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ABSTRACT
Many IoT applications found in cyber-physical systems, such as
smart grids, must take control actions in response to critical events,
such as supply-demand mismatch, which requires low-latency pro-
cessing of streaming data for rapid event detection and anomaly re-
mediation. These streaming applications generally take the form of
directed acyclic graphs (DAGs), where vertices represent operators
and edges represent the flow of data between these operators. Edge
computing has recently attracted significant attention as a means
to readily meet the requirements of latency-critical IoT applications
due to its ability to provide low-latency processing near the source
of data. To accrue the benefits of edge computing, the constituent
operators of these applications must be placed in a manner that
intelligently trades-off inter-operator communication costs with
the cost of interference incurred due to co-location of operators
on the same resource-constrained edge devices. To address these
challenges and to substantially simplify the placement problem for
DAGs of arbitrary sizes and topologies, we present an algorithm
that first transforms any arbitrary stream processing DAG into
an approximate set of linear chains. Subsequently, a data-driven
latency prediction model for co-located linear chains is used to
inform the placement of operators such that the makespan, defined
as the maximum latency of all paths in the DAG, is minimized. We
empirically evaluate our algorithm using a variety of DAG place-
ment scenarios on a Beagle Bone cluster, which is representative of
an edge computing environment.
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1 INTRODUCTION
The Internet of Things (IoT) paradigm has enabled a large number of
physical devices or “things” equipped with sensors and actuators to
connect over the Internet to exchange information. IoT applications
typically involve continuous processing of data streams produced
by these devices for the control and actuation of intelligent systems.
In most cases, such processing needs to happen in near real-time
to gain insights and detect patterns of interest. For example, in
smart grids, energy usage data from millions of smart meters is
continuously assimilated to identify critical events, such as demand-
supply mismatch, so that corrective action can be taken to maintain
grid stability [50]. Similarly, in video surveillance systems, video
streams are continuously analyzed to detect traffic violations, such
as jay walking and collisions [30].

Distributed Stream Processing Systems (DSPS) are used for scal-
able and continuous processing of data streams, such as sensor data
streams produced by IoT applications [49]. In DSPS, an application
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is structured as a Directed Acyclic Graph (DAG), where vertices
represent operators that process incoming data and directed edges
represent the flow of data between operators. The operators per-
form user-defined computations on the incoming stream(s) of data.
Storm [51], Spark [54], Flink [14], Millwheel [5], etc. are exam-
ples of widely used DSPSs. These systems have, however, been
designed for resource-rich, cloud/cluster environments, where a
master node distributes both data and computation over a cluster
of worker nodes for large-scale processing (e.g., as in Storm). Using
such cloud-centric solutions for IoT applications will require trans-
ferring huge amounts of sensor data produced by devices at the
network edge to data-centers located at the core of the network [44].
However, moving data over a bandwidth-constrained backhaul net-
work incurs high latency cost, which makes such cloud-centric
solutions infeasible for latency-sensitive IoT applications.

To address this concern, the edge computing paradigm has been
proposed [46] to enable computations to execute near the source of
data on low-cost edge devices and small-scale data-centers called
cloudlets [47]. Edge-based stream processing systems, such as Fron-
tier [40], Amazon Greengrass [2], Microsoft Azure IoT [3] and
Apache Edgent [1], support data stream processing on multiple
edge devices thereby reducing the need for costly data transfers.
However, to meet the low response time requirements of latency-
sensitive applications, it is also important to distribute the con-
stituent operators of the DSPS over resource-constrained edge de-
vices intelligently. An optimal placement approach should minimize
the end-to-end response time or makespan of a stream processing
DAG while trading-off communication costs incurred due to dis-
tributed placement of operators across edge devices, and interfer-
ence costs incurred due to co-location of operators on the same
edge device [15].

The above-mentioned edge-based stream processing platforms,
however, provide only the mechanisms for IoT stream process-
ing but not the solution for optimal operator placement. As such,
framework-specific solutions for operator placement [34, 35, 42] are
not directly applicable for edge-based stream processing. Likewise,
existing framework-agnostic solutions [13, 15, 27, 28, 52] for opera-
tor placement make simplifying assumptions about the interference
costs of co-located operators. These solutions do not consider the
impact of incoming data rates and DAG-based execution semantics
on the response time of an application. Due to these simplifying
assumptions, their estimation of response time for DAG execution
is less accurate and the produced placement of operators on the
basis of this response time estimation is less effective.

To address these limitations, in this paper, we present a data-
driven latency prediction model which takes the impact of DAG-
based execution semantics and data rate into consideration to pre-
dict the latency of all paths in a DAG. Subsequently, this latency
prediction model is used by a greedy operator placement algorithm
to inform the placement of operators such that the makespan of
the DAG is minimized.

Learning a latency predictionmodel for arbitrary DAG structures,
however, has significantly high overhead in terms of computational
costs and model training time. Moreover, formulating the model
training problem itself is very complex. Therefore, our solution
transforms a DAG into an approximate set of linear chains, which
makes learning a latency prediction model for co-located operators

significantly less expensive and easier to construct than learning
a model for arbitrary DAG structures. Accordingly, to estimate
the latency of a path in a given DAG, we first linearize the DAG
into multiple linear chains and then use the latency prediction
model for co-located linear chains to approximate the response
time of the path in the original DAG. It is important to note that the
original DAG structure is what gets executed using our solution.
DAG linearization is only used for approximating path latencies in
the original DAG structure so as to guide the operator placement
decisions of the greedy placement algorithm.

Our paper makes the following key contributions:
• DAG Linearization: We present an algorithm that trans-
forms any givenDAG into an approximate set of linear chains
in order to approximate the latency of a path in the DAG. This
set includes the target path of the DAG, whose latency we
are interested in approximating, in addition to other mapped
linear chains. Upon the execution of this set of linear chains,
the latency of the path we are interested in is observed to be
very close to the measured latency along that path when the
original DAG structure is executed. The transformation algo-
rithm considers both the split (or fork), and join (or merge)
points in DAGs.
• Latency PredictionModel:Wepresent amodel for predict-
ing the 90th percentile latency of a linear chain of operators
on the basis of its length (i.e., number of operators in the
linear chain), the incoming data rate, the sum of execution
times of all operators in the linear chain and a characteriza-
tion of background load imposed by other co-located linear
chains. For higher accuracy, we learn a separate prediction
model for different numbers of co-located chains present
at an edge device. All the learned models presented in this
paper have a prediction accuracy of at least 92%.
• Greedy Placement Heuristic: We present a greedy place-
ment heuristic for makespan minimization, which leverages
the DAG linearization algorithm and the latency prediction
model to guide its placement decisions. Experimental re-
sults show that, compared with two baseline approaches,
our placement heuristic significantly reduces the prediction
error while achieving low makespan.

