
1/22

Multi-Resource Scheduling of Parallel Jobs

Hongyang Sun

Vanderbilt University

The 13th Scheduling for Large Scale Systems Workshop
June 18-20 2018, Berkeley, CA, USA

2/22

Introduction

Single-resource scheduling
I Most traditional scheduling problems target a single type of

resource (e.g., CPUs)

I For example: classic NP-complete problem of makespan
minimization on identical machines (P||Cmax)

- List scheduling is (2− 1
P)-approx. [Graham 1969]

- Many other heuristics

3/22

Introduction
The case for multi-resource scheduling

I HPC systems embrace more heterogeneous components
(e.g., CPU, GPU, FPGA, MIC, APU)

I Data-intensive applications drive architectural enhancement to
support better data-transfer efficiency (e.g., High-Bandwidth
Memory, Partitionable Cache, Burst Buffers)

I Power has become a first-class resource (e.g., due to
thermal/cooling/energy constraints)

Optimal system/application performance may be achieved by
scheduling two or more types of resources simultaneously

4/22

Focus of This Work

Simple algorithms (e.g., list) with approximation guarantee:

ρ-approx.⇐⇒ Malg ≤ ρ ·Mopt for all instances

Few prior works on multi-resource scheduling:
I Rigid Job Scheduling [Garey & Graham 1975]

- Jobs have fixed resource requirements and execution times
- (d + 1)-approximation with d resource types

I Job/DAG-Shop Scheduling [Shmoy, Stein & Wein 1994]
- Jobs have chains/DAGs of heterogeneous tasks
- Each task requires a specific machine type to process
- Tasks of each job must be processed sequentially
- Polylog approximation in number of machines and job length

5/22

Outline

Introduction

Moldable Job Scheduling

Malleable Job Scheduling

Conclusion

6/22

Multi-Resource Scheduling of Moldable Jobs1

Scheduling Parallel Tasks under Multiple Resources: List Scheduling vs. Pack Scheduling. H. Sun, R. Elghazi, A.
Gainaru, G. Aupy and P. Raghavan. In Proceedings of The 32nd International Parallel and Distributed Processing
Symposium (IPDPS), 2018

1Jobs can be executed with different amounts of resources, but resource
allocations cannot be changed during runtime

7/22

Model and Objective

Model:
I System with d resource types; i-th type has P(i) identical resources
I Set {1, 2, · · · , n} of independent jobs all released at time 0
I Each job j ’s execution time tj(~pj) depends on its resource allocation

vector ~pj = (p(1)
j , p(2)

j , · · · , p(d)
j)

I Assumption: non-increasing execution time

~pj � ~qj
(
or p(i)

j ≤ q(i)
j ,∀i

)
=⇒ tj(~pj) ≥ tj(~qj)

Objective:
I Find a moldable schedule, i.e., resource allocation vector ~pj and

starting time sj for each job j
- minimize makespan: T = maxj(sj + tj(~pj))
- subject to resource constraint:

∑
j active at time t p(i)

j ≤ P(i),∀i , t

8/22

Preliminaries

Definitions: for a given resource allocation p = (~p1, ~p2, · · ·, ~pn)T

I Total area (normalized): A(p) =
∑n

j=1
∑d

i=1
p(i)

j
P(i) · tj(~pj)

I Maximum execution time: tmax(p) = maxj=1...n tj(~pj)

Lower bound (on makespan): L(p, d) = max
(A(p)

d , tmax(p)
)

Proposition
The optimal makespan satisfies

Topt ≥ Lmin(d) = min
p

L(p, d)

8/22

Preliminaries

Definitions: for a given resource allocation p = (~p1, ~p2, · · ·, ~pn)T

I Total area (normalized): A(p) =
∑n

j=1
∑d

i=1
p(i)

j
P(i) · tj(~pj)

I Maximum execution time: tmax(p) = maxj=1...n tj(~pj)

Lower bound (on makespan): L(p, d) = max
(A(p)

d , tmax(p)
)

Proposition
The optimal makespan satisfies

Topt ≥ Lmin(d) = min
p

L(p, d)

9/22

Two-Phase Approach [Turek et al. 1992]

I Phase 1: Determines a resource allocation for each moldable job

I Phase 2: Constructs a rigid schedule based on the fixed resource
allocations of all jobs

