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Abstract—Services hosted in multi-tenant cloud platforms
often encounter performance interference due to contention for
non-partitionable resources, which in turn causes unpredictable
behavior and degradation in application performance. To grapple
with these problems and to define effective resource management
solutions for their services, providers often must expend signifi-
cant efforts and incur prohibitive costs in developing performance
models of their services under a variety of interference scenarios
on different hardware. This is a hard problem due to the wide
range of possible co-located services and their workloads, and
the growing heterogeneity in the runtime platforms including
the use of fog and edge-based resources, not to mention the
accidental complexities in performing application profiling under
a variety of scenarios. To address these challenges, we present
FECBench (Fog/Edge/Cloud Benchmarking), an open source
framework comprising a set of 106 applications covering a
wide range of application classes to guide providers in building
performance interference prediction models for their services
without incurring undue costs and efforts. Through the design
of FECBench, we make the following contributions. First, we
develop a technique to build resource stressors that can stress
multiple system resources all at once in a controlled manner,
which helps to gain insights into the impact of interference
on an application’s performance. Second, to overcome the need
for exhaustive application profiling, FECBench intelligently uses
the design of experiments (DoE) approach to enable users to
build surrogate performance models of their services. Third,
FECBench maintains an extensible knowledge base of application
combinations that create resource stresses across the multi-
dimensional resource design space. Empirical results using real-
world scenarios to validate the efficacy of FECBench show that
the predicted application performance has a median error of only
7.6% across all test cases, with 5.4% in the best case and 13.5%
in the worst case.

Index Terms—Multi-tenant clouds, Performance Interfer-
ence,Cluster management, Resource Management, Benchmark-
ing, Cloud Computing, Datacenters

I. INTRODUCTION

Context: Multi-tenancy has become the hallmark of pub-
lic cloud computing systems, where physical resources such as
CPU, storage and networks are virtualized and shared among
multiple different and co-located applications (i.e., tenants) to
better utilize the physical resources. Although virtualization
technologies such as virtual machines and containers allow
cloud providers to increase the degree of multi-tenancy while
still providing isolation of resources among the tenants, there
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exist non-partitionable physical resources such as the caches,
TLBs, disk, and network I/O, which are susceptible to resource
contention thereby causing adverse performance interference
effects on the co-located tenants [1], [2]. Consequently, ef-
fective resource management solutions are required that can
limit the impact of performance interference to acceptable
levels such that the service level objectives (SLOs) of the
applications can be maintained [3], [4], [S], [6].

Challenges: Developing effective resource management
solutions (e.g., schedulers) requires an accurate understand-
ing of the target application’s performance under different
application co-location scenarios so that the impact of per-
formance interference can be calibrated and accounted for in
the solutions. Recent studies [7], [8] have built performance
interference profiles for applications using a variety of resource
utilization metrics. Since performance interference is caused
due to the sharing of one or more non-partitionable resources,
performance models for the application-under-study (i.e., the
target application) that account for interference are developed
by co-locating them with a variety of resource stressor ap-
plications (i.e., those applications that put varying levels of
pressure on the non-partionable resources) and recording the
delivered performance to the target application.

Creating such performance models, however, requires the
developer to expend significant efforts into application bench-
marking and analyze application performance under varying
levels of resource stress. Since the overall system utilization
is a function of the stresses imposed on multiple types of
resources in the system and the presence of multiple resources
represents a multi-dimensional space, creating varying levels
of resource stresses spanning this large design space is a diffi-
cult task. Effective resource management solutions, however,
require application performance models that incorporate the
impact of stresses on multiple resources all at once. Although
existing resource stressors, such as dummyload or stress-ng
[9l], provide users with the control knobs to exert the desired
level of stress on a resource, such as CPU or memory, these
tools operate on only one resource at a time. Unfortunately,
it is hard for users to define the right kinds of application
workloads that will create the right levels of resource stress
across the multi-dimensional space. All these problems are
further exacerbated with the addition of fog and edge comput-
ing resources, which illustrate both increased heterogeneity



and constraints on resources, and where the performance
interference effects may be even more pronounced [10], [L1].