The rest of this paper is organized as follows: Section 2 motivates
our data-driven approach for estimating the impact of operator co-
location on path latencies. Section 3 gives a formal statement of the
problem we are studying and provides a greedy heuristic to solve
it. Section 4 presents our approach for DAG linearization and the
latency prediction model to estimate the 90th percentile latency
of co-located linear chains. These predictions are needed for our
greedy heuristic. Section 5 presents experimental results to validate
our solution. Section 6 presents related work and compares our
operator placement solution to existing solutions for makespan
minimization. Finally, Section 7 offers concluding remarks, lessons
learned and outlines future work.

2 IMPACT OF OPERATOR CO-LOCATION
Existing solutions make simplifying assumptions to estimate the
cost of interference due to operator co-location. Some solutions [27,
28, 52] assume that the execution time of each operator becomes the
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Figure 1: Impact of publication rate and DAG structure on latency

sum of execution times of all co-located operators when the under-
lying physical node is a single core and uses round robin scheduling.
Other solutions [13, 15] ignore the impact of operator co-location
and assume constant execution time. These solutions do not con-
sider the impact of incoming data rate and DAG structure imposed
execution semantics, both of which have a significant impact on
the observed latency. We illustrate this using some representative
examples in Figure 1.

We used a single core Beagle Bone Black (BBB) board [4] to run
the DAGs depicted in Figure 1. All intermediate vertices which pro-
cess incoming data, namely vertex-1 to vertex-5, were hosted on
the same BBB board while the source and sink vertices were hosted
on a separate 2.83 GHz Intel Q9550 quad-core server. Source vertices
send 64 Byte, time-stamped messages periodically at a configurable
rate shown on their outgoing edges. Intermediate vertices perform
a configurable amount of processing on each incoming message.
The isolated execution time of an intermediate vertex, measured
in milliseconds, is depicted within brackets below the vertex-ID.
For intermediate vertices with multiple incoming edges, we assume
interleaving semantics [28] wherein the vertex performs processing
whenever it receives a message on any of its incoming edges. Sink
vertices log the time-stamp of reception of messages after being
processed by the intermediate vertices.

Each DAG was executed for two minutes in an experimental run.
Average 90th percentile latency and standard deviation (shown in
brackets) recorded by each sink vertex across 5 runs are shown
along the incoming edge of the sink vertex. This implies that 90
percent of all messages received along all the paths which end at a
sink vertex were observed to have an end-to-end path latency below
the 90th percentile value. For example, in DAG-1 (Figure 1a), 90
percent of all messages received along paths ⟨src1, 1, 3, 5, snk1⟩ and
⟨src2, 2, 3, 5, snk1⟩, which end at snk1, were observed to have an
end-to-end latency below 117 ms (on average across 5 experimental
runs). Similarly, 90 percent of all messages received along paths
⟨src1, 1, 4, snk2⟩ and ⟨src2, 2, 4, snk2⟩, which end at snk2, were ob-
served to have an end-to-end latency below 69.8 ms (again on
average across 5 runs). The makespan (i.e., response time) of a DAG
is the maximum 90th percentile latency across all paths, which is
117 ms for DAG-1.

Based on our experiments, we made the following critical obser-
vations:

• Impact of data rate (i.e., publishing rate): DAG-1 in Fig-
ure 1a and DAG-2 in Figure 1b are the same, except for the
publishing rate of source vertex src2, which generates data
at 5 messages/sec in DAG-1 and at 1 message/sec in DAG-2.
In DAG-1, the 90th percentile latency at sink vertex snk1
is 117 ms and at sink vertex snk2 is 69.8 ms. However, due
to the lower publishing rate of src2 in DAG-2, sink vertices
snk1 and snk2 show lower 90th percentile latencies of 94.7
ms and 42.2 ms, respectively.
• Impact of DAG Structure: DAG-1, DAG-3 and DAG-4 in
Figure 1a, Figure 1c and Figure 1d, respectively, are com-
posed of the same set of intermediate vertices, although they
are structurally different. All three DAGs show markedly
different response times on account of this difference in their
DAG structures. Simplifying assumptions that do not con-
sider DAG structure imposed execution semantics, such as
assuming constant execution time or sum of execution times
of all co-located vertices, can respectively underestimate or
overestimate a DAG’s makespan. For example, if we assume
constant execution time for each vertex, the latency of path
⟨src1, 1, 3, 5, snk1⟩ in DAG-4 will be ∼35 ms, which is much
less than the observed path latency of 77.2 ms. Similarly, if
we assume each vertex’s execution time to be the sum of
execution times of all 5 co-located vertices given that we are
using a single core BBB board, then the path latency would
be ∼150 ms, which is twice the experimentally observed path
latency of 77.2 ms.
• Performance Interference: The latency of path ⟨src1,
1, 3, 5, snk1⟩ in DAG-4 (i.e., 77.2 ms) is higher than a simple
sum of the execution times of all co-located operators (i.e.,
50 ms), since all 5 operators are executing on the same single
core BBB and the overhead of context switching is not negli-
gible. On constrained edge devices, impact of performance
interference on latency is more pronounced and simple an-
alytical models fail to take this into account. In practice,
estimating the impact of performance interference due to
co-location of applications is a hard problem, for which no



good analytical models are known to exist [6, 19, 21]. This is
further compounded by the heterogeneity of hardware and
software components deployed in IoT environments.

Thus, to accurately estimate the impact of co-location of op-
erators on path latencies, we have relied on using a data-driven
approach which takes both data rate and DAG-based execution
semantics into account.

3 PROBLEM FORMULATION AND
HEURISTIC SOLUTION

In this section, we formally describe the operator placement prob-
lem by first introducing the models and assumptions. We then
demonstrate the complex trade-offs between communication and
interference induced costs, and show the complexity. Finally, we
present a greedy heuristic solution for the problem.

