Scheduling Parallel Tasks under Multiple
Resources: List vs. Pack

Hongyang Sun (speaker)! Redouane Elghazi®
Ana Gainaru® Guillaume Aupy?® Padma Raghavan!
1Vanderbilt University, USA
2Ecole Normale Supérieure de Lyon, France
3lnria, LaBRI, Univ. Bordeaux, CNRS, Bordeaux-INP, France

This research is supported in part by NSF under award CCF 1719674

w =:i= \,@f

ENS DE LYON

VANDERBILT I L
UNIVERSITY | o

IPDPS'18@Vancouver, BC, Canada
May 21, 2018

Introduction

Single-resource scheduling

» Most traditional scheduling problems target a single type of

resource (e.g., CPUs)

Pl
PZ
P3
Py
Ps

L | &]
, | 1,]
T3 | T1 0
Ts Ts
Ts

Time

» For example: classic NP-complete problem of makespan
minimization on identical machines (P||Cnax). List scheduling
is (2 — &)-approx. [Graham 1969]

Introduction

The case for multi-resource scheduling
» HPC systems embrace more heterogeneous components
(e.g., CPU, GPU, FPGA, MIC, APU)
» Data-intensive applications drive architecture enhancement for
better data-transfer efficiency (e.g., High-Bandwidth Memory,
Partitionable Cache, Burst Buffers)

Co-Processors

To achieve optimal system /application performance, multiple types
of resources (e.g., CPU, GPU, memory, cache, |/O) should be
scheduled simultaneously

Models and Objective

A multi-resource scheduling model:

System with d resource types; i-th type has P() identical resources

v

Set {1,2,--- , n} of independent, moldable tasks released at time 0

v

Each task j's execution time t;(5;) depends on its resource

allocation vector pg; = (pJ() (2), ,pj(d))

v

v

Assumption: non-increasing execution time

B=g (orp”) <q" Vi) = t(B)>t(d)

Scheduling objective:
> Find a moldable schedule, i.e., resource allocation vector p; and
starting time s; for each task j
- minimize makespan: T = max;(s; + t;j(5;))
- subject to resource constraint: Zj active at time ¢ p}') < PW Vi t

Focus of This Work

Two scheduling paradigms:
- List: greedily schedule tasks in a list on first available resources

Pack: partition tasks in packs to be scheduled one after another

Pack 1 Pack 2 Pack 3

‘ 8
2 5

5
8
7
3 a ‘ 3 6

Time Time

Resource
~

Resource

(a) list scheduling (b) pack scheduling

v

Simple yet efficient schedules favored by practical runtime systems

v

Easily adopted to online or heterogeneous scheduling environments

Main Results

Theoretically:
» Approximation ratios that increase linearly with number d of
resource types
- List-scheduling: 2d-approx.
- Pack-scheduling: (2d + 1)-approx.
» Strategy to transform multi-resource problem to single-
resource problem to reduce computational complexity

Empirically:
» Experiments on Intel Xeon Phi Knights Landing (KNL) with
2 resource types (cores + high-bandwidth memory)
» Simulations with up to 4 resource types using synthetic
workloads that extend classical speedup profiles

Introduction
Theoretical Analysis
Experimental Evaluation

Future Work

7/21

Preliminaries

Definitions: for a given resource allocation p = (1, B2, -, Bn) |

0
> Total task area (normalized): A(p) = Z}’Zl Zf’j:l zf(,.) ()

> Maximum task execution time: tmax(p) = max; t;(;)

Preliminaries

Definitions: for a given resource allocation p = (1, B2, -, Bn) |

0
> Total task area (normalized): A(p) = Z}’Zl Zf’j:l zf(,.) ()

—

> Maximum task execution time: tmax(p) = max; t;(;)

J
Analogous to area bound (T1/P) and depth bound (T) in
single-resource scheduling

Preliminaries

Definitions: for a given resource allocation p = (1, B2, -, Bn) |

0
> Total task area (normalized): A(p) = Z}’Zl Zf’j:l zf(,.) ()

