is due to the de�nition of Eckpt. s Thus,
by induction, we get Eckpt(0, 0) = Eckpt(π(0), π(0)) ≤ E0 = E(S). This shows that Eckpt(0, 0)
is not greater than the expected cost of any reservation sequence S, thus returning the optimal
solution.

Finally, one can pre-compute values of
∑n
k=`+1 fk for all 0 ≤ ` < n (in linear time) and store

them. Then, computing Eckpt(ic, il) depends on 2(n− il) other Eckpt values, thus takes O(n− il)
time. The overall complexity is therefore O(n3).

3.3 Approximation algorithm for continuous distributions

In this section, we provide an approximation algorithm of the optimal strategy for continuous
distributions with bounded support [a, b], where a ≥ 0 and b is �nite. Because we model job
execution times, it is natural to truncate continuous distributions whose support is [0,∞[such
as an Exponential or Lognormal distribution, say, to a bounded support [a, b].

The result for continuous distribution is particularly important: we have shown in recent
work [10] that continuous distributions gave strategies that allowed using small data samples to
�nd an e�cient strategy. Here, it returns an arbitrarily good quality solution with low complexity.

More precisely, let X be a continuous random variable de�ned on [a, b] modeling the probabil-
ity distribution D, where 0 ≤ a < b, with CDF F and PDF f . Theorem 3 shows that Algorithm 1
computes a close-to-optimal strategy for Stochastic.

We start by showing the following Lemma:

Lemma 1. Given a random variable X and a strategy S = {(t1, δ1), . . . , (t|S|, δ|S|)}, if there
exists an index i0 > 1 such that t1 < · · · < ti0−1 ≤ min(R, εE[X]) < ti0 < · · · < t|S|, then the

strategy S̃ = {(min(R, εE[X]), 0), (ti0 , δi0), . . . , (t|S|, δ|S|)} satis�es:

E(S̃(X)) ≤ (1 + ε) · E(S(X))

Intuitively, this lemma states that restricting to strategies such that the �rst reservation is
at least min(R, εE[X]) only increases the cost by at most a factor of 1 + ε.

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 15

Algorithm 1 Dyn-Prog-Count(X, ε)

1: Let [a, b] be the domain of X, with 0 ≤ a < b

2: c0 = 3(b− a) min
(

1
min(max(a,εE[X]/3),R,C) ,

α+β
γ

)
3: n← dc0/εe
4: De�ne the discrete distribution Yn ∼ (vi, fi)i=1...n s.t.{

vi = a+ i · b−an for 0 ≤ i ≤ n
fi = P (Yn = vi) = P (vi−1 < X ≤ vi) for 1 ≤ i ≤ n

5: Sdpn ← Optimal strategy for Yn (Theorem 2)
6: return Sdpn

Proof. Consider a strategy S = {(t1, δ1), . . . , (t|S|, δ|S|)} for a random variable X, such that there
exists an index i0 > 1 with

t1 < · · · < ti0−1 ≤ min(R, εE[X]) < ti0 < · · · < t|S|

For simplicity, we denote by ã = min(R, εE[X]), and de�ne strategy S̃ = {(ã, 0), (ti0 , δi0), . . . , (t|S|, δ|S|)}.
From Equation (11) we have:

E(S(X)) ≥ βE[X] + α(t1 + C1) + γ + (αWi0 + β
(
Ri0 + (1− δi0−1)Ti0−1 + Ci0−1

)
+ γ
)
· P (X > ti0−1)

+

|S|∑
i=i0+1

(
αWi + β

(
Ri + (1− δi−1)Ti−1 + Ci−1

)
+ γ
)
· P (X > ti−1)

E(S̃(X)) = βE[X] + (αã+ γ) + (αW̃i0 + βã+ γ) · P (X > ã)

+

|S|∑
i=i0+1

(
αW̃i + β

(
R̃i + (1− δi−1)T̃i−1 + C̃i−1

)
+ γ
)
· P (X > ti−1)

We obviously have Ci = C̃i, ∀i ≥ i0. We now show the following property: ∀i ≥ i0, Wi ≥ W̃i.
To show this, we consider two cases: (i) the last checkpoint before ti was done during tj with

j ≥ i0 or there was no checkpoint before ti. In this case, we obviously haveWi = W̃i; (ii) the last
checkpoint before ti was done during tj with j < i0 in S, and there was no checkpoint done in S̃
before ti. In this case, we have Wi = R+(ti− tj)+ δiC and W̃i = ti+ δiC. Since tj ≤ ti0−1 ≤ R,
we get Wi ≥ W̃i. Similarly, we can show that, ∀i ≥ i0, Ri ≥ R̃i.

Further, since P (X > ã) ≤ P (X > ti0−1) ≤ 1, we can now derive that:

E(S̃(X))− E(S(X)) ≤ α(ã− t1 − C1)

+ β(ã−Ri0 − (1− δi0−1)Ti0−1 − Ci0−1) · P (X > ti0−1)

≤ (α+ β)ã

≤ ε(α+ β)E[X]

Finally, note that we immediately have E(S(X)) ≥ (α+ β)E[X] + γ, because this is the cost
of an omniscient strategy that makes a single reservation of exactly the right size for each job.
Therefore, we get the result:

E(S̃(X))− E(S(X)) ≤ ε · E(S(X))

which completes the proof of Lemma 1.

RR n° 9294

16 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

Theorem 3. Given a continuous random variable X on the domain [a, b], where 0 ≤ a < b,
and given a constant ε > 0, Dyn-Prog-Count(X, ε) is a 1 + ε-approximation algorithm for
Stochastic and executes in time O

(
1
ε3

)
.

Proof. Given a continuous random variable X of support [a, b], we de�ne the discrete random
variable Yn ∼ (vi, fi)i=1...n as stated in Algorithm 1:{

vi = a+ i · b−an for 0 ≤ i ≤ n
fi = P (Yn = vi) = P (vi−1 < X ≤ vi) for 1 ≤ i ≤ n (18)

Let Sopt = {(t̃oi , δ̃oi)}1≤i≤|Sopt| denote the optimal solution for X, and let Sdpn denote the
optimal solution for Yn returned by Theorem 2. We want to show that

E(Sdpn (X)) ≤ (1 + ε) · E(Sopt(X))

In order to do that, we construct two intermediate strategies Soptε/3 and Salgo as follows.
First, Soptε/3 = ((toi , δ

o
i))i is constructed in such a way that if t̃o1 ≥ min(R, εE[X]

3), then Soptε/3 =

Sopt, otherwise we construct Soptε/3 from Sopt by following Lemma 1 (with the value ε
3). Then,

according to Lemma 1, we have:

E(Soptε/3(X)) ≤
(
1 +

ε

3

)
· E(Sopt(X)) (19)

Second, Salgo = ((tai , δ
a
i))1≤i≤|Sopt

ε/3
| (hence |Salgo| = |Soptε/3 |), is such that for 1 ≤ i ≤ |Soptε/3 |,

we let (tai , δ
a
i) = (vπo(i), δ

o
i). Here, we use the sequence (vi)i=0...n from Equation (18), and the

function πo de�ned below:
vπo(i)−1 < toi ≤ vπo(i) (20)

In other words, for each reservation, Salgo chooses the �rst discrete value larger than or equal to
the corresponding one chosen by Soptε/3 , and makes the same checkpointing decision.

Lemma 2. E(Salgo(X)) ≤ (1 + ε
3) · E(Soptε/3(X)).

Proof. We use the notations T oi , R
o
i , C

o
i , W

o
i for the parameters of Soptε/3 , and T

a
i , R

a
i , C

a
i , W

a
i

for the parameters of Salgo. From Equations (5) to (8), we see that, for 1 ≤ i ≤ |Soptε/3 |, we have:

1. δoi = δai ;

2. Roi = Rai ;

3. Coi = Cai ; and

4. W a
i −W o

i = T ai − T oi .