3.1 Models and Assumptions
A stream processing application can be represented by a Directed
Acyclic Graph (DAG) G = (O,S), where the set of operators O =
{oi } form the vertices of G and the set of data streams S = {si j },
connecting the output of an operator oi to its downstream operator
oj , form the directed edges of G. Source operators, Osrc ⊂ O,
do not have any incoming edges and publish data into G, i.e.,
Osrc = {oi |∄sji ∈ S,oj ∈ O}. Sink operators, Osnk ⊂ O, do
not have any outgoing edges and receive the final results of G, i.e.,
Osnk = {oi |∄si j ∈ S,oj ∈ O}. All source and sink operators are
no-op operators, i.e., they do not perform any computation. Each
intermediate operator, i.e., Oint = {oi |oi < Osrc ,oi < Osnk }, per-
forms CPU intensive computation and is characterized by its: 1)
execution time, ρ(oi ), which defines the average time interval of pro-
cessing that oi performs on every input message, and 2) incoming
rate, λ(oi ), which defines the rate at whichoi receives incomingmes-
sages. An intermediate operator with multiple incoming streams
follows interleaving semantics [28] for data processing and it will
perform its computation whenever it receives a message on any of
its incoming streams.

The problem requires finding a placement P : Oint → E for
the set of intermediate operators Oint over a cluster of homoge-
neous edge nodes E = {ej }, such that the makespan of G, specified
by its maximum end-to-end latency1 is minimized. Formally, the
makespan of a graph G under a placement P is defined as:

ℓP (G) = max
p∈Π
ℓP (p) (1)

where Π represents the set of all paths in G and ℓP (p) represents
the latency of a path p ∈ Π under placement P. Suppose the path p
has n intermediate operators, i.e., p = ⟨os ,o1,o2, . . . ,on ,ok ⟩, where
os ∈ Osrc , ok ∈ Osnk , and oi ∈ Oint for 1 ≤ i ≤ n. Given a
placement P, the latency of path p can be expressed as:

ℓP (p) =
n∑
i=1

ωP (oi ) +
n−1∑
i=1

dP (oi ,oi+1) (2)

Here,ωP (oi ) denotes the processing delay experienced by an opera-
tor oi under placement P, which may be higher than the operator’s

1While the model is flexible to incorporate different definitions of latency, we consider
the 90th percentile end-to-end latency in this paper.

isolated execution time ρ(oi ) due to potential interference with
other co-located operators [37, 39] (see Section 2). Typically, the
more co-located operators on the same edge node, the higher the
processing delay. Also, dP (oi ,oi+1) denotes the communication de-
lay between an upstream operator oi and its downstream operator
oi+1 in the path. If oi and oi+1 are placed on the same edge node
under P, then no network delay will be incurred. Otherwise, we
assume a constant network delay c between any two edge nodes:

dP (oi ,oi+1) =
{
0 if P(oi ) = P(oi+1)
c if P(oi ) , P(oi+1)

Our model makes the following assumptions:
(1) All intermediate operators perform CPU intensive computa-

tions; we do not consider other resources, such as memory,
I/O, etc.

(2) All intermediate operators perform their computations on
each incoming message; we do not consider window-based
operations.

(3) All intermediate operators follow OR/interleaving [28] se-
mantics for data processing; we do not consider AND se-
mantics, which encode more complex interactions between
multiple incoming data streams (e.g., join).

(4) All the edge nodes are homogeneous.
(5) Number of available edge nodes is not a constraint.
(6) Network delay between any two edge nodes is constant.

3.2 Cost Trade-off and Complexity
The optimal solution to the makespan minimization problem de-
scribed above depends on delicately exploiting the trade-off be-
tween the communication costs incurred by dependent operators
located on different edge nodes and the interference cost due to
the co-location of multiple operators on the same edge nodes. For
example, consider a linear chain of n operators, i.e., ⟨o1,o2, . . . ,on⟩.
On the one hand, placing each operator separately on different edge
nodes has zero interference, but incurs a large communication cost
between each pair of consecutive operators. On the other hand,
placing all operators on one edge node incurs zero communica-
tion cost, but incurs a large processing delay due to performance
interference among the co-located operators.

It turns out that, to place a set of n operators that form a lin-
ear chain, an optimal solution that balances the two costs can be
obtained by the following dynamic programming formulation:

ℓ∗i = min
i≤j≤n

(
ωi, j + d(oj ,oj+1) + ℓ∗j+1

)
(3)

where ℓ∗i denotes the optimal latency for placing the sub-chain
⟨oi ,oi+1, . . . ,on⟩, and ωi, j =

∑j
h=i w(oh ) denotes the cumulative

latency of all operators in the sub-chain ⟨oi ,oi+1, . . . ,oj ⟩ when
they are co-located on the same edge node.

For placing general DAGs, however, the problem is more difficult.
Many prior works (e.g., [13, 15, 22]) have shown the NP-hardness
of the problem when there is a limited number of edge nodes (i.e.,
a resource-constraint optimization problem). Here, we consider a
model in which the number of edge nodes is unrestricted and the
primary objective is to minimize the response time of the stream-
ing service. Even in this case, the problem can be shown to be



NP-hard via a simple reduction from a multiprocessor scheduling
problem with communication delays2 [29, 41]. Hence, we will focus
on designing a heuristic based solution in this paper.

3.3 Greedy Placement Heuristic
We now present a greedy placement heuristic for the makespan
minimization problem formulated in Section 3.1. Algorithm 1 shows
the pseudocode of the greedy heuristic. Specifically, the heuristic
places the operators in the intermediate set Oint one after another
in a Breadth-First Search (BFS) order (Line 2), which preserves
the spatial locality of the dependent operators, thus reducing the
communication cost. For each operator oi to be placed, the heuristic
tries two different options:

(1) Co-locate oi with other operators that have already been
placed on an existing edge node (Lines 6-17);

(2) Place oi on a new edge node (Lines 18-23).
In both options, the latencies of all paths that go through operator
oi will be estimated. In the first option, this is done using our DAG
linearization scheme and latency prediction model described in
Section 4 (Line 11). In the second option, this is done by simply
adding the isolated execution time ρ(oi ) of the operator (Line 19),
since it is not co-located with any other operators. Empirically, we
found that co-locating too many operators or having too many
paths on a single edge node can lead to degraded accuracy in the
latency prediction (see Section 5). Hence, we restrict the maximum
number of co-located operators on a node to bem and the maximum
number of paths formed by these operators to be k (Line 10). In the
experimental evaluation, we setm = 12 and k = 4.

Note that, when operator oi is co-located with other operators
on an edge node, the latencies of all paths that go through those co-
located operators also need to be estimated due to the interference
caused by the placement of oi [20]. Then, the resulting partial
makespan for the sub-graph Gi = (Oi ,Si ) that contains the set
of operators Oi = {o1,o2, . . . ,oi } up to operator oi and the set
of associated data streams Si = {sjk |oj ∈ Oi ,ok ∈ Oi } will be
updated (Line 12 and Line 20). Finally, the option that results in
the minimum predicted makespan for Gi is selected for placing
operator oi (Line 27).