10/22

Phase 1: Resource Allocation
Goal: find allocation pd

min matching lower bound Lmin(d) = minp L(p, d)

Resource Allocation (RAd)
I Step (1). For each job j:

- Linearize all P =
∏d

i=1(P(i) + 1) allocations
- Remove ones with both higher execution time and larger area
- Sort in order of increasing execution time and decreasing area

I Step (2). For all n jobs:
- Traverse the n lists in ≤ nP steps by tracing

tmax(p) at each step until dominated by A(p)
d

(v.s. exhaustive search in Pn time)

Complexity: O(nP(log P + log n + d))

Proposition
If a rigid scheduling algorithm Rd that uses pd

min produces a makespan
TRd (pd

min) ≤ c · Lmin(d)
then the two-phase algorithm RAd + Rd is c-approximation

10/22

Phase 1: Resource Allocation
Goal: find allocation pd

min matching lower bound Lmin(d) = minp L(p, d)

Resource Allocation (RAd)
I Step (1). For each job j:

- Linearize all P =
∏d

i=1(P(i) + 1) allocations
- Remove ones with both higher execution time and larger area
- Sort in order of increasing execution time and decreasing area

I Step (2). For all n jobs:
- Traverse the n lists in ≤ nP steps by tracing

tmax(p) at each step until dominated by A(p)
d

(v.s. exhaustive search in Pn time)

Complexity: O(nP(log P + log n + d))

Proposition
If a rigid scheduling algorithm Rd that uses pd

min produces a makespan
TRd (pd

min) ≤ c · Lmin(d)
then the two-phase algorithm RAd + Rd is c-approximation

11/22

Phase 2: Rigid Scheduling
Two scheduling paradigms:

I List Scheduling (LSd): 2-approx. for d = 1
- Greedily schedules jobs in a list with sufficient resources

I Pack Scheduling (PSd): 3-approx. for d = 1
- Partitions jobs in packs to be scheduled one after another

Proposition
For a set of rigid tasks with any fixed resource allocation p, we have

List Scheduling : TLSd (p) ≤ 2d · L(p, d)
Pack Scheduling : TPSd (p) ≤ (2d + 1) · L(p, d)

11/22

Phase 2: Rigid Scheduling
Two scheduling paradigms:

I List Scheduling (LSd): 2-approx. for d = 1
- Greedily schedules jobs in a list with sufficient resources

I Pack Scheduling (PSd): 3-approx. for d = 1
- Partitions jobs in packs to be scheduled one after another

Proposition
For a set of rigid tasks with any fixed resource allocation p, we have

List Scheduling : TLSd (p) ≤ 2d · L(p, d)
Pack Scheduling : TPSd (p) ≤ (2d + 1) · L(p, d)

12/22

Put Them Together

Proposition
The two-phase algorithms have the following approximation ratios:

RAd + LSd (List) : 2d-approx.
RAd + PSd (Pack) : (2d + 1)-approx.

Moreover, the bounds are tight for both algorithms

Tightness instance (for list):
I n = 2d jobs, and P(i) = 2P for each resource type i
I All jobs have the following profiles:

(1) tj(0, · · ·, 0,P, 0, · · ·, 0) = 1, where P appears in position d j
2e

(2) tj(P + 1, 0, · · ·, 0) = P−1
P+1

I RAd + LSd chooses allocation (2), since allocation (1) is dominated in
both execution time and area, thus all jobs are executed sequentially

I OPT chooses allocation (1), thus is able to run all jobs in parallel

I
TRAd +LSd

TOPT
= 2d P−1

P+1 → 2d as P →∞

12/22

Put Them Together

Proposition
The two-phase algorithms have the following approximation ratios:

RAd + LSd (List) : 2d-approx.
RAd + PSd (Pack) : (2d + 1)-approx.