In addition, if σo(i) (resp. σa(i)) is the index of the last checkpoint before toi (resp. tai), then
σo(i) = σa(i), and,

|T ai − T oi | =
∣∣∣(tai − taσa(i)

)
−
(
toi − toσo(i)

)∣∣∣
=
∣∣∣(vπo(i) − vπo(σo(i))

)
−
(
toi − toσo(i)

)∣∣∣
=
∣∣∣(vπo(i) − toi

)
−
(
vπ(σo(i)) − toσo(i)

)∣∣∣
≤ max

(
vπo(i) − toi , vπo(σo(i)) − toσo(i)

)
≤ b− a

n

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 17

From Equation (11) we have:

E(Soptε/3(X)) = βE[X] +

|Sopt
ε/3
|∑

i=1

(
αW o

i + β
(
Roi + (1− δoi−1)T oi−1 + Coi−1

)
+ γ
)
· P
(
X > toi−1

)

E(Salgo(X)) = βE[X] +

|Sopt
ε/3
|∑

i=1

(
αW a

i + β
(
Rai + (1− δai−1)T ai−1 + Cai−1

)
+ γ
)
· P
(
X > tai−1

)
We �rst observe that P

(
X > tai−1

)
≤ P

(
X > toi−1

)
because tai−1 ≥ toi−1. We can derive that:

E(Salgo(X))− E(Soptε/3(X)) ≤
|Sopt
ε/3
|∑

i=1

(
α|T ai − T oi |+ β(1− δoi−1)|T ai−1 − T oi−1|

)
· P
(
X > toi−1

)

≤ αb− a
n

+

|Sopt
ε/3
|−1∑

i=1

((
α+ β(1− δoi)

)b− a
n

)
· P (X > toi)

≤ b− a
n

(
α+ (α+ β)

|Sopt
ε/3
|−1∑

i=1

P (X > toi)

)

We also observe that:

E(Soptε/3(X)) ≥ γ +

|Sopt
ε/3
|−1∑

i=1

γ · P (X > toi)

Further, for 1 ≤ i ≤ |Soptε/3 |, we haveW
o
i ≥ Roi+T oi ≥ min(R, ã), where ã = max(a,min(R, εE[X]/3)).

This is because either T oi ≥ ã according to Lemma 1 (when there was no checkpoint before toi),
or Roi = R (when there was a checkpoint before toi). Therefore, we can derive:

E(Soptε/3(X)) ≥ min(max(a, εE[X]/3), R, C)

(
α+ (α+ β)

|Sopt
ε/3
|−1∑

i=1

P (X > toi)

)

Note that min(R,max(a,min(R, εE[X]/3))) = min(max(a, εE[X]/3), R).

Using the de�nition of c0 = 3(b − a) min
(

1
min(max(a,εE[X]/3),R,C) ,

α+β
γ

)
in Algorithm 1, we

obtain:

E(Salgo(X))− E(Soptε/3(X)) ≤ c0
n
· E(Soptε/3(X))

≤ ε

3
· E(Soptε/3(X))

which concludes the proof of Lemma 2.

Lemma 3. E(Sdpn (X)) ≤ E(Salgo(X))

Proof. Given any reservation strategy S = {(ti, δi)}1≤i≤|S| such that ∀i, ti ∈ {v1, . . . , vn}, we
show that:

E(S(Yn))− E(S(X)) = β (E[Yn]− E[X])

RR n° 9294

18 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

Indeed, for the two distributions Yn and X, the only di�erences in the cost function are: (i) the
expectations E[Yn] and E[X]; and (ii) the probability values P (Yn > ti) and P (X > ti) ,∀i. But
if ti ∈ {v1, . . . , vn}, we have:

P (Yn > ti) = P (Yn > vk)

= P
(
Yn ∈ ∪nj=k+1{vj}

)
=

n∑
j=k+1

P (Yn = vj)

=

n∑
j=k+1

P (X ∈]vj−1, vj]) = P (X ∈]vk, vn])

= P (X > vk) = P (X > ti)

We obtain that:
E(S(Yn))− E(S(X)) = β (E[Yn]− E[X])

We apply this result to both Sdpn and Salgo and derive that:

E(Sdpn (Yn))− E(Sdpn (X)) = E(Salgo(Yn))− E(Salgo(X))

or equivalently,
E(Sdpn (Yn))− E(Salgo(Yn)) = E(Sdpn (X))− E(Salgo(X))

But Sdpn is optimal for Yn, hence

E(Sdpn (Yn))− E(Salgo(Yn)) ≤ 0

Therefore,
E(Sdpn (X))− E(Salgo(X)) ≤ 0

This concludes the proof of Lemma 3.

Now, combining Lemma 2, Lemma 3 and Equation (19), we get:

E(Sdpn (X)) ≤ E(Salgo(X))

≤
(

1 +
ε

3

)
· E(Soptε/3(X))

≤
(

1 +
ε

3

)(
1 +

ε

3

)
· E(Sopt(X))

≤ (1 + ε) · E(Sopt(X))

which concludes the proof of Theorem 3.

3.4 Extensions

All the results presented in Sections 3.1 to 3.3, namely the cost model (Theorem 1), the optimal
algorithm for discrete distributions (Theorem 2), and the approximation algorithm for continu-
ous distributions with bounded support (Theorem 3), can be extended to some variants of the
problem where the checkpoint strategy is determined a priori.

Indeed, there are two important and natural variants to consider: strategies where no reserva-
tion is checkpointed, and strategies where all reservations are checkpointed. The former variant
(called No-Checkpoint) was studied in our previous work [3], where we derived an optimal
algorithm for discrete distributions with reduced time complexity O(n2) instead of O(n3) as
in Theorem 2. The latter variant (called All-Checkpoint) also admits an optimal dynamic
programming algorithm of reduced time complexity O(n2):

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 19

Theorem 4. For a discrete distribution Y ∼ (vi, fi)1≤i≤n, the optimal expected cost for All-Checkpoint
(when all reservations are checkpointed) is returned by EAllCkpt(0), where v0 = 0 and:

EAllCkpt(n) = β · E[Y]

EAllCkpt(i) = min
i+1≤j≤n

(
EAllCkpt(j)+βC ·

n∑
k=j+1

fk+
(
α
(
1i 6=0R+(vj−vi)+1j 6=nC

)
+β1i 6=0R+γ

)
·
n∑

k=i+1

fk

)

The optimal solution can be computed in O(n2) time.

3.5 Periodic Heuristics

In addition to the algorithms presented in Section 3, we propose a periodic heuristic for the case
of bounded distributions. This strategy, described in Algorithm 2, is a natural policy, where
successive reservations di�er in length by a constant amount of time T , called the period. A
checkpoint is performed at the end of each period. Hence, the value of Wi associated with each
ti is constant in this strategy. The algorithm speci�es the number of chunks τ in the domain
[a, b] of the bounded distribution, thus the period can be computed as T = b−a

τ .

Algorithm 2 All-Checkpoint-Periodic(X, τ)

1: Let [a, b] be the domain of X, and let T = b−a
τ

2: (ti, δi) =

{
(a+ i · T, 1) for i = 1, 2, . . . , τ − 1
(b, 0) for i = τ

3: return Speriodτ ← ((ti, δi))1≤i≤τ

For this policy, one can derive optimal strategies for some distributions such as Uniform dis-
tributions. One can also prove that All-Checkpoint and its periodic counterpart are identical.
The next subsections are dedicated to proving those assertions.

3.5.1 All-Checkpoint-Periodic for Exponential distributions

In this section, we are interested in proving thatAll-Checkpoint andAll-Checkpoint-Periodic
are similar for Exponential distribution.

Theorem 5. When the execution time of a job follows a distribution D ∼ Exponential (λ) , the
solution of All-Checkpoint and All-Checkpoint-Periodic are identical.

Proof. For this speci�c result, we express the solutions under the form: {T1, T2, T3, · · · }.
We have the following properties:

� Given (t1, t2, . . . ,) a solution to All-Checkpoint, then the associated {T1, T2, T3, · · · }
satisfy: forall i, ti =

∑
j≤i

Tj . This is a direct corollary of Equations (3) and (4).