Since each edge node hosts at least one operator, Algorithm 1
deploys at most n edge nodes in the end, where n = |Oint | denotes
the number of intermediate operators in the graph. On each edge
node, enumerating up tok paths from aDAG consisting of at mostm
co-located operators can be done by simple Depth-First Search (DFS)
with backtracking, which has complexityO(m2k). Furthermore, the
linearization of the DAG and the prediction of latencies for all
paths can be done in O(m2 + k2m) time (see Algorithm 2). As the
placement of each operator examines at most n edge nodes, the
overall complexity of the algorithm is therefore O(n2mk(m + k)).
Asm and k are usually set to be constants, the heuristic essentially
computes a placement solution in O(n2) time.

2The multiprocessor scheduling problem concerns mapping an arbitrary task graph
with communication delays onto a set ofm identical processors in order to minimize
the makespan. The problem is NP-hard even whenm = ∞ and all communication
costs are uniform [29, 41]. This corresponds to a special case of our problem without
any performance interference due to co-located operators, thus establishing the NP-
hardness of the problem.

Algorithm 1: Greedy Placement Heuristic
Input: Operator graph G = (O, S)
Output: A placement Pgreedy of the intermediate operator set Oint ∈ O onto a

set E of edge nodes
1 begin
2 Reorder all operators in the intermediate set Oint = {o1, o2, . . . , on } in

BFS order, where n = |Oint |;
3 E← ∅;
4 for each operator oi (i = 1 . . . n) do
5 ℓ∗ ←∞ and j∗ ← 0;

// try to place on each existing edge node

6 for each edge node ej ∈ E do
7 P(oi ) ← ej ;
8 mj ← getNumberOfOperators(ej );
9 kj ← computeNumberOfPaths(ej );

10 if mj ≤ m and kj ≤ k then
11 Predict latencies of all paths that contain operators

co-located in ej using latency prediction model (Section 4);
12 Compute partial makespan ℓP (Gi ) using Equation (1);
13 if ℓP (Gi ) < ℓ∗ then
14 ℓ∗ ← ℓP (Gi ) and j∗ ← j ;
15 end
16 end
17 end

// try to place on a new edge node

18 P(oi ) ← e |E|+1 ;
19 Update latencies of all paths that contain operator oi by adding

isolated execution time ρ(oi );
20 Compute partial makespan ℓP (Gi ) using Equation (1);
21 if ℓP (Gi ) < ℓ∗ then
22 ℓ∗ ← ℓP (Gi ) and j∗ ← j ;
23 end
24 if j∗ = |E | + 1 then
25 E← E⋃{e |E|+1 } ; // start a new edge node

26 end
27 Pgreedy(oi ) ← ej∗ ;
28 end
29 end

4 A DATA-DRIVEN LATENCY PREDICTION
MODEL

In this section, we describe the development of a data-driven latency
prediction model that is used by our greedy placement heuristic
(see Section 3.3). To that end, we explain our DAG linearization
approach for transforming any arbitrary DAG into an approximate
set of linear chains and the k-chain co-location latency prediction
model which is subsequently used for predicting the latency of
multiple co-located linear chains.

4.1 DAG Linearization Transformation Rules
It is expensive to train a latency prediction model for arbitrary
DAGs, since the structure of the DAGs need to be taken into ac-
count, which could explode the exploration space. To overcome this
problem, we propose a linearization-based approach, which trans-
forms any given DAG into multiple sets of linear chains, whose
latencies will then be predicted to approximate the end-to-end la-
tencies of paths in the original DAG. Due to the simplicity of the
linear structures, the proposed approach is able to significantly
reduce the space over which the latency prediction model needs
to be learned. We arrived at these transformation rules based on
multiple different empirical observations.
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Suppose up tom operators in a connected graph3 G′ are all co-
located on one edge node, andG′ contains a collection {p1,p2, . . . ,pf }
of f paths from its source operator(s) to its sink operator(s), where
f ≤ k . The linearization scheme first transforms graph G′ into f
sets of linear chains, denoted as {L1(G′),L2(G′), . . . ,Lf (G′)}. For
each 1 ≤ x ≤ f , the set Lx (G′) contains f linear chains in it, in-
cluding a target linear chain corresponding to the path px in the
original DAG, as well as f − 1 auxiliary linear chains to simulate
the performance interference for path px . The latency prediction
model (Section 4.2) is then used to predict the latency of the target
path px in each set Lx (G′). Finally, the predicted latencies for all
the paths in {p1,p2, . . . ,pf } that share the same sink operator are
averaged to approximate the end-to-end latency for messages that
exit that sink operator in graph G′.

We now present our approach to transform graph G′ into f sets
of linear chains {L1(G′),L2(G′), . . . ,Lf (G′)}. Algorithm 2 shows
the pseudocode of the linearization procedure. Since an operator
in the original graph G′ may be replicated in a set Lx (G′), we first
compute the number of times each operator is replicated. To that
end, we describe below the linearization rules for two types of
operators in a DAG structure, namely, fork and join operators.
• Fork operator : All paths in a DAG that originate from a fork
operator can be executed concurrently. Hence, we can reason
about these paths as independent linear chains. The fork
operator only executes once, so it is included in one of the
multiple paths that originate from the fork vertex. Figure 2
illustrates this rule.
• Join operator : Join operators have multiple incoming edges.
Therefore, we can argue that the join operator and all its

3If a graph contains several connected components, the linearization can be done
separately for each connected component.

downstream operators execute as many times as the number
of incoming edges of the join vertex. Hence, a join operator
and all downstream operators are replicated into multiple
linear chains. Figure 3 illustrates this rule.

Generalizing the rules above, for each operator oi in G′, we can
set the number of times ti it should appear in any set Lx (G′) of lin-
ear chains as the total number of paths from the source operator(s)
ofG′ to oi . This can be computed by a simple breadth-first traversal
of the graph (Lines 2-12), which takes O(|O′ | + |S′ |) = O(m2) time.

The algorithm then constructs the set Lx (G′) of linear chains
for each 1 ≤ x ≤ f (Lines 13-27). Specifically, it first adds the
target path px into the set Lx (G′), and then examines the operators
from the remaining paths in sequence. If an operator oi has already
appeared ti times from the previously examined paths, it will be
removed from the current and subsequent paths. This ensures the
correct number of replicas for each operator in the set. Since there
are f sets of linear chains, and the construction of each set examines
all f paths, each containing at most |O′ | operators, the complexity
of this part is O(f 2 |O′ |) = O(k2m). The overall complexity of the
algorithm is therefore O(m2 + k2m).

