
1/21

Scheduling Parallel Tasks under Multiple
Resources: List vs. Pack

Hongyang Sun (speaker)1 Redouane Elghazi2
Ana Gainaru1 Guillaume Aupy3 Padma Raghavan1

1Vanderbilt University, USA

2École Normale Supérieure de Lyon, France

3Inria, LaBRI, Univ. Bordeaux, CNRS, Bordeaux-INP, France

This research is supported in part by NSF under award CCF 1719674

IPDPS’18@Vancouver, BC, Canada
May 21, 2018

2/21

Introduction

Single-resource scheduling
I Most traditional scheduling problems target a single type of

resource (e.g., CPUs)

I For example: classic NP-complete problem of makespan
minimization on identical machines (P||Cmax). List scheduling
is (2− 1

P)-approx. [Graham 1969]

3/21

Introduction

The case for multi-resource scheduling
I HPC systems embrace more heterogeneous components

(e.g., CPU, GPU, FPGA, MIC, APU)
I Data-intensive applications drive architecture enhancement for

better data-transfer efficiency (e.g., High-Bandwidth Memory,
Partitionable Cache, Burst Buffers)

To achieve optimal system/application performance, multiple types
of resources (e.g., CPU, GPU, memory, cache, I/O) should be
scheduled simultaneously

4/21

Models and Objective

A multi-resource scheduling model:
I System with d resource types; i-th type has P(i) identical resources
I Set {1, 2, · · · , n} of independent, moldable tasks released at time 0
I Each task j ’s execution time tj(~pj) depends on its resource

allocation vector ~pj = (p(1)
j , p(2)

j , · · · , p(d)
j)

I Assumption: non-increasing execution time

~pj � ~qj
(
or p(i)

j ≤ q(i)
j ,∀i

)
=⇒ tj(~pj) ≥ tj(~qj)

Scheduling objective:
I Find a moldable schedule, i.e., resource allocation vector ~pj and

starting time sj for each task j
- minimize makespan: T = maxj(sj + tj(~pj))
- subject to resource constraint:

∑
j active at time t p(i)

j ≤ P(i),∀i , t

5/21

Focus of This Work

Two scheduling paradigms:
- List: greedily schedule tasks in a list on first available resources

- Pack: partition tasks in packs to be scheduled one after another

(a) list scheduling (b) pack scheduling

I Simple yet efficient schedules favored by practical runtime systems
I Easily adopted to online or heterogeneous scheduling environments

6/21

Main Results

Theoretically:
I Approximation ratios that increase linearly with number d of

resource types
- List-scheduling: 2d-approx.
- Pack-scheduling: (2d + 1)-approx.

I Strategy to transform multi-resource problem to single-
resource problem to reduce computational complexity

Empirically:
I Experiments on Intel Xeon Phi Knights Landing (KNL) with

2 resource types (cores + high-bandwidth memory)
I Simulations with up to 4 resource types using synthetic

workloads that extend classical speedup profiles

7/21

Outline

Introduction

Theoretical Analysis

Experimental Evaluation

Future Work

8/21

Preliminaries

Definitions: for a given resource allocation p = (~p1, ~p2, · · ·, ~pn)T

I Total task area (normalized): A(p) =
∑n

j=1
∑d

i=1
p(i)

j
P(i) · tj(~pj)

I Maximum task execution time: tmax(p) = maxj tj(~pj)

Analogous to area bound (T1/P) and depth bound (T∞) in
single-resource scheduling

Lower bound (on makespan): L(p, d) = max
(A(p)

d , tmax(p)
)

Proposition
The optimal makespan satisfies

Topt ≥ Lmin(d) = min
p

L(p, d)

8/21

Preliminaries

Definitions: for a given resource allocation p = (~p1, ~p2, · · ·, ~pn)T

I Total task area (normalized): A(p) =
∑n

j=1
∑d

i=1
p(i)

j
P(i) · tj(~pj)

I Maximum task execution time: tmax(p) = maxj tj(~pj)

Analogous to area bound (T1/P) and depth bound (T∞) in
single-resource scheduling

Lower bound (on makespan): L(p, d) = max
(A(p)

d , tmax(p)
)