� For D ∼ Exponential (λ),

P (X > V1 + V2) = P (X > V1) · P (X > V2) . (21)

We de�ne
(
u1, u2, · · ·

)
the solution that minimizes

∞∑
i=1

(
α
(
R+ ui + C

)
+ β

(
R+ C

)
+ γ
)
· P

X >
∑
j<i

uj

 (22)

RR n° 9294

20 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

To study Sopt = (T o1 , T
o
2 , . . .) the optimal solution given by All-Checkpoint for D, we

rewrite the expected cost of a solution S = (T1, T2, . . .) for All-Checkpoint:

E(S) = β · E[X] +

∞∑
i=1

(
αWi + β

(
Ri + (1− δi−1)Ti−1 + Ci−1

)
+ γ
)
· P (X > ti−1)

= β · E[X]− C +

∞∑
i=1

[
α
(
R+ Ti + C

)
+ β

(
R+ C

)
+ γ
]
· P

X >
∑
j<i

Tj



From this formulation, we can see that T o1 = u1, T
o
2 = u2, T

o
3 = u3, . . . as they satisfy the same

equations.
By rewriting and using Eq (21),

E(S) = β · E[X] +
(
αW1 + βR+ γ

)
+

∞∑
i=2

(
αWi + β

(
R+ C

)
+ γ
)
· P

X >
∑
j<i

Tj


= β · E[X] + α

(
W1 + βC + γ

)
+ P (X > T1) ·

∞∑
i=2

(
α
(
R+ Ti + C

)
+ β

(
R+ C

)
+ γ
)
· P

X >
∑

2≤j<i

Tj


= β · E[X] + α

(
W1 + βC + γ

)
+ P (X > T1) ·

∞∑
i=1

(
α
(
R+ Ti−1 + C

)
+ β

(
R+ C

)
+ γ
)
· P

X >
∑
j<i−1

Tj+1

 (23)

From this last formulation, we can see that the sequence (T o2 , T
o
3 , . . .) that minimizes Eq. (23)

can be optimized independently of T o1 , and that it is the solution that minimizes Eq. (22). Hence
we obtain, T o2 = u1, T

o
3 = u2,. . . Iterating the process, we obtain the result: T o1 = u1 = T o2 =

u2 = T o3 = . . . , and the solution to All-Checkpoint is a periodic solution.

3.5.2 All-Checkpoint-Periodic for Uniform distributions

In this section, we consider the All-Checkpoint approach for Uniform distributions in the
ReservationOnly scenario. Speci�cally, we are able to characterize the best periodic approach:
for a Uniform distribution D over [a, b] (where 0 ≤ a < b), consider a reservation sequence
S(n) = (Wi, 1)1≤i≤n where n ≥ 2, W1 = a + b−a

n + C, Wi = R + b−a
n + C for 1 < i < n and

Wn = R+ b−a
n . In other words, we have n−1 evenly distributed checkpoints in the interval [a, b].

The �rst reservation has a checkpoint but no restart, the last reservation (whenever used) has a
restart but no checkpoint, and all intermediate reservations have both a restart and a checkpoint.
Finally, let S(1) = (b, 0) be the sequence with a unique reservation of length (and cost) b (no
need to checkpoint in this particular case). The following proposition provides the optimal value
of n:

Proposition 1. With the above notations, E(S(n)) is minimized either for n = max(1, bnoptc)
or n = dnopte where nopt =

√
b−a−2C
C+R if b− a ≥ 2C and nopt = 1 otherwise.

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 21

Proof. Because the distribution is uniform, the probability that i reservations are need for a
given job is always equal to 1

n , hence the expected cost of S(n) for n ≥ 2 is

E(S(n)) =
1

n

n∑
i=1

i∑
j=1

Wj

where Wi is the cost of the i-th reservation. After several algebraic manipulations, we derive
that

E(S(n)) =
n− 1

2n
a+

n+ 1

2n
b+

n2 + n− 2

2n
C +

n− 1

2
R

Di�erentiating, the derivative gets zeroed for n = nopt when b− a ≥ 2C, and otherwise it stays
positive, hence the result.

If D ∼ Uniform(a, b) with [a, b] = [2, 20] and C = R = 1 we �nd nopt =
√

8. One can compute
that the cost for three reservations (ceil value for

√
8) is E(S(3)) = 97/6 ≈ 16.2. Let us now

de�ne a two-reservation strategies at milestones 11 and 20 1, we can compute its associated cost
by:

E(S(2)) =

∫ 11

2

(α12 + βt+ γ)P(X = t|X ≤ 11)dt

+

∫ 20

11

[(α12 + β12 + γ) + (α10 + β(t− 11) + γ)]P(X = t|X ≥ 11)dt

This gives us E(S(2)) = 17 for distribution D. Hence, it is more e�cient to use three reservations
than two.

4 Performance evaluation

In this section, we evaluate the performance of the di�erent algorithms in simulation. In
the following, performance stands for the expected cost of each algorithm under various job
execution time distributions, C/R overhead and cost functions. We use jobs that follow a
wide range of usual probability distributions as well as a distribution obtained from traces
of a real neuroscience application. The code for this section is publicly available on https:

//gitlab.inria.fr/vhonore/ckpt-for-stochastic-scheduling.

4.1 Evaluation methodology

In this section, we evaluate �ve di�erent algorithms from the following two sets of strategies:
•Dyn-Prog-Count: This set includes Algorithm 1, and itsAll-Checkpoint andNo-Checkpoint
variants described in Section 3.4.
•All-Checkpoint-Periodic: This set includes Algorithm 2, and itsNo-Checkpoint-Periodic
counterpart where checkpointing is not allowed (i.e., δi = 0,∀i).

The above algorithms are evaluated using two scenarios and two di�erent cost functions.
The �rst cost function is ReservationOnly, presented in Section 2.4. This function is

based on the Reserved Instance pricing scheme in AWS [2], where the user pays exactly what is
requested. Hence, α = 1, β = γ = 0. The second cost function, called HPC, add an additional

1The �rst reservation will be of length 11 + 1 with the checkpointing overhead, and the second one of length
1 + 9 with the restart cost.

RR n° 9294

https://gitlab.inria.fr/vhonore/ckpt-for-stochastic-scheduling
https://gitlab.inria.fr/vhonore/ckpt-for-stochastic-scheduling

22 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

Table 1: Probability distributions and parameter instantiations.

Distribution PDF f(t) Instantiation Support (in hours)

Distributions with in�nite support

Exponential (λ) λe−λt λ = 1.0h−1 t ∈ [0,∞)

Weibull(λ, κ) κ
λ

(
t
λ

)κ−1
e−(tλ)

κ λ = 1.0h
κ = 0.5

t ∈ [0,∞)

Gamma(α, β) βα

Γ(α) t
α−1e−βt

α = 2.0
β = 2.0h−1 t ∈ [0,∞)

Lognormal (ν, κ) 1
tκ
√

2π
e−

(ln t−ν)2

2κ2
ν = 3.0h
κ = 0.5

t ∈ (0,∞)

Pareto(ν, α) ανα

tα+1

ν = 1.5h
α = 3.0

t ∈ [ν,∞)

Distributions with �nite support

Truncated Normal(ν, κ2, a, b) 1
κ

√
2
π ·

e
− 1

2 (t−νκ)
2

1−erf
(
a−ν
κ
√

2

)
ν = 8.0h
κ2 = 2.0h2

a = 1.0h
b = 20.0h

t ∈ [a, b]

Uniform(a, b) 1
b−a

a = 1.0h
b = 20.0h

t ∈ [a, b]

Beta(α, β) tα−1·(1−t)β−1

B(α,β)

α = 2.0
β = 2.0

t ∈ [0, 1]

Bounded Pareto(L,H, α) αLαt−α−1

1−
(
L
H

)α L = 1.0h
H = 20.0h
α = 2.1

t ∈ [L,H]

cost that is proportional to the actual execution time (pay for what you use). Thus, α = 1, β =
1, γ = 0.

We now detail the two scenarios we use to evaluate the algorithms, using the two cost func-
tions:

� Scenario 1 (Section 4.2): We consider nine usual probability distributions, �ve of which
have in�nite support (Exponential, Weibull, Gamma, Lognormal, Pareto) and four have
�nite support (Truncated Normal, Uniform, Beta, Bounded Pareto). Table 1 lists all distri-
butions used in simulation with the instantiations of their parameters for evaluation. The
�rst �ve distributions are truncated and fed as input to Algorithm 1. To do so, we set the
upper bound of the in�nite support to b = Q(1− υ), where Q(x) = inf{t|F (t) ≥ x} is the
quantile function and υ is a small constant. In our simulation, we set υ = 10−7. During the
discretization procedure in Algorithm 1, we then normalize the probabilities of all discrete
values so that they sum to 1. We set C = R = 360 seconds (0.1 hour). This checkpointing
cost is extracted from [18] and corresponds to an average checkpointing duration, where
an optimistic one is 60 seconds and a pessimistic one is 600 seconds. We further discuss
the impact of the checkpointing cost on the performance.