Figure 4 shows the linearization results for the DAG shown in
Figure 1a, which contains two source operators, two sink operators,
and four different paths: ⟨1, 3, 5⟩, ⟨2, 3, 5⟩, ⟨1, 4⟩ and ⟨2, 4⟩. There-
fore, four corresponding sets of linear chains are constructed as
shown in Figure 4a to Figure 4d. In each set, the chain highlighted
in grey represents the target path whose latency will be predicted,
and the other chains represent auxiliary paths to simulate the per-
formance interference.
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Figure 4: Linearization and latency prediction results for the DAG shown in Figure 1a.

Algorithm 2: DAG Linearization
Input: Operator graph G′ = (O′, S′) that contains f paths {p1, p2, . . . , pf }

from its source operator(s) to its sink operator(s).
Output: f sets of linear chains {L1(G′), L2(G′), . . . , Lf (G′)}, each with a

target path px from G′ whose latency will be predicted (1 ≤ x ≤ f ).
1 begin
2 Identify the set O′src of source operators of G′;
3 ti ← 1 for ∀oi ∈ O′src , and ti ← 0 for ∀oi ∈ O′\O′src ;
4 Initialize an empty queue Q ← ∅;
5 Q .enqueue(O′src );
6 while Q , ∅ do
7 oi ← Q .dequeue();
8 for each oj ∈ oi .childen() do
9 tj ← tj + 1;

10 Q .enqueue(oj );
11 end
12 end
13 for x = 1 to f do
14 p′h ← ph , for ∀1 ≤ h ≤ f ;
15 t ′i ← ti , for ∀oi ∈ O′;
16 t ′i ← t ′i − 1, for ∀oi ∈ p′x ;
17 for each p′h ∈ {p

′
1, p
′
2, . . . , p

′
f }\{p

′
x } do

18 for each oi ∈ p′h do
19 if t ′i = 0 then
20 remove oi from p′h ;
21 else
22 t ′i ← t ′i − 1;
23 end
24 end
25 end
26 Lx (G′) ← {p′1, p′2, . . . , p′f };
27 end
28 end

4.2 Training the k-chain Co-location Latency
Prediction Model

In this section, we describe the k-chain co-location latency predic-
tion model we trained for predicting the latencies of k co-located
linear chains. Given a set of k linear chains, our latency prediction
model first employs a classification model to determine if the place-
ment of these k linear chains at an edge device is feasible; i.e., the
placement does not saturate an edge node’s resources. In case of re-
source saturation, the observed latency values become significantly
high and unpredictable. If the classification model predicts that the
placement is feasible, then a regression model is used to predict
each linear chain’s 90th percentile latency.

Both the classification and regression models for a k-chain co-
location take the same set of 7 input features. Of these 7 input
features, the first 3 features characterize the foreground (target)
linear chain, or the chain under observation, and the remaining 4
features characterize the background load imposed by the set of
background (auxiliary) chains co-located along with the foreground
chain. These input features are described below, where cf denotes
the foreground linear chain and CB denotes the set of background
linear chains.

• n(cf ): number of operators in cf ;
• ∑

o∈cf ρ(o): sum of execution intervals of operators in cf ;
• λ(cf ): incoming data rate for cf ;
• ∑

cb ∈CB n(cb ): sum of number of operators in all background
chains;
• ∑

cb ∈CB
∑
o∈cb ρ(o): sum of execution intervals of all opera-

tors in all background chains;



• ∑
cb ∈CB λ(cb ): sum of incoming data rates over all back-

ground chains;
• ∑

cb ∈CB λ(cb ) ·
∑
o∈cb ρ(o): sum of the product of λ(cb ) and∑

o∈cb ρ(o) over all background chains.

The classification model takes these input features and outputs a
binary value: 0 to indicate that the placement is feasible and 1 oth-
erwise. The regression model outputs the predicted 90th percentile
latency of the foreground chain co-located with a given background
load. For k = 1, i.e., only one chain exists, the four input features
characterizing the background load are set to 0. Latency prediction
models are specific to a hardware type and a separate set of predic-
tion models will need to be learned for each new hardware type on
which an operator can be placed.

We used neural networks for learning both the classification and
regression models. For higher accuracy, we learned separate models
for different numbers k of co-located chains. The neural networks
comprise an input layer, one or more hidden layers and an output
layer, where each layer is composed of nodes called neurons [12].
Neurons belonging to different layers are interconnected with each
other via weighted connections. The input layer feeds the input
features to the network. Neurons belonging to the intermediate
and output layers sum the incoming weighted signals, apply a bias
term and an activation function to produce their output for the
next layer. The architecture of a neural network, i.e., the number
of hidden layers and number of neurons per hidden layer, choice of
the activation function, regularization factor, and the solver greatly
determine the accuracy of the learned model.

Typically, learning curves [38] are plotted to understand the
performance of a neural network and to guide the selection of
various parameters, such as number of layers, number of neurons
per layer and regularization factor. A learning curve shows the
training and validation errors as functions of the training data
size. If the learning curve shows that the training error is low,
but the validation error is high, the model is said to suffer from
high variance [38], i.e., it is over-fitting the training data and may
not generalize well. If the learning curve shows high training and
validation errors, the model is said to suffer from high bias [38], i.e.,
it fails to learn from the data or is under-fitting the data.

A neural network model for which both the training and valida-
tion errors converge to a low value is selected. Such a model neither
over-fits (low variance) nor under-fits (low bias) the data and is
expected to perform well. We use the learning curves for different
neural network architectures for each value of k to help us select
a model with low bias and variance. Section 5 shows the learning
curves and accuracy results for the selected k-chain co-location
classification and regression models.

5 EXPERIMENTAL VALIDATION
In this section, we present experimental results to validate our
DAG linearization-based approach for predicting the latency of
arbitrary DAG structures and to evaluate our greedy placement
heuristic for minimizing the DAG makespan, which relies on the
latency prediction approach. We describe our experiment testbed
first, followed by the accuracy results for the learned k-chain co-
location latency prediction models and performance results for our
greedy placement heuristic.

5.1 Experiment Testbed and Setup
Our experiment testbed comprises 8 Beagle Bone Black (BBB)
boards running Ubuntu 18.04, where each board has one AM335x
1GHz ARM processor, 512 MB RAM and 1 Gb/s network interface
card. Intermediate vertices are hosted on BBB boards whereas the
source and sink vertices are hosted on a separate quad-core 2.83
GHz Intel Q9550 server with 8GB RAM and 1Gb/s network interface
card, also running Ubuntu 18.04. We assume a constant network
delay of 10 ms between any two BBBs and also between each BBB
and the server hosting source/sink vertices. We used RTI DDS [10],
a peer-to-peer topic-based publish-subscribe messaging system to
model the directed edges interconnecting the vertices. Each edge
is implemented as a DDS topic over which messages are sent and
received by the upstream and downstream vertices, respectively.