Proposition
The optimal makespan satisfies

Topt ≥ Lmin(d) = min
p

L(p, d)

8/21

Preliminaries

Definitions: for a given resource allocation p = (~p1, ~p2, · · ·, ~pn)T

I Total task area (normalized): A(p) =
∑n

j=1
∑d

i=1
p(i)

j
P(i) · tj(~pj)

I Maximum task execution time: tmax(p) = maxj tj(~pj)

Analogous to area bound (T1/P) and depth bound (T∞) in
single-resource scheduling

Lower bound (on makespan): L(p, d) = max
(A(p)

d , tmax(p)
)

Proposition
The optimal makespan satisfies

Topt ≥ Lmin(d) = min
p

L(p, d)

9/21

Moldable Scheduling
Two-phase approach [Turek et al. 1992]:

I Phase 1: Determines a resource allocation for each moldable task

I Phase 2: Constructs a rigid schedule based on the fixed resource
allocations of all tasks

10/21

Phase 1: Resource Allocation
Goal: find allocation pd

min matching lower bound Lmin(d) = minp L(p, d)

Resource Allocation (RAd)
I Step (1). For each task j:

- Linearize all P =
∏d

i=1(P(i) + 1) allocations
- Remove ones with both higher execution time and larger area
- Sort in order of increasing execution time and decreasing area

I Step (2). For all n tasks:
- Traverse the n lists in ≤ nP steps by tracing

tmax(p) at each step until dominated by A(p)
d

(v.s. exhaustive search in Pn time)

Complexity: O(nP(log P + log n + d))

Proposition
If a rigid scheduling algorithm Rd that uses pd

min produces a makespan
TRd (pd

min) ≤ c · Lmin(d)
then the two-phase algorithm RAd + Rd is c-approximation.

10/21

Phase 1: Resource Allocation
Goal: find allocation pd

min matching lower bound Lmin(d) = minp L(p, d)

Resource Allocation (RAd)
I Step (1). For each task j:

- Linearize all P =
∏d

i=1(P(i) + 1) allocations
- Remove ones with both higher execution time and larger area
- Sort in order of increasing execution time and decreasing area

I Step (2). For all n tasks:
- Traverse the n lists in ≤ nP steps by tracing

tmax(p) at each step until dominated by A(p)
d

(v.s. exhaustive search in Pn time)

Complexity: O(nP(log P + log n + d))

Proposition
If a rigid scheduling algorithm Rd that uses pd

min produces a makespan
TRd (pd

min) ≤ c · Lmin(d)
then the two-phase algorithm RAd + Rd is c-approximation.

11/21

Phase 2: Rigid Scheduling
For a fixed resource allocation:

I List Scheduling (LSd): 2-approx. for d = 1
- Arrange all tasks in a list. Whenever an existing

task completes, scan the list and schedule first
task that fits (i.e., with sufficient resources in
all dimensions)

I Pack Scheduling (PSd): 3-approx. for d = 1
- Sort all tasks in decreasing order of exec. time.

Assign each task in sequence to last pack if fits
(i.e., with sufficient resources in all dimensions).
Otherwise, create a new pack.

Proposition
For a set of rigid tasks with fixed resource allocation p, we have

List Scheduling : TLSd (p) ≤ 2d · L(p, s)
Pack Scheduling : TPSd (p) ≤ (2d + 1) · L(p, s)

⇒ RAd + LSd is 2d-approx. and RAd + PSd is (2d + 1)-approx.
Moreover, the bounds are tight for the two algorithms

11/21

Phase 2: Rigid Scheduling
For a fixed resource allocation:

I List Scheduling (LSd): 2-approx. for d = 1
- Arrange all tasks in a list. Whenever an existing

task completes, scan the list and schedule first
task that fits (i.e., with sufficient resources in
all dimensions)

I Pack Scheduling (PSd): 3-approx. for d = 1
- Sort all tasks in decreasing order of exec. time.

Assign each task in sequence to last pack if fits
(i.e., with sufficient resources in all dimensions).
Otherwise, create a new pack.