� Scenario 2 (Section 4.3): In this scenario, we consider the execution time traces of a
real neuroscience application, and �t a Lognormal distribution to its execution times. To
further evaluate the robustness of the algorithms, we perturb the parameters of the �tted
distribution by varying its mean and standard deviation and show the impact on the
performance.

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 23

4.2 Results for Scenario 1

We �rst evaluate the performance of Dyn-Prog-Count compared to the other strategies, when
the values of R and C varies. Figure 5 presents the performance of these strategies normalized to
that of Dyn-Prog-Count (black line for y = 1.0) for all distributions of Table 1 using Reser-
vationOnly cost function. We use ε = 0.1 for Dyn-Prog-Count and its variants. Regarding
periodic strategies, we choose the best value for the number of chunks τ in [1, 1000]. Not surpris-
ingly, we can observe that when C and R are small, the best result is to use theAll-Checkpoint
strategy while when they are large, one should use the No-Checkpoint strategy. There ex-
ist thresholds on the sizes of C and R where Dyn-Prog-Count uses a mix of checkpointed
and not checkpointed reservations. In that case, the gain of using Dyn-Prog-Count can be
up to 10% in compared with its variants. An interesting future direction is to �nd properties
on those threshold depending on the distribution. Finally, one should observe that the gain
obtained with Dyn-Prog-Count compared to the best periodic solution is in general more
important (for Truncated Normal, the performance of periodic solutions are worse than a fac-
tor 2 of Dyn-Prog-Count). For Exponential distribution, All-Checkpoint and its periodic
counterpart are identical (proof can be found in Section 3.5.1), due to the memoryless property
of the exponential distribution. Figure 6 shows the results for a similar setup with HPC cost
function. We see that results are consistent between the two cost functions, with small variations
in results but same general trends.

We then study the impact of ε on the performance of Dyn-Prog-Count (DPC) for the
two di�erent cost functions, when R = C = 6min, 30min and 60min. The idea is that when
ε = 1, this theoretically guarantees that the performance is at most twice (= 1 + ε) that of
the optimal, but in practice it can be a lot better. We study in Figure 7 the performance of
Dyn-Prog-Count for various values of ε for distributions of Table 1 with ReservationOnly
cost function. All performance are normalized by Dyn-Prog-Count for ε = 0.1. We can see
that in practice, the convergence to the lower bound in performance is fast. Indeed, for ε = 1
and C = R = 6min (Figure 7a), almost all distributions already reach convergence, except for
Weibull and Pareto (which have a much larger domain of de�nition and speci�c properties2).
For those distributions, we see that they converged for ε = 0.1. We observe similar trends in
Figures 7b and 7c when R and C increases. Interestingly, one can note that Pareto distribution
converges faster for C = R = 30 or 60min than for C = R = 6min, while Weibull distribution
shows contrary behavior. Convergence is still achieved for ε = 0.1. This shows the possible
impact of application features on algorithm behavior.

Figure 8 shows the results of a similar setup for HPC cost function. One can note that all
distributions converge even faster than for ReservationOnly cost function. Indeed, for ε = 0.4,
all distribution converge. Overall, the results are consistent in between the two cost functions. In
both �gures, the number of chunks n in Dyn-Prog-Count varies between 50 to 1000 depending
on the distribution and value of ε, showing the practicality of Dyn-Prog-Count for considered
distributions.

Our �nal evaluation for this scenario is a study of the impact of the size of the period.
Until now we have always chosen the period that minimized the objective functions. Table 2
shows the performance of both variants of the periodic algorithms, All-Checkpoint-Periodic
and No-Checkpoint-Periodic, normalized by that of Dyn-Prog-Count (ε = 0.1), when
C = R = 360s using ReservationOnly cost function. For each distribution: the second
columns shows the best period found when τ varies from 1 to 1000 (with its associated cost
normalized by that of Dyn-Prog-Count), and the other columns present results for speci�c

2For instance, Pareto is a long-tail distribution, meaning that it has a large number of occurrences that are far

from the beginning and central part of its support. Formally, it means that
1−F (x+y)
1−F (x)

→ 1 when x→ ∞, ∀y > 0.

RR n° 9294

24 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

0 1000 2000 3000
Cost of C and R (seconds)

0.8

1.0

1.2

1.4

1.6

1.8

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(a) Exponential (µ = 1.0h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

1.4

1.6

1.8

2.0

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(b) Weibull (µ = 2.0h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

1.4

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(c) Gamma (µ = 1.0h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(d) Lognormal (µ = 2.80h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

1.4

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(e) Pareto (µ = 2.25h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

1.4

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(f) Truncated Normal (µ = 8.00h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

1.4

1.6

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(g) Uniform (µ = 10.5h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.1

1.2

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(h) Beta (µ = 0.5h)

0 1000 2000 3000
Cost of C and R (seconds)

0.8

1.0

1.2

1.4

1.6

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(i) Bounded Pareto (µ = 1.84h)

Figure 5: Expected costs of the di�erent strategies normalized to that of
Dyn-Prog-Count(X, 0.1) when C = R vary from 60 to 3600 seconds, for all distribu-
tions in Table 1 with support considered in hours with ReservationOnly cost function. We
indicate in brackets the mean µ of each distribution.

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 25

0 1000 2000 3000
Cost of C and R (seconds)

0.8

1.0

1.2

1.4

1.6

1.8

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(a) Exponential (µ = 1.0h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

1.4

1.6

1.8

2.0
A

l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(b) Weibull (µ = 2.0h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

1.4

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(c) Gamma (µ = 1.0h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(d) Lognormal (µ = 2.80h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

1.4

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(e) Pareto (µ = 2.25h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

1.4

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(f) Truncated Normal (µ = 8.00h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

1.4

1.6

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(g) Uniform (µ = 10.5h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.1

1.2

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(h) Beta (µ = 0.5h)

0 1000 2000 3000
Cost of C and R (seconds)

0.8

1.0

1.2

1.4

1.6

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(i) Bounded Pareto (µ = 1.84h)

Figure 6: Expected costs of the di�erent strategies normalized to that of
Dyn-Prog-Count(X, 0.1) when C = R vary from 60 to 3600 seconds, for all distribu-
tions in Table 1 with support considered in hours with HPC cost function. We indicate in
brackets the mean µ of each distribution.

RR n° 9294

26 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

1

2

3

D
P

C
(X
,ε

)/
D

P
C

(X
,0
.1

)

Exponential

Weibull

Gamma

Lognormal

Pareto

TruncatedNormal

Uniform

Beta

BoundedPareto

y = 1 + ε

(a) C = R = 6min

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

1

2

3

D
P

C
(X
,ε

)/
D

P
C

(X
,0
.1

)

Exponential

Weibull

Gamma

Lognormal

Pareto

TruncatedNormal

Uniform

Beta

BoundedPareto

y = 1 + ε

(b) C = R = 30min

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

1

2

3

D
P

C
(X
,ε

)/
D

P
C

(X
,0
.1

)

Exponential

Weibull

Gamma

Lognormal

Pareto

TruncatedNormal

Uniform

Beta

BoundedPareto

y = 1 + ε

(c) C = R = 60min

Figure 7: Expected cost of Dyn-Prog-Count(X, ε) as a function of ε for di�erent distributions
for X with ReservationOnly cost function. C = R are set to 6, 30 and 60min.

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 27

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

1

2

3

D
P

C
(X
,ε

)/
D

P
C

(X
,0
.1

)

Exponential

Weibull

Gamma

Lognormal

Pareto

TruncatedNormal

Uniform

Beta

BoundedPareto

y = 1 + ε

(a) C = R = 6min

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

1

2

3

D
P

C
(X
,ε

)/
D

P
C

(X
,0
.1

)

Exponential

Weibull

Gamma

Lognormal

Pareto

TruncatedNormal

Uniform

Beta

BoundedPareto

y = 1 + ε

(b) C = R = 30min

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε

1

2

3

D
P

C
(X
,ε

)/
D

P
C

(X
,0
.1

)

Exponential

Weibull

Gamma

Lognormal

Pareto

TruncatedNormal

Uniform

Beta

BoundedPareto

y = 1 + ε

(c) C = R = 60min

Figure 8: Expected cost of Dyn-Prog-Count(X, ε) as a function of ε for di�erent distributions
for X with HPC cost function. C = R are set to 6, 30 and 60min.