Moreover, the bounds are tight for both algorithms

Tightness instance (for list):
I n = 2d jobs, and P(i) = 2P for each resource type i
I All jobs have the following profiles:

(1) tj(0, · · ·, 0,P, 0, · · ·, 0) = 1, where P appears in position d j
2e

(2) tj(P + 1, 0, · · ·, 0) = P−1
P+1

I RAd + LSd chooses allocation (2), since allocation (1) is dominated in
both execution time and area, thus all jobs are executed sequentially

I OPT chooses allocation (1), thus is able to run all jobs in parallel

I
TRAd +LSd

TOPT
= 2d P−1

P+1 → 2d as P →∞

13/22

Transformation

Transformation (TF):
I Step (1). d-resource instance I =⇒ 1-resource instance I ′

- I ′ has same number n of jobs and total resource Q = lcmi=1···d P(i)

- For any job j ′ in I ′: execution time tj′ (q) = tj ((b q·P(i)

Q c)i=1···d) ∀q
I Step (2). Solve the 1-resource instance I ′

I Step (3). 1-resource solution S ′ =⇒ d-resource solution S
- For any job j in I: starting time is same sj = sj′

resource allocation is ~pj = (b qj′ ·P
(i)

Q c)i=1···d

Example
Given P(1) = 4, P(2) = 8, P(3) = 16 ⇒ Q = lcm(4, 8, 16) = 16
Step (1): tj′ (8) = tj (2, 4, 8)
Step (3): qj′ = 4 ⇒ ~pj = (1, 2, 4)

14/22

Transformation

Proposition
The transformation process preserves the approximation ratios:

TF + RA1 + LS1 (List) : 2d-approx.
TF + RA1 + PS1 (Pack) : (2d + 1)-approx.

Complexity: If P(i) = p ∀i = 1 . . . d
I Transformation ∝ Q = lcmi P(i) = p
I Direct Solution ∝ P =

∏
i (P(i) + 1) = pd

Significantly faster for large d

14/22

Transformation

Proposition
The transformation process preserves the approximation ratios:

TF + RA1 + LS1 (List) : 2d-approx.
TF + RA1 + PS1 (Pack) : (2d + 1)-approx.

Complexity: If P(i) = p ∀i = 1 . . . d
I Transformation ∝ Q = lcmi P(i) = p
I Direct Solution ∝ P =

∏
i (P(i) + 1) = pd

Significantly faster for large d

15/22

Multi-Resource Scheduling of Malleable Jobs2

Scheduling Functional Heterogeneous Systems with Utilization Balancing. Y. He, J. Liu and H. Sun. In
Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2011

Adaptive Scheduling of Parallel Jobs on Functionally Heterogeneous Resources. Y. He, H. Sun and W-J. Hsu. In
Proceedings of the International Conference on Parallel Processing (ICPP), 2007

2Jobs can be executed with varying amount of resources during runtime

16/22

Model and Objective
Model:

I System with d resource types;
i-th type has P(i) identical resources

I Set {1, 2, · · · , n} of independent jobs
with arbitrary release time

I Each job j is represented as a DAG of
heterogeneous tasks, each of unit size

I Tasks can be executed in parallel, but
each task can only be executed by a
resource of corresponding type

Objective:
I Find a malleable schedule, i.e., resource allocation vector
~pj(t) =

(
p(1)

j (t), p(2)
j (t), · · · , p(d)

j (t)
)

and set of tasks Vj(t) to
execute for each job j at any time t

- minimize makespan: T = maxj cj (cj is completion time of j)
- subject to resource and precedence constraints

17/22

Preliminaries
Definitions for any job j :

I Work of resource type i : T (i)
1,j

I Critical-path length: T∞,j

I Release time: rj

Definitions for job set:

I Total work of resource type i : T (i)
1 =

∑
j T (i)

1,j

I Maximum critical-path length: T∞ = max(rj + T∞,j)

Analogous to total area and maximum execution time in moldable model

Lower bound (on makespan):

Proposition
The optimal makespan satisfies

Topt ≥ max
(

T∞,max
i

T (i)
1

P(i)

)

17/22

Preliminaries
Definitions for any job j :

I Work of resource type i : T (i)
1,j

I Critical-path length: T∞,j

I Release time: rj

Definitions for job set:

I Total work of resource type i : T (i)
1 =

∑
j T (i)

1,j

I Maximum critical-path length: T∞ = max(rj + T∞,j)

Analogous to total area and maximum execution time in moldable model

Lower bound (on makespan):

Proposition
The optimal makespan satisfies

Topt ≥ max
(

T∞,max
i

T (i)
1

P(i)

)

18/22

Two-Level Approach

At each step t:
I Phase 1: Resource Estimator computes for each job j

a resource desire vector ~dj(t) =
(
d (1)

j (t), d (2)
j (t), · · · , d (d)

j (t)
)

I Phase 2: Job Scheduler based on desires of all jobs and system
policy determines for each job j
a resource allocation vector ~pj(t) =