Although, some frameworks/benchmarks exist that can as-
sist in the building of the performance models, these tools
remain mostly disparate and it takes a monumental effort on
the part of the user to bring these disparate tools together
into a single framework [12]. Even then, such a combined
framework may not be easy to use. Moreover, a general lack of
any systematic approach to conduct the performance modeling
process will force the user to rely on ad hoc approaches, which
hurts reproducibility and leads to reinvention of efforts [13],
not to mention the possibility of the resulting models missing
out on critical insights.

Beyond these challenges, one question still persists: When
is a performance model considered good enough such that
it will enable effective resource management solutions? In
other words, how much application profiling is required to
build these performance models? One strawman strategy to
profile the application is to subject it to all possible resource
stresses. However, such an approach will be time-consuming
and even infeasible given the large number of combinations
that can be executed on the different resource dimensions, the
variety in the co-located application types, and their different
possible workloads. Hence, there is a need for an intelligent
application profiling strategy that minimizes the profiling effort
and thereby the time and cost, while still providing sufficient
coverage across all the resources that contribute to application
performance interference. Unfortunately, there is a general
lack of benchmarks and frameworks that can aid the user in
developing these models.

Solution Approach: To address these challenges, we
present FECBench (Fog/Edge/Cloud Benchmarking), an open
source framework comprising a set of 106 applications that
cover a wide range of application classes to guide providers
in building performance models for their services without
incurring undue costs and efforts. The framework can then be
used to predict interference levels and make effective resource
management decisions. Specifically, through the design of
FECBench, we make the following contributions:

1) FECBench builds resource stressors that can stress mul-
tiple system resources all at once in a controlled manner.
These resource stressors help in understanding the impact
of interference effects on an application’s performance.

2) To overcome the need for exhaustive application profiling,
FECBench intelligently uses the design of experiments
(DoE) approach to enable developers in building surro-
gate performance models of their services.

3) FECBench maintains an extensible knowledge base of
application combinations that create resource stresses
across the multi-dimensional resources design space.

Empirical results using real-world scenarios for validating
the efficacy of FECBench show that the predicted application
performance has a median error of only 7.6% across all test
cases, with 5.4% in the best case and 13.5% in the worst case.
A short poster version of this paper describing initial work can
be found in [14].

Paper Organization: The rest of the paper is organized
as follows: Section [lIf delves into the details of performance
interference, and surveys the literature in this realm; Sec-
tion |l elicits the key requirements for a solution such as
FECBench; Section presents the design and implementa-
tion of FECBench, explaining how it meets the requirements
outlined earlier; Section presents an extensive set of
results validating the different features of FECBench; and
finally Section [VII] presents concluding remarks discussing the
implications of using FECBench and alluding to future work.

II. BACKGROUND AND LITERATURE SURVEY

In this section we provide details on performance inter-
ference and its impact on application performance. We then
present a survey of the literature in this area and the limitations
of existing approaches, which motivate the key requirements
of our FECBench solution.

A. Sources of Interference and Impact on Performance

Co-located applications on the same physical resources of
a cloud platform will impose varying degrees of pressure
(stress) on the underlying resources. When these resources are
hard to partition or isolate, the contention for these resources
will cause interference effects on the executing applications
and degrade their performance. For compute-intensive appli-
cations, resources such as CPU core and Last Level Cache
(LLC) can cause interference. Similarly, for communication-
intensive applications, resources such as memory bandwidth,
disk I/O, and network can cause interference. For example,
Figure [1| shows the performance degradation of an application
that uses the Inception RESNETV2 deep learning model [15].
The figure illustrates a cumulative distribution function (CDF)
for the 95th percentile response times of the application as
its SLO with and without interference. Due to the significant
difference in the observed response times, it is important for
resource management solutions to incorporate the impact of
interference to maintain application SLOs.
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Fig. 1. CDF representation of prediction inference response times for the

Inception RESNETV2 Keras model. We can see that the application’s perfor-
mance degrades when co-located with background applications as compared
to its performance when running in isolation.