RR n° 9294

28 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

values of τ in that interval. As was observed before, All-Checkpoint-Periodic is in general
not able to match Dyn-Prog-Count (except for some distributions). We can also clearly see
that No-Checkpoint-Periodic performs even worse than All-Checkpoint-Periodic. The
reason is that the checkpointing cost is relatively low in this setup, so it is preferable to checkpoint
more often than never. Hence, when C = R = 1h, Table 3 shows thatNo-Checkpoint-Periodic
performs slightly better than All-Checkpoint-Periodic. Finally another observation is that
a wrong period size can signi�cantly deteriorate the performance of the periodic algorithms.
Tables 4 and 5 show similar trends using the HPC cost function.

Table 2: Expected cost of All-Checkpoint-Periodic and No-Checkpoint-Periodic, nor-
malized byDyn-Prog-Count(X, 0.1) for C = R = 360s, withReservationOnly cost function.

Distribution
All-Checkpoint-Periodic No-Checkpoint-Periodic

Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000 Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000
Exponential 27 (1.00) 9.82 2.31 4.02 5.75 7.47 9.19 14 (1.38) 9.82 6.91 13.23 19.56 25.89 32.22
Weibull 380 (1.06) 106.50 1.15 1.06 1.10 1.18 1.27 89 (2.54) 106.50 3.26 5.32 7.52 9.74 11.98
Gamma 14 (1.02) 6.02 3.68 6.76 9.85 12.93 16.02 8 (1.26) 6.02 9.34 18.08 26.82 35.56 44.31

Lognormal 11 (1.11) 3.60 3.92 7.05 10.18 13.32 16.45 4 (1.25) 3.60 15.48 30.17 44.86 59.56 74.25
Pareto 1000 (1.01) 228.77 1.75 1.23 1.09 1.03 1.01 562 (1.33) 228.77 1.78 1.37 1.33 1.37 1.45

TruncatedNormal 2 (2.15) 2.18 8.17 14.31 20.45 26.59 32.73 1 (2.18) 2.18 197.54 394.01 590.47 786.93 983.39
Uniform 8 (1.01) 1.57 3.17 5.51 7.86 10.20 12.54 1 (1.57) 1.57 51.08 101.33 151.59 201.84 252.10
Beta 2 (1.06) 1.11 30.78 61.00 91.23 121.45 151.67 1 (1.11) 1.11 40.85 81.15 121.45 161.75 202.05

BoundedPareto 32 (1.01) 7.53 1.73 2.71 3.70 4.70 5.69 14 (1.44) 7.53 6.51 12.28 18.06 23.83 29.61

Table 3: Expected cost of All-Checkpoint-Periodic and No-Checkpoint-Periodic, nor-
malized by Dyn-Prog-Count(X, 0.1) for C = R = 1h, with ReservationOnly cost function.

Distribution
All-Checkpoint-Periodic No-Checkpoint-Periodic

Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000 Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000
Exponential 12 (1.44) 7.35 9.49 18.53 27.57 36.61 45.66 14 (1.03) 7.35 5.17 9.90 14.64 19.38 24.12
Weibull 156 (1.26) 70.94 1.29 1.65 2.11 2.60 3.11 89 (1.69) 70.94 2.17 3.54 5.01 6.49 7.98
Gamma 7 (1.48) 4.77 17.59 34.70 51.82 68.93 86.05 8 (1.00) 4.77 7.40 14.32 21.25 28.18 35.11

Lognormal 4 (1.23) 2.98 18.81 36.96 55.11 73.26 91.42 4 (1.04) 2.98 12.82 24.98 37.14 49.30 61.47
Pareto 563 (1.20) 175.44 1.58 1.24 1.21 1.24 1.31 562 (1.02) 175.44 1.37 1.05 1.02 1.05 1.11

TruncatedNormal 1 (1.85) 1.85 38.01 74.45 110.89 147.33 183.78 1 (1.85) 1.85 167.50 334.08 500.67 667.25 833.83
Uniform 3 (1.01) 1.23 13.46 26.26 39.07 51.88 64.69 1 (1.23) 1.23 39.89 79.13 118.37 157.61 196.85
Beta 1 (1.08) 1.08 207.32 414.09 620.87 827.64 1034.42 1 (1.08) 1.08 39.93 79.31 118.70 158.08 197.47

BoundedPareto 14 (1.26) 5.59 5.72 10.88 16.05 21.21 26.38 14 (1.07) 5.59 4.82 9.11 13.39 17.68 21.96

Table 4: Performance of All-Checkpoint-Periodic and No-Checkpoint-Periodic, nor-
malized by Dyn-Prog-Count(X, 0.1) for C = R = 360s, with HPC cost function.

Distribution
All-Checkpoint-Periodic No-Checkpoint-Periodic

Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000 Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000
Exponential 21 (1.00) 6.38 2.43 4.20 5.97 7.74 9.52 10 (1.35) 6.38 8.14 15.59 23.04 30.50 37.95
Weibull 300 (1.04) 62.32 1.07 1.05 1.12 1.21 1.31 64 (2.29) 62.32 3.53 6.03 8.60 11.19 13.79
Gamma 12 (1.01) 4.03 3.83 6.98 10.13 13.28 16.44 6 (1.24) 4.03 10.80 20.89 30.99 41.08 51.18

Lognormal 4 (1.07) 2.42 3.74 6.63 9.52 12.41 15.30 3 (1.17) 2.42 16.55 32.24 47.93 63.62 79.32
Pareto 999 (1.00) 128.29 1.39 1.11 1.03 1.01 1.00 415 (1.28) 128.29 1.45 1.28 1.32 1.41 1.51

TruncatedNormal 2 (1.61) 1.61 6.93 12.34 17.75 23.16 28.57 1 (1.61) 1.61 207.16 413.80 620.45 827.09 1033.73
Uniform 6 (1.01) 1.28 2.98 5.07 7.17 9.26 11.36 1 (1.28) 1.28 54.39 107.91 161.42 214.93 268.44
Beta 1 (1.03) 1.03 32.95 65.29 97.62 129.96 162.29 1 (1.03) 1.03 45.95 91.22 136.49 181.76 227.03

BoundedPareto 26 (1.01) 4.69 1.74 2.68 3.62 4.57 5.52 10 (1.38) 4.69 7.22 13.62 20.03 26.44 32.85

4.3 Results for Scenario 2

We now present the simulation results for a probability distribution �tted to the execution time
traces of a real neuroscience application (a code for structural identi�cation of orbital anatomy)
extracted from the Vanderbilt's medical imaging database [15]. Figure 1 shows the execution time
traces of the application and its �tted Lognormal distribution. Figure 9 presents the performance
of di�erent algorithms for this �tted distribution using the ReservationOnly cost function, for

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 29

Table 5: Performance of All-Checkpoint-Periodic and No-Checkpoint-Periodic, nor-
malized by Dyn-Prog-Count(X, 0.1) for C = R = 1h, with HPC cost function.