> Maximum task execution time: tmax(p) = max; t;(;)

J
Analogous to area bound (T1/P) and depth bound (T) in
single-resource scheduling

Lower bound (on makespan): L(p, d) = max (22 ¢ (p))

Proposition
The optimal makespan satisfies

Torr = Luin(d) = min L(p,d)
p

Moldable Scheduling

Two-phase approach [Turek et al. 1992]:

» Phase 1: Determines a resource allocation for each moldable task

T‘H_‘ Taskj

j_‘

Execution Time

Resource

» Phase 2: Constructs a rigid schedule based on the fixed resource
allocations of all tasks

Task j

Resource

Time

Phase 1: Resource Allocation

Goal: find allocation pg,;,, matching lower bound Luyin(d) = min, L(p, d)

Resource Allocation (RA4)

> Step (1). For each task j:
- Linearize all P = Hl.dzl(P(") + 1) allocations
- Remove ones with both higher execution time and larger area
- Sort in order of increasing execution time and decreasing area

> Step (2). For all n tasks: A(p)

- Traverse the n lists in < nP steps by tracing

tmax(P) at each step until dominated by @

(v.s. exhaustive search in P" time)

Lrin(d) = min max (@A tmax(P))

dominated

X / allocation
x

Complexity: O(nP(log P + log n+ d)) T)

< nP steps

Phase 1: Resource Allocation

Goal: find allocation pg,;,, matching lower bound Luyin(d) = min, L(p, d)

Resource Allocation (RA4)

> Step (1). For each task j:

- Linearize all P = Hl.dzl(P(") + 1) allocations
- Remove ones with both higher execution time and larger area
- Sort in order of increasing execution time and decreasing area

> Step (2). For all n tasks: A(p)

- Traverse the n lists in < nP steps by tracing
tmax(P) at each step until dominated by @
(v.s. exhaustive search in P" time)

Lrin(d) = min max (Azp)Azm(p))

dominated

X / allocation
x

Complexity: O(nP(log P + log n+ d)))

< P steps

Proposition

If a rigid scheduling algorithm R4 that uses p¢,. produces a makespan
TRd(piin) < ¢ Lmin(d)

then the two-phase algorithm RA, + Ry is c-approximation.

Phase 2: Rigid Scheduling

For a fixed resource allocation:

> List Scheduling (LSy4): 2-approx. for d =1

- Arrange all tasks in a list. Whenever an existing
task completes, scan the list and schedule first
task that fits (i.e., with sufficient resources in
all dimensions)

» Pack Scheduling (PSy): 3-approx. for d =1

- Sort all tasks in decreasing order of exec. time.
Assign each task in sequence to last pack if fits
(i.e., with sufficient resources in all dimensions).
Otherwise, create a new pack.

Phase 2: Rigid Scheduling

For a fixed resource allocation:
> List Scheduling (LSy4): 2-approx. for d =1

- Arrange all tasks in a list. Whenever an existing .
task completes, scan the list and schedule first :l; .

task that fits (i.e., with sufficient resources in

all dimensions) o

» Pack Scheduling (PSy): 3-approx. for d =1

- Sort all tasks in decreasing order of exec. time. :
Assign each task in sequence to last pack if fits o :
(i.e., with sufficient resources in all dimensions). “| * [
Otherwise, create a new pack. T
Proposition

For a set of rigid tasks with fixed resource allocation p, we have
List Scheduling : Tygs,(p) < 2d- L(p,s)
Pack Scheduling : Tps,(p) < (2d +1) - L(p, s)

= RA, + LSy is 2d-approx. and RA4 + PS, is (2d + 1)-approx.
Moreover, the bounds are tight for the two algorithms

Transformation

instance |

d-resource
problem

Transform

Instance I’
Y 1-resource
< problem

Solution S’

> Step (1). d-resource instance /| = 1-resource instance /'

Solution s

Transformation (TF):

- I’ has same number n of tasks and total resource Q@ = lemj—1...q P

- For any task j’ in I: execution time ty(q) = tj((Lq'g(i Diz1..4) Vg

> Step (2). Solve the 1-resource instance /'