B. Related Work

We now present prior efforts that focus on quantifying and
modeling performance interference and classify these along
three dimensions.



Interference Quantification: Two fundamentally differ-
ent approaches to quantifying performance interference have
been reported in the literature. The Bubble-Up approach [16]
measures sensitivity (i.e., impact of co-located applications on
the target application) and pressure (i.e., impact of the target
application on co-located applications) using a synthetic stres-
sor application called bubble. The bubble generates a tunable
amount of pressure on a given resource, such as memory or
LLC. With the pressure applied on a resource, the target appli-
cation is executed simultaneously with co-located applications,
and its performance metrics such as the completion time are
measured. This experiment is repeated for different pressure
levels in both the memory and the cache subsystems. Although
this approach is effective, the bubble is limited to memory
sub-system only and the approach is limited to two co-located
applications. Yang et. al. [17] extended Bubble-Up to allow
performance interference beyond two co-located applications
and other shared resources such as network, I/O, cores, etc.
The observed application performance degradation is used to
construct sensitivity and pressure profiles which are used to
determine if a given co-location will cause degradation in the
performance of an application.

A different approach is presented in DeepDive [8], in
which the performance interference is predicted based on the
aggregate resource system utilization on the running system.
Unlike Bubble-Up, where performance of an application is
measured for stress levels independently on each resource, in
DeepDive, application interference is measured by monitoring
resource usage statistics of all co-located applications. In
DeepDive, an application running inside a virtual machine
is placed on an isolated physical machine and the resource
utilization statistics are measured. The application is then mi-
grated/placed on a physical machine by estimating the quality
of interference level on the application and the co-located
running applications. Inspired by the approach employed in
DeepDive, FECBench leverages system resource metrics to
build performance models for applications.

Interference-aware Predictive Modeling: Building per-
formance interference models and using them to predict the
expected levels of interference for a given co-location con-
figuration and workloads is important. Paragon [3] presents
an interference-aware job scheduler in which an application’s
performance is predicted using collaborative filtering. The
performance prediction model is built using performance data
that is measured by subjecting the test application against
individual resource stressors that stress only one resource
at a time. In comparison, FECBench takes into account the
cumulative effect of all the resources to build an interference
prediction model.

Zhao et. al. [18] studied the impact of co-located application
performance for a single multi-core machine. They developed
a piecewise regression model based on cache contention and
bandwidth consumption of co-located applications. Similarly,
their work captures the aggregate resource utilization of two
subsystems, namely, cache contention and memory bandwidth,
in determining the performance degradation. Our approach

also considers disk and CPU resources in building prediction
models and is not restricted to any hardware.

In DIAL [19], interference detection is accomplished using
decision tree-based classifier to find the dominant source of
resource contention. To quantify the resource interference
impact on a webserver application’s tail response, a queuing
model is utilized to determine the application’s response time
under contention. To minimize the effects of interference, it
proposed using a runtime controller responsible for dynamic
load-balancing of queries from the webserver. Subramanian
et. al. [20] presented an application slowdown model which
estimates the application performance with high accuracy
using cache access rate and memory bandwidth. However, the
system was validated using a simulator and not on real hard-
ware. In contrast, FECBench is geared towards real hardware.

The ESP project [21]] uses a two-stage process for interfer-
ence prediction. It first performs feature extraction, and then
builds a regression model to predict performance interference.
It creates separate models for each co-location groups. Also, its
training data workload consists of all the possible applications
that can run in the cluster. It then collects performance data
for some combinations out of all the possible combinations to
build the interference model. Similarly, Pythia [7] describes
an approach for predicting resource contention given a set
of co-located workloads. Both ESP and Pythia assume that
they have a priori information of all possible running work-
loads based on which an interference model is created for
a new application. In comparison, FECBench relies on the
performance metrics obtained when co-located with a fixed
number of resource stressors and does not need to have prior
information of all the running applications in the cluster.