(
p(1)

j (t), p(2)
j (t), · · · , p(d)

j (t)
)

I Phase 3: Task Scheduler schedules ready tasks of each job using
allocated resources

This approach can also be applied to non-clairvoyant, adaptive scheduling

19/22

Algorithm
Adaptive Greedy (AGd): 2-approx. for d = 1

I Phase 1: Resource Estimator
- Use instantaneous parallelism as resource desire
- d (i)

j (t) = number of ready tasks of type i for job j at time t
I Phase 2: Job Scheduler

- Use dynamic equi-partitioning
[McCann et al. 1993]

- Satisfy jobs with low desires
- Equally partition remaining

resources on high-desire jobs
I Phase 3: Task Scheduler

- Schedule ready tasks of each type greedily, i.e.
if p(i)

j (t) = d (i)
j (t), schedule all ready tasks

if p(i)
j (t) < d (i)

j (t), schedule any p(i)
j (t) ready tasks

Desire, allocation and scheduling are handled independently for different
resource types

20/22

Performance

Proposition
The Adaptive Greedy algorithm achieves

TAGd ≤
d∑

i=1

T (i)
1

P(i) +
(

1− 1
Pmax

)
T∞

and is therefore
(

d + 1− 1
Pmax

)
-approximation, where Pmax = maxi P(i)

Moreover, the bound is tight for the algorithm

Tightness instance (as m→∞):
I AGd chooses “wrong” tasks and

uses different resources sequentially
I OPT picks “right” tasks and

uses different resources in parallel
I Same bound even applies to

randomized algorithms
I Lookahead may help ,

20/22

Performance

Proposition
The Adaptive Greedy algorithm achieves

TAGd ≤
d∑

i=1

T (i)
1

P(i) +
(

1− 1
Pmax

)
T∞

and is therefore
(

d + 1− 1
Pmax

)
-approximation, where Pmax = maxi P(i)

Moreover, the bound is tight for the algorithm

Tightness instance (as m→∞):
I AGd chooses “wrong” tasks and

uses different resources sequentially
I OPT picks “right” tasks and

uses different resources in parallel
I Same bound even applies to

randomized algorithms
I Lookahead may help ,

21/22

Outline

Introduction

Moldable Job Scheduling

Malleable Job Scheduling

Conclusion

22/22

Conclusion

Now is a good time to revisit multi-resource scheduling problems

Open Question 1: List/greedy-scheduling for moldable jobs
I Rigid jobs: (d + 1)-approx. [Garey and Graham, 1975]
I Moldable jobs: 2d-approx. [Sun et al. 2018]
I Malleable jobs: (d + 1− 1/Pmax)-approx. [He et al. 2007]

(Represented as DAGs containing unit-size tasks of different types)

- Can we achieve (d + 1)-approx. for moldable jobs (possibly with an
alternative resource allocation strategy or a more coupled design/analysis
of resource allocation and rigid scheduling), or is it inherently harder?

Open Question 2: Moldable job scheduling under general models
I 2-Pack Sol.: (1.5 + ε)-approx. [Mounié et al. 2004, Jansen 2012]
I Precedence constraints: e.g., (3 +

√
5)-approx. [Lepère et al. 2001]

- Could these single-resource results be extended to multi-resource?

22/22

Conclusion

Now is a good time to revisit multi-resource scheduling problems

Open Question 1: List/greedy-scheduling for moldable jobs
I Rigid jobs: (d + 1)-approx. [Garey and Graham, 1975]
I Moldable jobs: 2d-approx. [Sun et al. 2018]
I Malleable jobs: (d + 1− 1/Pmax)-approx. [He et al. 2007]

(Represented as DAGs containing unit-size tasks of different types)

- Can we achieve (d + 1)-approx. for moldable jobs (possibly with an
alternative resource allocation strategy or a more coupled design/analysis
of resource allocation and rigid scheduling), or is it inherently harder?

Open Question 2: Moldable job scheduling under general models
I 2-Pack Sol.: (1.5 + ε)-approx. [Mounié et al. 2004, Jansen 2012]
I Precedence constraints: e.g., (3 +

√
5)-approx. [Lepère et al. 2001]

- Could these single-resource results be extended to multi-resource?

	Introduction
	Moldable Job Scheduling
	Malleable Job Scheduling
	Conclusion