Distribution
All-Checkpoint-Periodic No-Checkpoint-Periodic

Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000 Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000
Exponential 9 (1.25) 4.81 11.24 22.19 33.15 44.11 55.07 10 (1.02) 4.81 6.13 11.74 17.35 22.96 28.58
Weibull 116 (1.19) 44.78 1.30 1.83 2.42 3.03 3.65 64 (1.65) 44.78 2.54 4.33 6.18 8.04 9.91
Gamma 6 (1.29) 3.26 21.21 42.11 63.02 83.93 104.84 6 (1.00) 3.26 8.73 16.89 25.04 33.20 41.36

Lognormal 4 (1.13) 2.12 21.39 42.15 62.91 83.67 104.43 3 (1.03) 2.12 14.50 28.24 41.99 55.73 69.48
Pareto 438 (1.11) 103.29 1.27 1.11 1.13 1.21 1.31 415 (1.03) 103.29 1.17 1.03 1.06 1.13 1.21

TruncatedNormal 1 (1.45) 1.45 41.13 81.05 120.98 160.91 200.83 1 (1.45) 1.45 186.46 372.46 558.46 744.46 930.46
Uniform 2 (1.00) 1.08 15.21 29.71 44.21 58.71 73.22 1 (1.08) 1.08 45.90 91.05 136.21 181.36 226.52
Beta 1 (1.03) 1.03 263.43 526.83 790.22 1053.62 1317.02 1 (1.03) 1.03 45.65 90.62 135.59 180.56 225.53

BoundedPareto 11 (1.14) 3.64 6.50 12.51 18.53 24.55 30.57 10 (1.07) 3.64 5.59 10.56 15.53 20.50 25.46

di�erent values of C = R. To evaluate the robustness of algorithms, we also vary the original
mean µo (Figures 9a 9c 9e) or standard deviation σo (Figures 9b 9d 9f) of the distribution
from their original values. For readability, all axis are in logscale. We �x ε = 1.0 and test
checkpoint/restart costs equals to 6min, 1h and 12h. For periodic strategies, we use similar
brute-force procedure as Scenario 1 to �nd the period that performs best. The expected costs
of the algorithms are normalized by that of an omniscient scheduler (blue dashed line), which
knows the execution time t of a job a priori, and thus would pay the minimum possible cost by
making a single reservation of length t1 = t. Averaging over all possible values of t from the
distribution, the omniscient scheduler has an expected cost

Eo =

∫ ∞
0

(αt+ βt+ γ)f(t)dt = α · E[X] + γ

We can observe that Dyn-Prog-Count always gives the best performance. As previously ob-
served, the checkpointing cost in�uences the performance ofNo-Checkpoint andAll-Checkpoint
with regard to Dyn-Prog-Count. When C = R = 600 seconds or C = R = 3600s (Fig-
ure 9a - 9d), the value is low enough to allow for checkpointing all reservations, the performance
of Dyn-Prog-Count and All-Checkpoint are the same and outperforms No-Checkpoint
by a wide margin. However, when the checkpoint/restart overhead increases to 12h (roughly
µo
2), we see that checkpointing all reservations become overcostly (No-Checkpoint is better
than All-Checkpoint). In that case, Dyn-Prog-Count outperforms all other strategies.
One can observe that when the ratio µ/σ is large (either by increasing the mean, or decreas-
ing the standard deviation), the solutions converge to the omniscient scheduler. This could
be expected, in this case the variability becomes negligible and the job behaves similarly to a
deterministic job. As for the periodic algorithms, All-Checkpoint-Periodic has better per-
formance than No-Checkpoint-Periodic. However, both algorithms have worse performance
than Dyn-Prog-Count. The results demonstrate the robustness of Dyn-Prog-Count for a
practical application with di�erent distribution parameters.

Figure 10 shows similar trends using the same setup with the HPC cost function.

5 Experiments

In this section, we conduct real experiments on an HPC platform by using three stochastic
neuroscience applications. The focus is to study the performance of di�erent reservation and
checkpointing strategies for scheduling multiple jobs in a shared HPC execution environment.

RR n° 9294

30 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

0.1 1.0 10.0

µ/µo

1

2

3

4

5

6
7
8
9

10

A
l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(a) Variation of µ, σ = σo = 19.7h, C = R = 600s

0.1 1.0 10.0

σ/σo

1

2

3

4

5

6

A
l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(b) Variation of σ, µ = µo = 21.4h, C = R = 600s

0.1 1.0 10.0

µ/µo

1

2

3

4

5

6
7
8
9

10

A
l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(c) Variation of µ, σ = σo = 19.7h, C = R = 1h

0.1 1.0 10.0

σ/σo

1

2

3

4

5

6
A

l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(d) Variation of σ, µ = µo = 21.4h, C = R = 1h

0.1 1.0 10.0

µ/µo

1

2

3

4

5
6
7
8
9

10

A
l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(e) Variation of µ, σ = σo = 19.7h, C = R = 12h

0.1 1.0 10.0

σ/σo

1

2

3

4

5

6

A
l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(f) Variation of σ, µ = µo = 21.4h, C = R = 12h

Figure 9: Normalized performance of algorithms with omniscient scheduler when µ or σ vary,
using ReservationOnly cost function (α = 1.0, β = γ = 0). Basis is the Lognormal distribution
in Figure 1 (µo = 21.4h, σ0 = 19.7h). C = R are set to 600, 3600 and 43200s (12h), ε = 1.

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 31

0.1 1.0 10.0

µ/µo

1

2

3

4

5

6
7
8

A
l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(a) Variation of µ, σ = σo = 19.7h, C = R = 600s

0.1 1.0 10.0

σ/σo

1

2

3

4

A
l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(b) Variation of σ, µ = µo = 21.4h, C = R = 600s

0.1 1.0 10.0

µ/µo

1

2

3

4

5

6
7
8

A
l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(c) Variation of µ, σ = σo = 19.7h, C = R = 1h

0.1 1.0 10.0

σ/σo

1

2

3

4

A
l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(d) Variation of σ, µ = µo = 21.4h, C = R = 1h

0.1 1.0 10.0

µ/µo

1

2

3

4

5

6
7
8
9

A
l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(e) Variation of µ, σ = σo = 19.7h, C = R = 12h

0.1 1.0 10.0

σ/σo

1

2

3

4

A
l
g

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(f) Variation of σ, µ = µo = 21.4h, C = R = 12h

Figure 10: Normalized performance of algorithms with omniscient scheduler when µ or σ vary,
using HPC cost function (α = β = 1.0, γ = 0). Basis is the Lognormal distribution in Figure 1
(µo = 21.4h, σ0 = 19.7h). C = R are set to 600, 3600 and 43200s (12h), ε = 1.

RR n° 9294

32 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

Table 6: Characteristics of the chosen neuroscience applications.

Application Type Walltime distribution C R

Di�usion model �tting (Qball)
Gamma (k = 1.18, θ = 34,

[a, b] = [146s, 407s])
90s 40s

Di�usion model �tting (SD)
Weibull (k = 1043811, λ = 1174322466,

[a, b] = [46min, 2.3h])
25min 10min

Functional connectivity analysis (FCA)
Gamma (k = 3.6, θ = 72,

[a, b] = [165s, 1003s])
150s 100s

5.1 Experimental setup

The chosen neuroscience applications are described in Table 6 along with their execution charac-
teristics, which are extracted from the Vanderbilt's medical imaging database [15]. In particular,
the walltime distributions are obtained by �tting the execution time traces, and the checkpoint-
ing/restart costs are obtained by analyzing and averaging their memory footprints. Note that,
for these applications, the restart costs (R) are di�erent from the checkpointing costs (C).

Here, we focus on the evaluation of the following two di�erent sets of strategies:

� An HPC-for-neuroscience strategy (called HPC in Section 5.2), which uses the average of
the last 5 runs as the initial reservation length and then increases it by a factor of 1.5 for
each subsequent reservation. This strategy is currently used by the MASI group [22] at
Vanderbilt to handle stochastic neuroscience applications.

� Our proposed Dyn-Prog-Count strategy and its All-Checkpoint variant.

We ran the experiments on a 256-thread Intel Processor (Xeon Phi 7230, 1.30GHz) while sub-
mitting jobs through the Slurm scheduler [34]. All three neuroscience applications are sequential
(i.e., uses a single hardware thread) and performs some medical imaging analysis. The variation
in the execution time is due to the di�erent characteristics of the input data. However, as we
do not have access to the raw input images, we used the information in the logs to simulate the
characteristics of the input data, thereby forcing a job to run for a certain walltime and saving a
speci�c amount of data for the checkpoints. In each experiment, we submitted 500 jobs from one
of the three applications, and recorded the completion time of each job. We use the average job
stretch (de�ned as the ratio between the total execution time of a job and its actual walltime)
to show the individual job performance, and use the utilization (de�ned as the ratio between the
sum of all jobs' walltimes and the total time required to execute them) to show the performance
of the system for the whole job set. During the experiments, the scheduler has complete access
to the entire platform, thus corresponding to the scenario with α = 1, β = 0, γ = 0.

