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HPC Batch Scheduler

 Reservation-Based:

] Relies on (reasonably) accurate runtime estimation from the user/application
1 Intended for HPC jobs with (relatively) deterministic and predictive behavior

Resource under-estimation Resource over-estimation
. A
<R ted _, Job killed < Requested
erﬂH’g?n% rﬂntlme i
() Q
© ©
o o Job
Z A Z \
a| < Actual__, Wasted resource??
w t walltime
Time Time
» Job killed; need to resubmit; » Job completed early; but may have
prolonged completion time waited longer in queue than needed
» Waste of system resources » May waste system resources (if no

backfilling possible)



Computing in HPC

Execution Time = Wait Time + Runtime
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(b) Jobs that requested 409 procs.

Figure: Average wait times of jobs run on Intrepid (2009) as a function of requested runtime
(data: Parallel Workload Archive).



Stochastic Jobs

* Many scientific applications are stochastic and unpredictable
J Execution time is input-dependent (stochastic)
J Unpredictable even for same input-size (quality matters)
 Large variations (order of magnitude difference)
d Common in many domains (e.g. neuroscience, adaptive mesh refinement)
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Figure: Traces [2013-2016] of neuroscience apps (Vanderbilt’s medical imaging database).



Neuroscience Applications

Range of execution times and |/0 traffics for 31 representative neuroscience applications
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Coping with Stochastic Jobs

* Scheduling Options:
1 System-level solution:
- Abandon reservation-based batch scheduling
- Use online (on-the-fly) scheduling = not practical

 Application-level solution:
- Develop optimized code to reduce stochasticity
- Better resource estimation (e.g., using ML methods) =2 difficult



Coping with Stochastic Jobs

* Scheduling Options:
1 System-level solution:
- Abandon reservation-based batch scheduling
- Use online (on-the-fly) scheduling = not practical

 Application-level solution:
- Develop optimized code to reduce stochasticity
- Better resource estimation (e.g., using ML methods) =2 difficult

 Our approach:
- Optimization of expected job execution times

- Non-disruptive to existing HPC scheduling model and application
development process



Computing in the Cloud

* Several Pricing Models (e.q., using Amazon AWS)
J On-Demand (OD) = pay-what-you-use:

“vou pay for compute capacity by the hour or second depending on which
instances you run”

] Reserved-Instances (RI) = Pay-what-you-reserve:

“provide you with a significant discount (up to 75%) compared to On-

[ L ”
Demand pricing
Payment Option Upfront Monthly* Effective Hourly** Savings over On-Demand On-Demand Hourly
No Upfront $0.00 $8.03 57%
Partial Upfront $134.00 $3.72 60%
All Upfront $252.00 $0.00 62%

Data extracted from AWS website



Models

* Job Model: Execution time modeled by %,

a random variable X that follows:
J Known probability distribution D
J PDF = f(t) and CDF = F(t)

[ Positive support: X € [mDin, mgx]

ming maxy
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* Job Model: Execution time modeled by %,
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* Cost Model: If reserve t4 time and actual execution is t time:

Cost = at; + rqin(tl, t) + Y,

/ ! \
Reservation Usage Setup
cost cost cost

4 If t; = t, then reservation is enough and job succeeds
A If t; < t, then job is killed; a new reservation (£, > t4) is needed



Optimization Objective

* The objective is to compute a sequence of increasing reservations:

S = (t17t27***7t®'7t'i—|—17***)

that minimizes the total expected cost:

E(S)=6- E[X]+§: (atip1+Bt+v)P(X > t;)

/ =0 \
Expected total Extra cost incurred for

usage cost each failed reservation



Solution 1: Characterizing Optimal Sequence

 Existence: optimal sequence (with finite expected cost) exists for
distributions with bounded mean and variance
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* Property: optimal sequence satisfies the following recursive
relationship for smooth distributions:
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L Compute t; based on t;_; and t;_, (as in Fibonacci numbers)
1 By default £, = 0, it remains to compute t;
 Bounded search range: t{ € [mDin, O (mean + var)]|

 Complexity of computing optimal t{ is unclear (rational solution)