Similar to some prior work on operator placement [27, 28], we
have also used synthetic DAGs for testing our operator placement
algorithm. We generated our synthetic test DAGs4 using Fan-In-
Fan-Out [18] method for task-graph generation. Since we observed
that the out-degree of operators in some real world applications
like extract, transform and load (ETL), statistical summarization,
predictive analytics and model training, as benchmarked by RIOT-
Bench [48] is between 1 and 3, we set the maximum out-degree for
our Fan-In-Fan-Out algorithm to 2. Figure 5a shows an example
application DAG on predictive analytics adapted from RIOTBench.
Here, data from a source vertex is forked to linear regression and
average operators, which predict a numerical attribute value and
calculate the moving average of observed attribute value respec-
tively. Subsequently, the error estimation operator calculates the
error residue between predicted and observed values. Finally, av-
erage prediction error is reported to the sink. Figure 5b shows a
synthetic DAG generated by our Fan-In-Fan-Out algorithm which
is similar in structure to the example application DAG.

source

average

linear
regression

sinkerror
estimate

average
error

(a) Example predictive analytics DAG (adapted from RIOTBench [48])

src

2

1

snk43

(b) Synthetic DAG

Figure 5: Example application and synthetic DAG

RIOTBench [48] has also micro-benchmarked several categories
of stream processing operators, such as those used for parsing, fil-
tering, statistical processing, prediction and IO operations, by using
real world workloads and applications. Their micro-benchmarks
show that several operators have latencies up to 10 ms. Similarly,
micro-benchmarks conducted by StreamBench [36] show com-
monly used state-less CPU intensive operators such as projection,
4All test DAGs used in our experiments can be viewed at http://bit.ly/sampledags



sampling, grep, etc. have latency up to 10 ms. Therefore, to generate
our synthetic workload for testing, the execution interval (ρ) of
intermediate vertices is randomly chosen to be 1 ms, 5 ms, 10 ms,
15 ms or 20 ms. An intermediate vertex processes a message by
performing recursive fibonacci computations for the randomly cho-
sen execution interval. Source vertices send 64 Byte time-stamped
messages periodically at a configurable publishing rate λ up to
20 messages/second. Due to limited processing capability of BBB
device, we kept the publishing rates low. Sink vertices log the time-
stamp of reception of processed messages to compute the end-to-
end latencies. To ensure the fidelity of experimental results, a DAG
is executed for two minutes. Some initial end-to-end latency values
logged by a sink vertex are ignored while computing the 90th per-
centile latency value, since they are observed to be high on account
of initialization and connection setup.

5.2 Validating the k-chain Co-location Latency
Prediction Model

As discussed in Section 4, to predict the end-to-end path latency
of k co-located linear chains, we rely on two prediction models:
k-chain co-location classification and k-chain co-location regres-
sion models. First, the classification model is used to assess if the
placement of given k linear chains is feasible. If the classification
model predicts that the placement is feasible, then the k-chain co-
location regression model is used to predict each linear chain’s 90th
percentile latency.

Empirically, we observed that a BBB’s CPU gets saturated if
more than 12 vertices are placed on the node. Therefore, to create
the training dataset for k-chain co-location models, the number
of vertices in each linear chain is randomly chosen such that the
sum of number of vertices across all k chains is not more than 12
(i.e.,m = 12). The execution interval ρ for each vertex is uniformly
randomly chosen from the set {1ms, 5ms, 10ms, 15ms, 20ms} and the
incoming data rate for each chain is uniformly randomly chosen
in the range [1, 20] messages/sec. We learned k-chain co-location
models for k up to 4. As k increases further, the range of possible
values for the input features increases and more training data is
needed to get good prediction accuracy. We ran 600, 1500, 1950 and
1950 experiments for k = 1, 2, 3 and 4, respectively. Additionally, a
separate validation dataset was created by running 50 experiments
for each k . Each experiment took ∼3 minutes to execute. Therefore,
it took ∼13 days to collect the training and validation dataset.

When an experiment for k-chain co-location is run, we get
k latency data-points/samples, one corresponding to each linear
chain. Therefore, the training dataset size becomes k times the
number of experiments, i.e., 600, 3000, 5850 and 7800 samples for
k = 1, 2, 3 and 4, respectively, as shown in Table 1. To learn the clas-
sification model, data-points for which the observed 90th percentile
latency is greater than twice the sum of execution intervals of all
vertices in all k chains are categorized as infeasible placements.
While the entire dataset comprising both feasible and infeasible
data-points is used for training the classification model, the regres-
sion model is trained only over the feasible subset of data-points.
For example, in case of k = 1, all 600 data-points are used for train-
ing the classification model. Out of these, 186 data-points were

categorized as infeasible placements and the remaining 416 data-
points as feasible placements. To learn the regression model for
k = 1, we therefore used the 416 feasible data-points as shown in
Table 2.

Table 1: Accuracy of k-chain co-location classificationmodel

k
#samples
(train)

accuracy
(train)

accuracy
(test)

#samples
(validation)

accuracy
(validation)

1 600 .98 .97 50 .98
2 3000 .98 .96 100 .98
3 5850 .96 .96 150 .97
4 7800 .96 .95 200 .94

Table 2: Accuracy of k=chain co-location regression model

k
#samples
(train)

accuracy
(train)

accuracy
(test)

#samples
(validation)

accuracy
(validation)

1 416 .99 .99 38 .99
2 2268 .98 .98 84 .96
3 4083 .96 .95 108 .94
4 5376 .95 .94 128 .92

We tested different neural network architectures for k-chain
co-location classification and regression models. For classification,
we found that a neural network with one hidden layer composed
of 50 neurons performed well for k = 1 and k = 2, while a neu-
ral network with one hidden layer composed of 100 neurons per-
formed well for k = 3 and k = 4. For regression, we found that
a neural network with one hidden layer composed of 50 neurons
performed well for k = 1. However, for k = 2, 3 and 4, a neural
network regressor with three hidden layers composed of 50 neu-
rons each gave good accuracy. For all the models, Rectified Linear
Units (ReLu) was used as the activation function, limited memory
Broyden-Fletcher-Goldfarb-Shanno (lbfgs) was used as the solver
and L2 regularization factor was set to 0.1. Figure 6a and Figure 6b
show the learning curves for k = 3 classification and k = 3 re-
gression models, respectively. Here, we see that the chosen neural
network architectures have low bias and variance since the training
and cross-validation errors converge to a reasonably low value that
is at most 8%. Therefore, the models neither over-fit nor under-fit
the training data and are expected to generalize well.