Interference-related Synthetic Benchmarks: One of the
major roadblocks when investigating and building the per-
formance interference modeling is the lack of representative
benchmarking applications. Cuanta [22] built a synthetic cache
loader that emulates pressure for varying tunable intensities
on the LLC resource. It supports a Linux kernel module that
invokes hypervisor system call to create the desired level of
memory utilization. This kernel module resides inside a virtual
machine. In contrast, our approach is non-intrusive and does
not require any changes to the Linux kernel.

iBench [23]] developed an extensive set of synthetic work-
loads that induce pressure on different resource subsystems.
These workloads are built in a way to exert tunable utilization
pressure on system resources such as L1, L2, iTLB, mem-
ory, LLC, disk, network, etc. in isolation. In [24], synthetic
workloads were used to create pressure on network and CPU
systems. Bubble-up [16], which was described earlier, is
another effort in this category.

While these efforts made a step in the right direction, most
existing approaches rely on manual tuning of the resource
stressors to create the desired level of stress. As a result,
prior approaches cannot adapt to changes in the underlying
architecture. In contrast to earlier works, our approach finds
application pairs and creates a resource stressor knowledge-
base in an automated fashion. As a result, our approach can



adapt to changes in the underlying architecture and can be
reused. Moreover, with the help of design of experiments,
FECBench reduces the profiling effort for the applications.

III. SOLUTION REQUIREMENTS AND PROPOSED
APPROACH

Based on the literature survey and unresolved challenges,
we derive the following requirements for FECBench.

1. Benchmarking with Ease: Benchmarking and profiling
applications can be a very tedious task because it involves
configuration of probes on resources such as CPU, network
or disk, and collection of many hardware- and application-
specific performance metrics [12], [25], [26]. In this regard,
tools such as CollectD [27] and Systat allow monitoring
and collecting system metrics. Often, more than one tool
may be required to collect the metrics of interest, which
makes it hard for the user to integrate the tools. Moreover,
dissemination of the monitored metrics in a timely manner
to a centralized or distributed set of analysis engines must
be supported to build performance interference models of the
applications.

To address these challenges and to make the task of
benchmarking easier and intuitive for the user, FECBench
uses higher-level, intuitive abstractions in the form of domain-
specific modeling [28], [29] and generative techniques to
synthesize the generation of configurations, metrics collection
and dissemination. Our recent work [30]] describes these
capabilities and hence it is not a focus of this paper but we
discuss this requirement for completeness sake.

2. Automated Construction of Resource Stressors: Tools
like lookbusy and stress-ng can be utilized to create resource
stress on CPU in a controlled tunable manner. Similarly,
tools like iPerf can be utilized to create resource stress on
the network resource. Despite this, there is a lack of open-
source tools that can stress multiple resources simultaneously,
also in a tunable manner. Moreover, some of the resource
stressors are platform-specific, which hinders their applicabil-
ity to heterogeneous platforms. Prior studies have presented
design of stressors, which requires a deep understanding of
the underlying hardware architecture and low-level resource
characteristics. Acquiring the skills to utilize these tools thus
incurs a steep learning curve.

To address these concerns, Section [[V| A-G presents a pro-
cess pipeline with offline and online stages that construct the
multi-resource stressors in an automated fashion by leveraging
machine learning techniques.

3. Minimizing the Prohibitive Profiling Cost: When build-
ing a performance interference model the user must profile the
application’s performance metrics against different configura-
tions of resource utilization on the running system. However,
since we have multiple resources, the resource utilization can
be seen as a multi-dimensional design space. One approach to
profiling is to exhaustively cover the entire design space and
obtain the performance metrics for the application. However,
the cost and time for executing these experiments will be very

high. Thus, there is a need to significantly reduce the profiling
effort while deriving good performance interference models.