Proposition
For a set of rigid tasks with fixed resource allocation p, we have

List Scheduling : TLSd (p) ≤ 2d · L(p, s)
Pack Scheduling : TPSd (p) ≤ (2d + 1) · L(p, s)

⇒ RAd + LSd is 2d-approx. and RAd + PSd is (2d + 1)-approx.
Moreover, the bounds are tight for the two algorithms

12/21

Transformation

Transformation (TF):
I Step (1). d-resource instance I =⇒ 1-resource instance I ′

- I ′ has same number n of tasks and total resource Q = lcmi=1···d P(i)

- For any task j ′ in I ′: execution time tj′ (q) = tj ((b q·P(i)

Q c)i=1···d) ∀q

I Step (2). Solve the 1-resource instance I ′

I Step (3). 1-resource solution S ′ =⇒ d-resource solution S

- For any task j in I: starting time is same sj = sj′

resource allocation is ~pj = (b qj′ ·P
(i)

Q c)i=1···d

Performance: TF + RA1 + LS1 is 2d-approx.
TF + RA1 + PS1 is (2d + 1)-approx.

Complexity: Transform Q = lcmi P(i) v.s. Direct P =
∏

i (P(i) +1)
If P(i) = p ∀i ⇒ O(p) v.s. O(pd)

12/21

Transformation

Transformation (TF):
I Step (1). d-resource instance I =⇒ 1-resource instance I ′

- I ′ has same number n of tasks and total resource Q = lcmi=1···d P(i)

- For any task j ′ in I ′: execution time tj′ (q) = tj ((b q·P(i)

Q c)i=1···d) ∀q

I Step (2). Solve the 1-resource instance I ′

I Step (3). 1-resource solution S ′ =⇒ d-resource solution S

- For any task j in I: starting time is same sj = sj′

resource allocation is ~pj = (b qj′ ·P
(i)

Q c)i=1···d

Performance: TF + RA1 + LS1 is 2d-approx.
TF + RA1 + PS1 is (2d + 1)-approx.

Complexity: Transform Q = lcmi P(i) v.s. Direct P =
∏

i (P(i) +1)
If P(i) = p ∀i ⇒ O(p) v.s. O(pd)

13/21

Outline

Introduction

Theoretical Analysis

Experimental Evaluation

Future Work

14/21

Experimental Setup
Platform: Intel Xeon Phi 7230 Knights Landing (KNL)

I 64 cores
I 96GB slow memory (DDR)
I 16GB fast memory (MCDRAM)

- 4-5x the bandwidth
- 3 configuration modes

In flat mode, consider fast memory (like cores) as a type of limited
resource shared by competing tasks

Benchmarks: STREAM (triad, write, ddot)
I Create tasks of different sizes by varying array length and thus

memory footprint as % of MCDRAM size

14/21

Experimental Setup
Platform: Intel Xeon Phi 7230 Knights Landing (KNL)

I 64 cores
I 96GB slow memory (DDR)
I 16GB fast memory (MCDRAM)

- 4-5x the bandwidth
- 3 configuration modes

In flat mode, consider fast memory (like cores) as a type of limited
resource shared by competing tasks

Benchmarks: STREAM (triad, write, ddot)
I Create tasks of different sizes by varying array length and thus

memory footprint as % of MCDRAM size

15/21

Experimental Results

Comparing different algorithms:
I Comparable performance for list- and pack-based solutions
I LPT (list) and FF (pack) perform generally better
I Transform-based solutions perform just as well

16/21

Experimental Results

Flat mode vs. cache mode:
I Managing fast memory directly as a resource (in flat mode) result in

better performance than treating it as a cache for co-scheduled
applications (due to possible interference)

17/21

Simulation Setup

Resources:
I Up to four different types (e.g., CPU, GPU, cache, memory, I/O)
I Amount of resources for each type: (64, 32, 16, 8)

Workload (synthetic):
I Extended Amdahl’s law: s0 ∼ U(0, 0.2)

(i) 1/
(

s0 +
∑d

i=1
si

p(i)

)
; (ii) 1/

(
s0 + 1−s0∏d

i=1
p(i)

)
; (iii) 1/

(
s0 +maxi=1..d

si
p(i)

)
I Extended power law: αi ∼ U(0.3, 1)