Table 1 and Table 2 show the performance of trained k-chain co-
location classification and regression models on training, test and
validation datasets. We used 90% of data-points for training and the
remaining 10% for testing.We observed that all learned models have
an accuracy of at least 92%. Figure 6c shows the performance of
k-chain co-location regression model on the validation dataset for
k = 3. We see that the predicted latencies track the experimentally
observed values closely and the average difference between the
predicted and observed latencies over all 108 validation data-points
is 10.8 ms.



(a) Classification learning curve for k = 3 (b) Regression learning curve for k = 3 (c) Validation results for k = 3

Figure 6: Performance of k -chain co-location latency prediction model for k = 3

(a) LPP predicted vs. observed makespan for different DAG structures (b) LPP predicted vs. observed makespan for different DAG configurations

Figure 7: LPP makespan prediction accuracy (for various randomly generated DAGs)
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Figure 8: Comparison of LPP with SUM and CONST approaches (for various randomly generated DAGs)

5.3 Performance Evaluation of the LPP
Approach

To assess the performance of our Linearize, Predict and Place (LPP)
operator placement solution for makespan minimization, we gen-
erated nine random test DAGs with three different structures per
intermediate vertex count of 6, 7 and 8 vertices. We refer to the
DAG structure 1 with 6 intermediate vertices as v6-g1, which also
exemplifies the naming convention used to identify these test DAGs.

LPP Prediction Results: Figure 7a compares the makespan pre-
dicted by LPP with experimentally observed makespan upon DAG
execution, for the same test DAG structure, parameter configura-
tion (data rate and execution intervals of all vertices) and operator

placement. We see that the LPP approach based on DAG lineariza-
tion is able to make a fairly good prediction for the makespan of
all 9 test DAGs with an average prediction error of 9.8 ms. For the
same DAG structure, different DAG parameter configurations, such
as incoming data rate and execution intervals of the constituent
vertices, also impact DAG latency. Figure 7b shows the variation
in the makespan of the same DAG structure across three different
DAG configurations c1, c2 and c3 (which are also randomly gen-
erated). The LPP approach incorporates these differences in DAG
parameter configurations while predicting a DAG’s makespan. As
seen in Figure 7b, LPP is able to make good predictions for different
parameter configurations with a mean prediction error of 11 ms
across these 9 DAGs.



LPP Placement Results: We compared LPP with two solution
variations: (1) SUM: Similar to LPP, this approach uses the concept of
DAG linearization to approximate arbitrary DAG structures and the
k-chain co-location classification model to assess if the placement
of k linear chains is feasible. However, unlike the LPP approach,
which uses k-chain co-location regression model to predict the path
latencies, the SUM approach makes the simplifying assumption that
a vertex’s execution time becomes the sum of all co-located vertices’
execution times; and (2) CONST: Similar to LPP, this approach uses
the concept of DAG linearization to approximate arbitrary DAG
structures and the k-chain co-location classification model to assess
if the placement of k linear chains is feasible, however, to estimate
path latencies, this approach makes the simplifying assumption that
a vertex’s execution time remains unchanged despite co-location.

Figure 8a compares the makespan of the placements produced
by the LPP, SUM and CONST approaches. Figure 8b compares the
number of edge nodes used in the placements produced by the
LPP, SUM and CONST approaches. Figure 8c shows the error in
predicting the makespan of a DAG by the LPP, SUM and CONST
approaches. We see that, in many cases, the CONST approach un-
derestimates the path latencies and inaccurately favors co-locating
the vertices, which results in a higher makespan in comparison
to LPP as seen in Figure 8a. The placement produced by CONST
uses fewer edge nodes than LPP as seen in Figure 8b since CONST
inaccurately favors co-location due to underestimation of path la-
tencies. The makespan predicted by CONST is also much lower
than the observed makespan upon DAG execution, which results
in high prediction errors as seen in Figure 8c.

The SUM approach, on the other hand, overestimates path laten-
cies and inaccurately favors distributed placement of operators in
many cases, which results in more edge nodes being used in com-
parison to LPP, as seen in Figure 8b. Due to such overestimation, the
error in makespan prediction by the SUM approach is higher than
that of the LPP approach, which uses a latency prediction model, as
seen in Figure 8c. The observed makespans produced by LPP and
SUM are similar as seen in Figure 8a, but LPP achieves this with
less amount of edge resources. Overall, these results show that LPP
makes a more accurate prediction of the path latencies and thereby,
a more effective placement of operators than the other approaches
that make simplifying (either overestimating or underestimating)
assumptions to estimate the cost of interference.

6 RELATEDWORK
In this section, we compare our work to the related work along
several key dimensions, including operator placement for makespan
reduction, graph transformations, operator placement at the edge,
and degenerate forms of DAG placement at the edge, all of which
are key considerations in our work.

Operator Placement forDAGMakespanMinimization: The
operator placement problem has been studied extensively in the
literature [32]. Existing solutions have varied objectives, such as
minimizing network use [43, 45], minimizing inter-node traffic [53],
minimizing themakespan or response time of an operator graph [13,
27, 28, 52]. Although similar in spirit to these works, the minimiza-
tion of response time in our case refers to finding an appropriate
operator placement that will satisfy an application’s service level

objective for the response time of the longest path in the DAG.
More importantly, however, to the best of our knowledge, existing
works on makespan minimization do not consider the impact of
operator co-location and hence the interference effects on response
time, while our solution expressly considers such an impact.

Operator Graph Transformation: In [16], authors leverage
the technique of operator replication to provide better performance
for processing incoming data streams. Apart from replication, the
authors also propose an algorithm for placement of these operators
on the runtime platform. Similar graph transformation using op-
erator replication strategy has been applied in [33]. In contrast to
these works, we use DAG transformations as a means to simplify
model learning.

In [23], the authors decompose a series-parallel-decomposable
(SPD) graph into a SPD tree structure. Here each leaf of the SPD tree
corresponds to the nodes of the SPD graph. Moreover, each internal
node of the tree corresponds to the serial or parallel composition.
The authors further provided a theoretical analysis to the issue of
resource assignment to the application graph. The focus of our work
is different from this work in that we do not consider any series-
parallel decomposition but rather a workflow of operators that
sequentially process data from one stage to the next in a pipeline.