To that end, we use the design of experiments (DoE)
approach in Section to explore the multi-dimensional
resource metrics using substantially lower experimental runs,
for building the performance interference models.

IV. FECBENCH METHODOLOGY

We now present FECBench and demonstrate its design
methodology by building a performance interference model
and explaining each step of its design.

A. FECBench Methodology and its Rationale

Figure [2] presents the FECBench process. The rationale for
this process is described below and details of each step follow.
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Fig. 2. FECBench methodology.

Recall that the goal of FECBench is to minimize the efforts
for developers in building interference-aware performance
models for their applications by providing them a reusable and
extensible knowledge base. To that end, FECBench comprises
an offline stage with a set of steps to create a knowledge base
followed by an online stage. Developers can use the same
offline stage process to further refine this knowledge base.

Accordingly, the first step ( in of the offline stage
defines Benchmark Warehouse (BMW), which is a collection
of resource utilization metrics obtained by executing a large
number and variety of applications on a specific hardware
and measuring the impact on each resource type indepen-
dently. The second step ( in clusters these applications
according to their similarity in how they stress individual
resources. Clustering minimizes the unwieldiness stemming
from the presence of a large number of application types
in the performance model building process. Next since we
are interested in performance interference, the knowledge
base must capture the stress on resources stemming from
executing a combination of co-location patterns of applications
belonging to the different clusters found in the earlier step
(Step 3 in §IV-D).

Using all this data, we define a resource stressor prediction
model (Step 4 in §IV-E), which can be used to predict the
expected stress along the multi-dimensional resource space
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given a new co-location pattern. Since such a model building
process itself may need exhaustive searching through every
possible combination of resource stresses along the multi-
dimensional resource space, we create surrogate models using
design of experiments (DoE), specifically, the Latin Hypercube
Sampling (LHS) approach (Step 5 in §IV-F).

The reduced search strategies of Step 5 give rise to a
knowledge base (Step 6 in §IV-G), which is then used in the
online stage (Step 7 in that stresses a target application
across different resource utilization regions from the design
space to train a model for that target application and utilize it
to predict its performance at runtime. The developer of a new
application need only conduct Step 7 while leveraging all the
previous steps. If a completely new hardware configuration is
presented, the knowledge base must be updated by repeating
all the steps of the offline stage. The steps are detailed next.

B. Benchmarking Isolated Characteristics of Applications

To build stressors that can stress different resources of a sys-
tem, we first study the characteristics of different applications
in isolation. We have profiled 106 applications from existing
but disparate benchmarking suites, such as PARSEC [31],
DaCaPo [32], PHORONIX [33], STRESS-NG [9], as well
as networked file-server applications, which collectively form
our benchmarking warehouse (BMW). These applications
represent a diverse range spanning from cloud computing to
approximate computing workloads [34].

In this step, we profile the applications by running them in
isolation on a system so as to document the resource utilization
imposed by that application. Let A denote the set of all appli-
cations in BMW. For each application a € A, we collect its
runtime utilization metrics on the host system when run in iso-
lation, including CPU, L2/L3 cache bandwidth, memory band-
width, disk, network, etc. For a total number R of resources
considered, the vector U(a) = [u"(a),u?(a),...,u" (a)]
is then logged in a database, where u(") (a) denotes the utiliza-
tion on a particular resource r € {1,2,..., R} when running
the application. Figure [3| presents the resource utilization
characteristics of 106 applications. The experiment host used is
Intel(R) Xeon(R) CPU E5-2620 v4 machine with 16 physical
cores. As we can see from the figure, the applications exhibit
a high degree of coverage across the resource utilization
spectrum for the different system resources.

C. Application Clustering

Given the large number of applications available in the
BMW, it is likely that some of them exhibit similar charac-
teristics with respect to the resource utilizations. For exam-
ple, applications with numbers 80 and 81 in Figure [3] have
similar utilizations with respect to CPU, L2 bandwidth and
L3 bandwidth. This step performs clustering to identify those
applications that share similar resource utilization characteris-
tics. Moreover, application clustering allows us to select only
a subset of applications from the BMW for the subsequent co-
location resource utilization study. This helps to significantly
reduce the number of application combinations that need to
be profiled and tested.