> Step (3). l-resource solution S’ = d-resource solution S

- For any task j in I: starting time is same s; = s;/
(7)
qj/-P

(lFg—1)i=1-a

resource allocation is p;

Transformation

instance | Instance I’
EEE——
d-resource 1-resource
Transform
problem < problem
Solution s Solution S’

Transformation (TF):

> Step (1). d-resource instance /| = 1-resource instance /'

- I’ has same number n of tasks and total resource Q@ = lemj—1...q P

- For any task j’ in I: execution time ty(q) = tj((Lq'g(i Diz1..4) Vg

> Step (2). Solve the 1-resource instance /'
> Step (3). l-resource solution S’ = d-resource solution S
- For any task j in I: starting time is same s; = s;/

L o gy PO
resource allocation is p; = ([+5—)i=1--d

Performance: TF + RA; + LS, is 2d-approx.
TF + RA; + PS; is (2d + 1)-approx.

Complexity: Transform Q = lcm; P() v.s. Direct P = Hi('D(i)“‘l)
If PO =pvi = O(p)vs. O(p)

Introduction
Theoretical Analysis
Experimental Evaluation

Future Work

13/21

Experimental Setup

Platform: Intel Xeon Phi 7230 Knights Landing (KNL)

> 64 cores
Cache Mode Flat Mode Hybrid Mode
> 96GB slow memory (DDR) el 4
> 16GB fast memory (MCDRAM) TJ
- 4-5x the bandwidth £ £

- 3 configuration modes

In flat mode, consider fast memory (like cores) as a type of limited
resource shared by competing tasks

Experimental Setup

Platform: Intel Xeon Phi 7230 Knights Landing (KNL)

> 64 cores
Cache Mode Flat Mode Hybrid Mode
> 96GB slow memory (DDR) e e I
> 16GB fast memory (MCDRAM) |ggmty 2 2
MCDRAM DDR DDR S MCDRAM DDR °
- 4-5x the bandwidth £ &

- 3 configuration modes
In flat mode, consider fast memory (like cores) as a type of limited
resource shared by competing tasks
Benchmarks: STREAM (triad, write, ddot)
> Create tasks of different sizes by varying array length and thus

memory footprint as % of MCDRAM size

Triad (100%) Triad (60%) 3

LL‘M‘ IT

Experimental Results

1.6
c List — Pack
3 1.5| Schedules £ Experiment | gepegules
o ' HEl Theoretical
=14 .
=
- 1.3
&
'(—;U 1.2
5 1.1
= 1.0 :
"(\’(\’(\’\\??\?"(\
RoNe \L\"‘ e

<
<& «\ & 2\
RONON 05 e‘ Qp

SR <R

Comparing different algorithms:
» Comparable performance for list- and pack-based solutions
» LPT (list) and FF (pack) perform generally better

» Transform-based solutions perform just as well

Experimental Results

)

Y
o
o

Il cores-only (flat mode)
tzZz2 cores-only (cache mode)
1 cores + MCDRAM (flat mode)

bELL

PCANPA PC@“ o
(\/\ \/\ <R

w
o
o

N
o
o

=
o
o

Makespan (Second

Flat mode vs. cache mode:

> Managing fast memory directly as a resource (in flat mode) result in
better performance than treating it as a cache for co-scheduled
applications (due to possible interference)

Simulation Setup

Resources:
> Up to four different types (e.g., CPU, GPU, cache, memory, 1/0)
> Amount of resources for each type: (64,32, 16, 8)

Workload (synthetic):
> Extended Amdahl's law: sy ~ 24(0,0.2)

i1/ (SH'ZL ﬁ) (i) 1/ (50+ Hld_si,m); (iii) 1/<so—|—max,-:1_d ﬁ)

i=1

> Extended power law: «; ~ /(0.3,1)

0 (S i): O TILEO) Y (maxes o)