5.2 Experimental results

By experimenting on a real system, we investigate the robustness of our strategy: 1) when mul-
tiple applications are running concurrently; 2) when the read/write times vary due to congestion
while accessing I/O and/or due to application interference; 3) when the C/R costs vary de-
pending on when in the application the checkpoint/restart takes place (i.e., di�erent values for
di�erent reservations). Figure 11 shows the performance of the three strategies when submitting
500 jobs from each application to the Slurm scheduler. We manually force the C/R costs to be
the same (as in Table 6) for each strategy so as to study the e�ects of application interference
and the runtime system's performance variability on our model. The �ndings are consistent with

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 33

the simulation results (in Section 4), showing that Dyn-Prog-Count performs better than its
All-Checkpoint variant in terms of both system utilization and average job stretch using all
three applications. Moreover, the two algorithms outperform the simple HPC strategy.

Figure 11: Utilization and average job stretch for Dyn-Prog-Count, All-Checkpoint and
the HPC strategies.

Depending on when the checkpoint is being taken, the checkpoint size and thus the time
to save and restore the application can vary. Figure 12 shows the results when the C/R costs
could vary for di�erent reservations. Based on the log traces of these three applications, we
noticed that their memory footprints can vary by as much as 30% depending on when the
checkpoint is taken (e.g., the checkpoint time can vary between 80 and 110 seconds for Qball).
Our experiment generates random checkpoint sizes using a uniform distribution with the mean
given by the average checkpoint size from the traces, and forces the application to read/write the
corresponding amount at the beginning/end of the execution. In this experiment, we assume that
the checkpointing time is included in the request time and is never responsible for applications
exceeding their allocated time. While the Dyn-Prog-Count solution is computed using the
average C/R costs presented in Table 6, the experimental results show that its performance is
robust up to 15-20% variability in the C/R costs. Moreover, the average job stretch appears
to be even more stable than the utilization, suggesting that most of the submitted jobs are not
impacted by the �uctuation in the C/R costs.

If application-level checkpoint is used, the application is usually aware of the checkpoint
size, thus the checkpointing process can start before the reservation is over. The subsequent
submissions can easily adapt to this deviation with the �rst checkpoints that are smaller than
the one used to compute the sequence (this is the case for Figure 9). For system-level checkpoint,
the application footprint usually remains similar throughout the execution of the application. In
case the checkpointing time is causing the application to exceed the reserved time, the submission
will fail and subsequent submissions can take this into account by adding the wasted time.

The limitation of our method is visible for applications with large variability in checkpointing
size, which can be due to multiple factors, either within the application that presents di�erent
memory footprints throughout its execution, or by system-level causes, such as I/O congestion
or failures. Such large variability in checkpointing size compared to what is used to compute the
reservation sequence can result in worse performance when using our method, and the classic HPC
model would be preferred in this case. We are currently investigating methods to incorporate
variation of checkpointing size into the computation of the optimal reservation sequence, by
either using historic information or adapting the subsequent request times based on the sizes of
previous checkpoints. We plan to further analyze variable C/R times in the future.

RR n° 9294

34 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

Figure 12: Utilization and average job stretch for the three applications (blue: Qball; Orange:
SD; Green: FCA) when varying the C/R costs by di�erent percentages (0 to 30%) using the
Dyn-Prog-Count strategy. Horizontal lines represent the results for the HPC strategy.

Table 7: Utilization and average job stretch for 10 di�erent runs, each using 500 jobs from all
three applications. The runs are ordered by the best improvement of Dyn-Prog-Count in
utilization.

Dyn-Prog-Count HPC Improvement
Utilization Avg Stretch Utilization Avg Stretch Utilization Avg Stretch

67 2.04 55 2.34 21% 15%
73 1.72 62 2.04 18% 19%
62 2.08 55 2.46 12% 18%
71 1.88 64 2.1 11% 12%
63 2.19 56 2.41 11% 10%
71 1.74 64 1.96 10% 12%
75 1.51 68 1.69 10% 12%
68 2.09 65 2.19 4% 5%
61 2.24 60 2.32 2% 4%
77 1.96 75 1.99 2% 2%

Finally, we conduct experiments in a more realistic scenario by running all three applications
at the same time and investigating the impact on the strategies. In particular, we submitted a
total of 500 jobs (100 from Qball, and 200 each from SD and FCA), and kept the C/R costs
constant across di�erent reservations. We recorded the utilization and average job stretch when
using Dyn-Prog-Count compared to the HPC strategy for 10 di�erent runs choosing di�erent
instances from the traces each time. The results are presented in Table 7. We can see that
Dyn-Prog-Count improves both utilization and average job stretch by 10% on average, and
by up to 20% depending on the instances submitted. Overall, these results again illustrate the
robustness of our algorithm and con�rm its bene�t for scheduling stochastic applications on
reservation-based platforms, as long as checkpoint costs remain constant for each application

6 Related Work

We review some related work on reservation-based scheduling and checkpointing in HPC and
cloud systems, as well as some prior work on dealing with stochastic applications.

Inria

Reservation & Checkpointing Strategies for Stochastic Jobs 35

6.1 Reservation-based scheduling

Batch schedulers are widely adopted by many resource managers in HPC systems, such as
Slurm [34], Torque [29] and Moab [5]. Most batch schedulers use resource reservation in combina-
tion with back�lling [23,25,28], and rely on users to provide accurate estimates for the walltimes
of the submitted jobs. While this works for applications with deterministic resource needs, it
can cause resource over-estimation or under-estimation for stochastic jobs with large variations
in the walltime, thus degrading system and/or application performance [12,31].

Clusters of commodity servers that use big-data frameworks such as MapReduce [8] and
Dryad [19] o�er alternative solutions to running HPC workloads. Schedulers for these frameworks
such as YARN [30] and Mesos [16] o�er distinct features (e.g., fairness, resource negotiation)
to manage the workloads, but they generally also require accurate information regarding the
applications' resource demands.

Cloud computing platforms such as Amazon AWS [2] and Google GCP [14] have emerged as
another option for executing HPC applications, with a variety of pricing and reservation schemes.
Both on-demand and reservation models are available with the latter typically o�ering a lower
price. Several works [1,6,9,33] have studied the pricing strategies for platform providers, as well
as delay modeling and cost evaluation for the users.

6.2 Stochastic scheduling and checkpointing

Many prior works have considered stochastic scheduling for jobs with execution time uncertainty.
Most research in this paradigm (e.g., [4,13,21,24,26,27]) assumes that the execution time of a job
follows a known probability distribution and aims at optimizing the expected response time or
makespan for a set of jobs under various distributions. Most of them, however, do not consider
the problem in the context of reservation-based scheduling. In our prior work [3], we have
proposed near-optimal reservation strategies for a single job in both HPC and cloud systems.
The work was later extended to scheduling a set of stochastic jobs, both sequential and parallel,
using back�lling in a reservation-based scheduling environment [11,12].

Another approach to coping with stochastic applications and/or platform unavailability is
through checkpoint-restart [17, 32]. To ensure the robustness of the execution, the application's
state is periodically checkpointed and in case of interrupt (due to either insu�cient reservation
or platform failure), the application can be recovered from the last saved checkpoint. In the
context of fault tolerance, a lot of work (e.g., [7,17,35]) has been devoted to deriving the optimal
checkpointing interval that minimizes the checkpointing overhead or resource waste.

In this paper, we present strategies that combine reservation and checkpointing for stochastic
jobs with known execution time distributions. To the best of our knowledge, this is the �rst result
to provide performance guarantee on the expected execution time while leveraging checkpointing
in reservation-based scheduling environment.

7 Conclusion and Future Work

In this paper, we have studied the problem of performing checkpointing for stochastic applications
running on a reservation-based platform. We presented an optimization framework through
a scheduling problem that combines a sequence of reservations and associated checkpointing
decisions, for a considered job. We provided an optimal solution via a dynamic programming
algorithm in the case of discrete distributions, and showed the existence of a fully polynomial-
time approximation scheme for bounded continuous distributions. Through an extensive set
of simulations and experiments, we have demonstrated the e�ectiveness of those solutions in

RR n° 9294

36 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

comparison with classic strategies using both usual distributions and traces from real neuroscience
applications.