Machine learning approaches, such as K-means clustering
or Support Vector Method-based clustering, have been com-
monly used to find similarities in datasets [35]]. In this study,
we leverage the K -means algorithm to cluster all applications
from the BWM in the R-dimensional space, where each
dimension represents the utilization from a particular resource
r € {1,2,..., R}. Thus, each application a € A is represented
by a point U(a) = [uM(a),u® (a),...,u (a)] in the R-
dimensional space. We use the Silhouette algorithm [36] to
determine the ideal number of clusters. For the considered 106
applications, running the algorithm leads to K = 13 clusters.
Figure ] shows the resource utilization characteristics for some
of these clusters. As can be seen, Cluster 5 is L3, L2 and L3-
system bandwidth-intensive. Similarly, Cluster 2 is memory
bandwidth intensive. Cluster 9 shows high utilization pressures
across network, disk and CPU.

D. Resource Utilization Profiling for Co-located Workloads

Since running a single application may not create the desired
stress levels for the system resources, we are interested in
finding those application mixes that together can create a more
diverse set of resource stress levels. We first observe from our
empirical experiments that the utilization of a resource on a
system by running a set of co-located applications cannot be
obtained by simply summing the resource utilizations of these
applications when executed in isolation. This is validated by
Figure [5] which shows that a direct summation of the isolated
applications’ L3 bandwidth utilizations incurs significant dif-
ference margins, with a mean absolute percent error of 47%.
Similar behavior is also seen for other system resources.
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Fig. 4. Radar charts illustrating the resource profiles for clusters 2, 4, 5, 7,
8 and 9. Resource pressure is higher when the vertices are closer to the edge
of the radar chart on the resource axis.

This calls for profiling the resource utilization character-
istics of different application co-location patterns. However,
empirically running all application combinations is extremely
time consuming. This step and the next together build a
resource prediction model that determines the resource uti-
lizations for any given application co-location pattern.

Before building a resource prediction model, we collect
resource utilization data in this step by profiling a selection
of application mixes, similar to the way we profiled a single
application in Section [[V-B] Specifically, we pick an arbitrary
application (e.g., the centroid) from each of K clusters and co-
locate applications from different clusters to create different
resource stressors. Let d™®* denote the maximum number of
co-located arE;)hcatlons that are allowed in a run. This gives a
total of Y29_, (%) application combinations.

Depending on the execution time needed to perform the pro-
filing, one can choose a random subset of these combinations
for building the prediction model. In our experiment, we have
K =13 and d™** = 8 (since we are using a 16-core server
and each application executes on 2 cores), which gives a total
of 7,098 combinations. Among them, we profiled around 2,000
combinations for building the prediction model.

E. Building Resource Stressor Prediction Model

Based on the resource utilization data collected from the last
step, this step builds a resource stressor prediction model. We
leverage random forest regression to determine the individual
resource utilization given a set of co-located applications.
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Fig. 5. Chart (a) shows the summation of the isolated L3 bandwidth resource
pressures and the observed resource pressure on the system. Chart (b) shows
the distribution of error from direct summation of isolated resource pressures
of the applications. The mean absolute percentage error is 47%.