T

Different colors indicate different resources

(i) sequential (ii) collaborative (iii) concurrent

Simulation Results

2.5 |

— D-LIST(LPT)
§ — TLIST(LPT)
o — D-PACK(FF)
X 2 T-PACK(FF) oI
= B B
o T LT -
N : By o8
©1.5 _ é Bt -
£ 3:| 7|18
2 =g

1l==

d=1 d=2 d=3 d—4

Performance (makespan normalized w.r.t lower bound):
» Ratios increase with d, but far below theoretical bounds
» List algorithms perform better, but gap reduces as d increases

» Transform-based solutions perform slightly better

Simulation Results

102 1 :
— — D-LIST(LPT) & i
g || — TLSTLPT)
8 100 ppack(FR) ||
) T-PACK(FF) || =
£ 10°
L
(@)}
£ 1] ++ T 1
o - T T T
10 - - -

Complexity (running time of algorithms):
» Pack algorithms run slightly faster than list algorithms
» Direct solutions increase drastically with d

» Transform-based solutions orders of magnitude faster (esp. d > 3)

Simulation Results

10?

i

— D-LIST(LPT) s 4

— T-LIST(LPT)

N DAV /IEC)

Transform-based pack scheduling offers
fast, efficient, and easy-to-implement solutions
when managing a large number of resources

o

cond)

10"

ol 2T 1T 1]

Il
—
ISH
I
[\
ISH
I
w
IS
Il
~

Complexity (running time of algorithms):
» Pack algorithms run slightly faster than list algorithms

» Direct solutions increase drastically with d

» Transform-based solutions orders of magnitude faster (esp. d > 3)

Introduction
Theoretical Analysis
Experimental Evaluation

Future Work

20/21

Open Questions

Performance of list-scheduling under multi-resources
> Rigid jobs: (d + 1)-approx. [Garey and Graham, 1975]
> Moldable jobs: 2d-approx. [This work, with algo. lower bound]

> Malleable jobs: (d + 1)-approx. [He et al. 2007]
(Represented as DAGs containing unit-size tasks of different types)

- Can we achieve (d + 1)-approx. for moldable jobs (possibly with a more
coupled design/analysis of resource allocation and rigid scheduling), or is
it inherently harder?

Open Questions

Performance of list-scheduling under multi-resources
> Rigid jobs: (d + 1)-approx. [Garey and Graham, 1975]
> Moldable jobs: 2d-approx. [This work, with algo. lower bound]

> Malleable jobs: (d + 1)-approx. [He et al. 2007]
(Represented as DAGs containing unit-size tasks of different types)

- Can we achieve (d + 1)-approx. for moldable jobs (possibly with a more
coupled design/analysis of resource allocation and rigid scheduling), or is
it inherently harder?

Performance of general models for moldable task scheduling
> 2-Pack Sol.: (1.5 + €)-approx. [Mounié et al. 2004, Jansen 2012]
» Precedence constraints: e.g., (3 + v/5)-approx. [Lepére et al. 2001]

- Could these results be extended to multi-resource scheduling?

Open Questions

Performance of list-scheduling under multi-resources
> Rigid jobs: (d + 1)-approx. [Garey and Graham, 1975]
> Moldable jobs: 2d-approx. [This work, with algo. lower bound]

> Malleable jobs: (d + 1)-approx. [He et al. 2007]
(Represented as DAGs containing unit-size tasks of different types)

- Can we achieve (d + 1)-approx. for moldable jobs (possibly with a more
coupled design/analysis of resource allocation and rigid scheduling), or is
it inherently harder?

Performance of general models for moldable task scheduling
> 2-Pack Sol.: (1.5 + €)-approx. [Mounié et al. 2004, Jansen 2012]
» Precedence constraints: e.g., (3 + v/5)-approx. [Lepére et al. 2001]
- Could these results be extended to multi-resource scheduling?

Other practical applications of multi-resource scheduling
- e.g., cache partitioning, bandwidth allocation, burst buffer sharing?

	Introduction
	Theoretical Analysis
	Experimental Evaluation
	Future Work