(i) 1/
(∑d

i=1
si

(p(i))αi

)
; (ii)

∏d
i=1(p(i))αi ; (iii) 1/

(
maxi=1..d

si
(p(i))αi

)

18/21

Simulation Results

Performance (makespan normalized w.r.t lower bound):
I Ratios increase with d , but far below theoretical bounds
I List algorithms perform better, but gap reduces as d increases
I Transform-based solutions perform slightly better

19/21

Simulation Results

Complexity (running time of algorithms):
I Pack algorithms run slightly faster than list algorithms
I Direct solutions increase drastically with d
I Transform-based solutions orders of magnitude faster (esp. d ≥ 3)

Transform-based pack scheduling offers
fast, efficient, and easy-to-implement solutions
when managing a large number of resources

19/21

Simulation Results

Complexity (running time of algorithms):
I Pack algorithms run slightly faster than list algorithms
I Direct solutions increase drastically with d
I Transform-based solutions orders of magnitude faster (esp. d ≥ 3)

Transform-based pack scheduling offers
fast, efficient, and easy-to-implement solutions
when managing a large number of resources

20/21

Outline

Introduction

Theoretical Analysis

Experimental Evaluation

Future Work

21/21

Open Questions
Performance of list-scheduling under multi-resources

I Rigid jobs: (d + 1)-approx. [Garey and Graham, 1975]
I Moldable jobs: 2d-approx. [This work, with algo. lower bound]
I Malleable jobs: (d + 1)-approx. [He et al. 2007]

(Represented as DAGs containing unit-size tasks of different types)

- Can we achieve (d + 1)-approx. for moldable jobs (possibly with a more
coupled design/analysis of resource allocation and rigid scheduling), or is
it inherently harder?

Performance of general models for moldable task scheduling
I 2-Pack Sol.: (1.5 + ε)-approx. [Mounié et al. 2004, Jansen 2012]
I Precedence constraints: e.g., (3 +

√
5)-approx. [Lepère et al. 2001]

- Could these results be extended to multi-resource scheduling?

Other practical applications of multi-resource scheduling
- e.g., cache partitioning, bandwidth allocation, burst buffer sharing?

21/21

Open Questions
Performance of list-scheduling under multi-resources

I Rigid jobs: (d + 1)-approx. [Garey and Graham, 1975]
I Moldable jobs: 2d-approx. [This work, with algo. lower bound]
I Malleable jobs: (d + 1)-approx. [He et al. 2007]

(Represented as DAGs containing unit-size tasks of different types)

- Can we achieve (d + 1)-approx. for moldable jobs (possibly with a more
coupled design/analysis of resource allocation and rigid scheduling), or is
it inherently harder?

Performance of general models for moldable task scheduling
I 2-Pack Sol.: (1.5 + ε)-approx. [Mounié et al. 2004, Jansen 2012]
I Precedence constraints: e.g., (3 +

√
5)-approx. [Lepère et al. 2001]

- Could these results be extended to multi-resource scheduling?

Other practical applications of multi-resource scheduling
- e.g., cache partitioning, bandwidth allocation, burst buffer sharing?

21/21

Open Questions
Performance of list-scheduling under multi-resources

I Rigid jobs: (d + 1)-approx. [Garey and Graham, 1975]
I Moldable jobs: 2d-approx. [This work, with algo. lower bound]
I Malleable jobs: (d + 1)-approx. [He et al. 2007]

(Represented as DAGs containing unit-size tasks of different types)

- Can we achieve (d + 1)-approx. for moldable jobs (possibly with a more
coupled design/analysis of resource allocation and rigid scheduling), or is
it inherently harder?

Performance of general models for moldable task scheduling
I 2-Pack Sol.: (1.5 + ε)-approx. [Mounié et al. 2004, Jansen 2012]
I Precedence constraints: e.g., (3 +

√
5)-approx. [Lepère et al. 2001]

- Could these results be extended to multi-resource scheduling?

Other practical applications of multi-resource scheduling
- e.g., cache partitioning, bandwidth allocation, burst buffer sharing?

	Introduction
	Theoretical Analysis
	Experimental Evaluation
	Future Work