Edge-Based Operator Placement: A generic formulation of
the operator placement problem has been presented in [15]. The
authors show how their formulation can be used for optimizing
different QoS parameters, such as response time, availability, net-
work use, etc. They formulate the problem as an integer linear
optimization problem and use the CPLEX solver to find an optimal
placement. However, they do not consider the impact of co-location
on an operator’s execution time. In their formulation, an operator i
is assumed to take ri seconds to process a data sample irrespective
of whether it is co-located with other operators.

In [13], the authors have proposed a greedy algorithm for op-
erator placement with the objective of minimizing the end-to-end
response time of operator graphs/DAGs. They have used a queueing
theory-based model for estimating the response time of paths in a
DAG. However, their model also does not consider the impact of co-
location. Although we also propose a greedy heuristic, our work has
not utilized queuing theory but instead uses a data-driven trained
model for prediction. We believe that a data-driven model captures
real-world behaviors unlike a queuing model, which is analytical
and can ignore many of the system-level effects. Yet, for future
work we plan to use analytical models to prove the correctness of
our graph transformation algorithms.

In [17], authors implemented a distributed QoS-aware scheduler
by extending the default Storm application, which has a centralized
scheduler. It allows to dynamically reconfigure the operator place-
ment under uncertain changes in environmental conditions such
as network dynamics. Our work currently does not incorporate
uncertainty quantification which remains a dimension of future
work; however, our work is tailored to edge computing scenarios.

A heuristic-based solution for operator placement across a 3-tier
edge-fog-cloud heterogeneous infrastructure has been proposed
in [26]. The heuristics allows enforcing operator placement con-
straints on the available nodes, and also enforces the co-locations
of certain operators on the same nodes. This allows for minimiz-
ing placement costs and maximizing the resource utilization. In



comparison to this work, we do not consider heterogeneous re-
sources and it will be important to extend our work to cover the
range of edge-fog-cloud resources. Unlike this work, our goal is
to place a DAG on available resources with the aim of makespan
minimization.

In [7], authors present an optimization framework that formu-
lates the placement of operators across cloud and edge resources
using constraint satisfaction and a system model. The goal of the
optimization problem is to minimize the end to end latency. The
evaluation of the proposed scheme is, however, conducted through
a simulation study implemented using OMNET++ simulator. In
contrast, we have validated our research on an actual IoT testbed.

DROPLET [24] presented an operator placement problem using
the shortest path problem, in which the operators are placed in such
a fashion that it minimizes the total completion time of the graph.
Although this goal is similar to ours, we believe that this work and
several of the other works outlined above have not considered the
performance interference issue which can result due to resource
contention happening among the participating operators.

Latency Minimization for Publish/Subscribe Systems: A
publish-subscribe system which involves some processing at an
intermediate broker is a degenerate form of a DAG that we consider
in our work. There are some recent works that consider minimiz-
ing end-to-end latencies for such degenerate DAG topologies. For
instance, in [31], the authors present an approach to minimize end-
to-end latencies for competing publish-process-subscribe chains
and balancing the topic loads on intermediate brokers hosted in
edge computing environments. Unlike this work which focuses on
only a 3-node chain and focuses more on balancing the load on
the brokers, our work focuses on the placement of competing, arbi-
trary DAGs comprising a workflow of stream processing operators
on edge resources. MultiPub [25] is an effort to find the optimal
placement of topics across geographically distributed datacenters
for ensuring per-topic 90th percentile latency of data delivery. Al-
though we are also interested in 90th percentile latencies, this work
considers only inter-datacenter network latencies and does not
consider edge networks.

7 CONCLUSIONS
With the growing importance of the Internet of Things (IoT) para-
digm, there is increasing focus on realizing a range of smart appli-
cations that must ingest the continuous streams of generated data
from different sources, process the data within the stream process-
ing application which is often structured as a directed acyclic graph
(DAG) of operators, and make informed decisions in near real-time.
The low latency response time requirements of these applications
require that the computations of the DAG operators be performed
closer to the data sources, i.e., on the IoT edge devices. However,
resource constraints on these devices require careful considerations
for multi-tenancy, i.e., co-location of operators on the edge devices,
which must be done in a way that minimizes the DAG makespan,
i.e., the end-to-end latency for the longest path in the DAG.

To that end, this paper presents an optimization problem for-
mulation for DAG makespan minimization. The NP-hardness of
the general problem and the need to realize an efficient, runtime
deployment decision engine inform the design of an efficient greedy

heuristic. Our heuristic-based solution makes its operator place-
ment decisions by using a look-ahead schemewherein the algorithm
predicts the potential impact on a DAG’s makespan if a specific
operator co-location decision is made. To aid in this look-ahead
phase of our placement algorithm, we present a data-driven la-
tency prediction model, which is a machine learning model that
is trained using empirical data generated from conducting a va-
riety of operator co-location experiments on an edge computing
testbed. A novel trait of the prediction model is the use of linearized
chains of operators created using a transformation algorithm to
closely approximate the performance of the original DAG struc-
tures. In summary, we presented a novel Linearize-Predict-Place
(LPP) approach for DAG makespan minimization. Our empirical
results comparing LPP with two separate baselines called SUM and
CONST reveal that LPP makes a more accurate prediction of path
latencies and thereby a more effective placement of operators than
the SUM and CONST approaches, which otherwise make simplify-
ing assumptions to estimate the cost of interference caused due to
co-location.

There are many dimensions along which additional work will
need to be performed as informed by the assumptions we made
and the limitations of our experiment test-bed:

• In the current work, we have focused primarily on CPU
computations alone when making the co-location decisions.
Other resources, such as memory and I/O, also need to be
accounted for as has been presented in earlier studies [9].
Additionally, the linearization transformation for join opera-
tors currently assumes interleaving, i.e., OR semantics. The
rules need to be extended when the join operators require
AND semantics.
• We have not modeled the number of available edge devices
as a constraint in our optimization problem and have as-
sumed constant network delays between edge nodes. Since
in real world IoT deployments, the number of available edge
devices may be limited and networks may not be stable, it is
important to consider these aspects in our problem formula-
tion.
• Our edge computing testbed is made up of homogeneous
resource types (i.e., BBB boards with a single core), but IoT
can illustrate significant heterogeneity in resource type, and
it will be important to explore this dimension.
• The scale of our experiments and the size of the DAGs consid-
ered in this work is limited, and moreover, the applications
used were synthetic. Using larger-scale and real-world IoT
applications and applying easier deployment mechanisms
such as those presented in UPSARA [8] and Stratum [11] is
part of our future work.
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