For future work, we are interested in quantifying the critical checkpointing cost, below (or
above) which the best strategy is to always (or never) checkpoint the reservations. This will
help completely characterize the optimal solution for a given application. Another interesting
direction is to incorporate non-constant checkpointing costs into the optimization problem, in
order to design new reservation strategies that will be more robust than our current solutions.
This would alleviate the limitation of our approach when checkpointing costs exhibit a large
variability.

Through this work and our previous e�orts [3, 11, 12] on scheduling stochastic applications,
we would like to motivate users and systems administrators of HPC platforms to adopt our
strategies in the case of stochastic job submissions. In particular, by modeling the execution
time of a stochastic job with a distribution, we have demonstrated the bene�ts of requesting a
sequence of reservations compared to a single reservation of the maximum execution time for the
job. Thus, by leveraging such knowledge on the job pro�les, we believe that our strategies will
lead to signi�cant improvements in terms of both system and application performance over the
existing scheduling policies used in HPC platforms.

Acknowledgments Some of the simulations presented in this paper were carried out using
the PlaFRIM experimental testbed, supported by Inria, CNRS (LABRI and IMB), Université
de Bordeaux, Bordeaux INP and Conseil Régional d'Aquitaine (see https://www.plafrim.fr/
en/home/). The remaining simulation resources were provided by the computing facilities MCIA
(Mésocentre de Calcul Intensif Aquitain) of the Université de Bordeaux and of the Université de
Pau et des Pays de l'Adour.

References

[1] M. Afanasyev and H. Mendelson. Service provider competition: Delay cost structure,
segmentation, and cost advantage. Manufacturing & Service Operations Management,
12(2):213�235, 2010.

[2] Amazon. AWS pricing information. https://aws.amazon.com/ec2/pricing/. Accessed:
2018-10-11.

[3] G. Aupy, A. Gainaru, V. Honoré, P. Raghavan, Y. Robert, and H. Sun. Reservation Strate-
gies for Stochastic Jobs. In IPDPS, 2019.

[4] J. Bruno, P. Downey, and G. N. Frederickson. Sequencing tasks with exponential service
times to minimize the expected �ow time or makespan. Journal of the ACM, 28(1):100�113,
1981.

[5] N. Capit, G. D. Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie, P. Neyron, and
O. Richard. A batch scheduler with high level components. In CCGrid, pages 776�783,
2005.

[6] S. Chen, H. Lee, and K. Moinzadeh. Pricing schemes in cloud computing: Utilization-based
versus reservation-based. Production and Operations Management, 2017.

[7] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.
Future Generation Comp. Syst., 22(3):303�312, 2006.

Inria

https://www.plafrim.fr/en/home/
https://www.plafrim.fr/en/home/
https://aws.amazon.com/ec2/pricing/

Reservation & Checkpointing Strategies for Stochastic Jobs 37

[8] J. Dean and S. Ghemawat. MapReduce: Simpli�ed data processing on large clusters. Com-
mun. ACM, 51(1):107�113, Jan. 2008.

[9] L. Dierks and S. Seuken. Cloud pricing: the spot market strikes back. In The Workshop on
Economics of Cloud Computing, 2016.

[10] A. Gainaru and G. Pallez. Making speculative scheduling robust to incomplete data. In
Scala, 2019.

[11] A. Gainaru, G. Pallez, H. Sun, and P. Raghavan. Speculative scheduling for stochastic HPC
applications. In ICPP, 2019.

[12] A. Gainaru, H. Sun, G. Aupy, Y. Huo, B. A. Landman, and P. Raghavan. On-the-�y
scheduling versus reservation-based scheduling for unpredictable work�ows. Int. J. High
Perf. Computing Applications, 2019.

[13] A. Goel and P. Indyk. Stochastic load balancing and related problems. In FOCS, pages
579�586. ACM, 1999.

[14] Google. GCP pricing information. https://cloud.google.com/pricing/. Accessed: 2018-
10-16.

[15] R. L. Harrigan, B. C. Yvernault, B. D. Boyd, S. M. Damon, K. D. Gibney, B. N. Conrad,
N. S. Phillips, B. P. Rogers, Y. Gao, and B. A. Landman. Vanderbilt university institute of
imaging science center for computational imaging XNAT: A multimodal data archive and
processing environment. NeuroImage, 124:1097�1101, 2016.

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and
I. Stoica. Mesos: A platform for �ne-grained resource sharing in the data center. In 8th
USENIX Conf. Networked Systems Design and Implementation, pages 295�308, 2011.

[17] T. Hérault and Y. Robert, editors. Fault-Tolerance Techniques for High-Performance Com-
puting. Springer Verlag, 2015.

[18] Z. Hussain, T. Znati, and R. Melhem. Partial redundancy in hpc systems with non-uniform
node reliabilities. In SC. IEEE Press, 2018.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In 2nd ACM SIGOPS/EuroSys European Conf.
Computer Systems, 2007.

[20] L. Ismail and L. Khan. Implementation and performance evaluation of a scheduling algo-
rithm for divisible load parallel applications in a cloud computing environment. Software:
Practice and Experience, 45, 03 2014.

[21] J. Kleinberg, Y. Rabani, and E. Tardos. Allocating bandwidth for bursty connections. In
STOC, pages 664�673, 1997.

[22] B. Landman. Medical-image Analysis and Statistical Interpretation (MASI) Lab. https:

//my.vanderbilt.edu/masi/.

[23] D. A. Lifka. The ANL/IBM SP Scheduling System. In JSSPP, pages 295�303, 1995.

[24] R. H. Möhring, A. S. Schulz, and M. Uetz. Approximation in stochastic scheduling: The
power of LP-based priority policies. Journal of the ACM, 46(6):924�942, 1999.

RR n° 9294

https://cloud.google.com/pricing/
https://my.vanderbilt.edu/masi/
https://my.vanderbilt.edu/masi/

38 Gainaru, Goglin, Honoré, Pallez, Raghavan, Robert and Sun

[25] A. W. Mu'alem and D. G. Feitelson. Utilization, Predictability, Workloads, and User Run-
time Estimates in Scheduling the IBM SP2 with Back�lling. IEEE Trans. Parallel Distrib.
Syst., 12(6):529�543, 2001.

[26] J. Niño Mora. Stochastic scheduling. Encyclopedia of Optimization, pages 3818�3824, 2009.

[27] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer-Verlag New York,
Inc., Third edition, 2008.

[28] J. Skovira, W. Chan, H. Zhou, and D. A. Lifka. The EASY - LoadLeveler API Project. In
JSSPP, pages 41�47, 1996.

[29] G. Staples. Torque resource manager. In Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, SC '06, 2006.

[30] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O'Malley, S. Radia, B. Reed, and
E. Baldeschwieler. Apache hadoop yarn: Yet another resource negotiator. In the 4th Annual
Symposium on Cloud Computing, pages 5:1�5:16, 2013.

[31] O. Weidner, M. Atkinson, A. Barker, and R. Filgueira Vicente. Rethinking high performance
computing platforms: Challenges, opportunities and recommendations. In Proceedings of
the ACM International Workshop on Data-Intensive Distributed Computing, pages 19�26,
2016.

[32] K. Wolter, editor. Stochastic Models for Fault Tolerance, Restart, Rejuvenation, and Check-
pointing. Springer Verlag, 2010.

[33] H. Xu and B. Li. Dynamic cloud pricing for revenue maximization. IEEE Transactions on
Cloud Computing, 1(2):158�171, July 2013.

[34] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: Simple linux utility for resource man-
agement. In JSSPP, pages 44�60, 2003.

[35] J. W. Young. A �rst order approximation to the optimum checkpoint interval. Comm.
ACM, 17(9):530�531, 1974.

Inria

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Framework
	Stochastic jobs
	Cost model
	Expected cost
	Optimization Problem

	Algorithms
	Expected cost
	Dynamic programming for discrete distributions
	Approximation algorithm for continuous distributions
	Extensions
	Periodic Heuristics
	All-Checkpoint-Periodic for Exponential distributions
	All-Checkpoint-Periodic for Uniform distributions

	Performance evaluation
	Evaluation methodology
	Results for Scenario 1
	Results for Scenario 2

	Experiments
	Experimental setup
	Experimental results

	Related Work
	Reservation-based scheduling
	Stochastic scheduling and checkpointing

	Conclusion and Future Work