Solution 1: Characterizing Optimal Sequence

 Existence: optimal sequence (with finite expected cost) exists for
distributions with bounded mean and variance

* Property: optimal sequence satisfies the following recursive
relationship for smooth distributions:

,_1-F(tis) (1 —F() tq_l) )

STy Ta\Trwe)

Q=

L Compute t; based on t;_; and t;_, (as in Fibonacci numbers)
1 By default £, = 0, it remains to compute t;
 Bounded search range: t{ € [mDin, O (mean + var)]

 Complexity of computing optimal t{ is unclear (rational solution)

* Heuristic (Brute-Force): Numerical search of optimal t{ in the range



Solution 2: Approximating via Discretization

* Discrete Transformation: truncate and discretize continuous distribution
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Solution 2: Approximating via Discretization

* Discrete Transformation: truncate and discretize continuous distribution
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* Dynamic Programming: for discrete distribution X ~(v;, f;)i=1.n

J n
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Cost of successful Cost of failure O Complexity: 0(n?)
reservation => sub-problem




Performance (Common Prob. Distributions)

Distribution Br(t;) || Dp(ET) Dr(EP) ‘ MEAN-BY-MEAN | MEAN-STDEV | MEAN-DOUB. | MED-BY-MED
Exponential 215 ||2:31(1.07) | 2.36 (1.10) || 2.36 (1.10) 2.39 (1.11) 2.42 (1.13) 2.83 (1.32)
Weibull 212 ||2:40 (1.13) | 222 (1.05) || 2.76 (1.30) 3.58 (1.69) 3.03 (1.43) 3.05 (1.44)
Gamma 2.02 ||2.20 (1.09) | 213 (1.05) ||  2.26 (1.12) 2.18 (1.08) 224 (1.11) 2.51 (1.24)
Lognormal 1.85 [|1.87 (1.01) | 1.93 (1.04) || 2.19 (1.19) 2.09 (1.13) 1.95 (1.06) 2.30 (1.24)
TruncatedNormal 1.36 ||1.38 (1.02) | 1.36 (1.00) | 1.98 (1.46) 1.83 (1.35) 1.98 (1.46) 2.16 (1.60)
Pareto 1.62 ||1.71(1.05) | 1.66 (1.03) ||  1.82(1.12) 2.18 (1.34) 1.75 (1.08) 2.26 (1.39)
Uniform 1.33 [|1.33(1.00) | 1.33 (1.00) ||  2.21 (1.66) 1.90 (1.43) 1.67 (1.26) 2.21 (1.66)
Beta 1.75 [|1.79 (1.02) | 1.80 (1.02) ||  2.02 (1.15) 2.11 (1.20) 1.98 (1.13) 2.45 (1.40)
BoundedPareto 1.80 2.00 (1.11) | 1.91 (1.06 | 1.84 (1.02 2.09 (1.16 1.83 (1.01 2.81 (1.56

* Brute-Force (t;) heuristic has best performance (around 2x of offline optimal)

* Discretization-based heuristics have close performance, much better than
other naive heuristics
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Performance (Realistic Workloads)

Parameters (v = 0.95, 3 = 1.0, v = 1.05)

LogNormal (u=1253.370, o0=258.261)
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(b) Fitted affine waiting time function
based on logs from the Intrepid data
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(c) Performance of all heuristics with impact of varying mean and standard deviation
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Future Work

* From User’s Perspective (Single Job):
J How to request runtime along with other resources (#nodes, memory)?

 Is checkpointing at the end of some/all reservations useful?

Related to HPC fault tolerance: Trade-off between time wasted due to checkpointing and
time saved for not having to start from scratch
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* From System’s Perspective (Set of Jobs):
J Are reservation-based schedulers still suitable for stochastic workloads?
J How should scheduling and backfilling be performed (under uncertainty)?

 Is it time to consider new scheduling paradigms (e.g., online, hybrid)?

Preliminary results: on-the-fly scheduling better for both system-level performance
(utilization) and user-level performance (average response time) for single-node stochastic
jobs; work-in-progress for multi-node jobs.




Thank you!

Hongyang Sun
hongyang.sun@vanderbilt.edu
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