Random forest regression is a widely used non-parametric
regression technique for capturing non-linearity in the dataset.
Unlike other methods, it performs well even with a large
number of features and a relatively small training dataset,
while providing an assessment of variable importance. Ran-
dom forest is an ensemble-learning-based approach, where
the results of multiple models, in this case, decision trees,
are averaged to provide the final prediction. A decision tree
recursively partitions a sample into increasingly more homoge-
neous groups up to a pre-defined depth. Terminal nodes in the
tree then contain the final result. Random forest randomizes
the creation of decision trees in two ways: 1) each decision
tree is created from a random subset of input data; 2) each
tree-partition is based on a random subset of input features.
For any application combination A, the following input
features are used in the random forest prediction model:
e« A K-dimensional vector C [c1,c¢a,...,cK], where
each element c; takes the value 1 if an application from
the i-th cluster is selected in the combination A and 0

otherwise.
e A R-dimensional vector Uit (A4) =
[u$) (4), uf) (4),..., uErR) (A)], where each element

u(f)(A) represents the sum of individual utilizations
for the r-th resource from all applications in A, i.e,
u(4) = e qu(a).
The output is another R-dimensional vector that predicts the
utilization for all resources when executing the application
combination A, i.e., U(A) = [aM (A),a® (A),...,al(A)].
Thus, the resource stressor prediction model maps the input
to the output via a prediction function f as follows:

U(A) « f(C.U(4))
F. Design of Experiments (DoE) Specification

To build a performance interference model for a target
application when it is co-located with other applications, we



need to measure its performance on a system that experiences
different resource stress levels. Due to the large number of
possible stress levels along multiple resource dimensions, it is
not practical to test all of them. Therefore, we adopt the design
of experiments (DoE) [37] approach by generating a small
number of sample points in the multi-dimensional space that
maximizes the coverage of the different resource utilizations.

To this end, we leverage the Latin Hypercube Sampling
(LHS) method [37] that generates sampled regions across
the R-dimensional resource utilization space. Specifically,
LHS divides each resource dimension into M equally-spaced
intervals, and then selects M sample intervals in the entire R-
dimensional space that satisfies the Latin Hypercube property:
each selected sample is the only one in each axis-aligned
hyperplane that contains it. The LHS method has a clear
advantage over random sampling, which could potentially lead
to selections of samples that are all clumped into a specific
region. Moreover, the number M of samples in LHS does
not grow with the number of dimensions. For a given choice
of M, it generates a collection H = {hy,ho,...,hy} of
M hypercubes. Since each dimension represents the resource
utilization of a corresponding resource in our case, its overall
range is [0, 1]. Therefore, each generated hypercube h; € H

OINE!
. . . N : 1
in a resource dimension r has the range [wM , 4 M+ } for

some x,gr) €{0,1,..., M —1}. We refer interested readers to
[38] for an in-depth explanation of the LHS method. In our
experiment, we set M = 300.

G. Creating the Stressor Knowledge Base

We now create a knowledge-base of applications and their
workload mixes that map to the different resource utilization
levels as determined from the DoE exploration. Let S.A denote
the set of all application combinations generated in Section
We consider every application combination A € SA
and use the resource stressor prediction model of Section
to predict its utilization @(")(A) for each individual
resource 7 € {1,2,...,R}. We then fill up each of the
M hypercubes sampled in Section with the application
combinations that belong to it. Specifically, for each appli-
cation combination A, it is assigned to hypercube h, € H,

(r) _ L(r)
if a0(A) e |52, 5 forall 1 < r < R, where

0 > 0 is a tolerance parameter to extend the boundaries of
the hypercubes to account for the inaccuracy of the stressor
prediction model. In our experiment, we set § = 0.1.

H. Building Performance Interference Prediction Model

In the last step (which is an online step), a developer must
construct a performance interference prediction model for a
new target application b that is introduced for the first time
onto the platform. The goal is to predict a specified QoS metric
q for the target application when it is co-located with any set
B of applications. To that end, we leverage a regression-based
Decision Tree model [39]. The input of the prediction model
is a R-dimensional vector U = [u(®, u® ... u(®)] showing

the utilization of different system resources before the target
application b is deployed. The output is the predicted QoS
metric for the target application b, which we denote as ¢(b, U),
under the current system utilization U. Thus, the interference
prediction model maps the input to the output via a prediction
function g as follows:

G(b,U) + g(U)

To build the regression model, the target application is
executed under different resource stress levels identified by
the design of experiments in Section For each of the M
resource stress levels, the target application is executed along
with a selected application combination from the knowledge
base that corresponds to the desired resource stress level.
To select the application combination, the closest application
to the center of each hypercube is chosen. This selected
application combination is first run on the platform. After a
warm-up period, the target application is then deployed on
the same platform, and its performance QoS metric is logged.
This process is repeated for all the M resource stress levels.
The results are used as training data to train the regression
model above. In FECBench, we consider the response time,
which is the computation time of the application, as the QoS
metric used for latency-sensitive applications with soft real-
time requirements.

V. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Figure [6] shows the different components of FECBench.
There are two classes of nodes: manager host and physical
hosts. Manager host is responsible for the management and
orchestration of FECBench. We describe the numbered com-
ponents in the figure below.

Manager Host
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Fig. 6. FECBench in action. The figure shows different components of the
FECBench along with the manager host and the target physical hosts on which
application profiling takes place.

In (1), the Webportal component at the manager host
allows the user to interact with FECBench. The Webportal
is built using a visual domain specific modeling language
[40]. It allows the user to submit the target application whose
performance interference model needs to be constructed. The
Webportal initiates the profiling of the target application, and
relays this information to the Profiling orchestrator, which



then fetches the required information — resource stressors and
system availability — from the FECBench system information
block represented by @ Components in @ comprise the
FEC Cluster datastore, Resource Stressor Knowledgebase, and
Benchmarking Warehouse. The FEC Cluster datastore consists
of the current information about the cluster. Equipped with
the required information, the Profiling orchestrator deploys
the target application on the desired physical host, where the
interference-aware profiling of the application takes place. In
(@), the target application is subjected to various resource
stressors as obtained from the stressor knowledge base. The
monitoring probes on the physical hosts monitor the system
as well as the application QoS metrics and this information
is relayed to the manager host. In @, the desired metrics
are parsed and data is stored in a time series datastore. In
@, FECBench constructs the interference-aware performance
model of the target application.

The monitoring of the system performance metrics is done
using the CollectD monitoring program. For the system met-
rics not supported by CollectD, custom Python based plu-
gins are written that feed the metric data to the CollectD
daemon. CollectD plugins for the Linux perf utility and
Likwid monitoring tool [41] are written to monitor and log
additional system metrics such as the cache-level and memory-
level bandwidth information. Docker-based resource stressor
containers have also been built. The monitored metrics are
relayed in real time using AMQP message queues. Metric
parsers for the gathered data are written using both Golang and
Python languages. We use Influxdb to provide a time series
database for storing the monitoring metrics [42]. For build-
ing performance models, we leverage the machine learning
libraries provided by the Scikit library in Python [43]].

VI. EXPERIMENTAL VALIDATION

This section validates the claims we made about FECBench.
To that end, we demonstrate how FECBench enables savings
in efforts in building the performance models of applications
and their accuracy in making resource management decisions.
We validate the individual steps of the FECBench process.
We also present a concrete use case that leverages FECBench
for interference-aware load balancing of topics on a publish-
process-subscribe system.

A. Experimental Setup

We validated the FECBench claims for a specific hardware
comprising an Intel(R) Xeon(R) CPU E5-2620 v4 compute
node with 2.10 GHz CPU speed, 16 physical cores, and 32 GB
memory. The software details are as follows: Ubuntu 16.04.3
64-bit, Collectd (v5.8.0.357.gd77088d), Linux Perf (v4.10.17)
and Likwid Perf (v4.3.0). For the experiments, we configured
the scaling_governor parameter of CPU frequency to
performance mode to achieve the maximum performance.

B. Validating the Resource Stressor Prediction Model

To build and validate the resource stressor prediction model
(Step 4 of FECBench), we first need to obtain a dataset that

includes the resource utilizations under different application
co-location scenarios (Step 3). In our experiment, we pin each
application to 2 cores of the test node for a maximum of 8 co-
located applications (since the node has 16 cores). Our offline
profiling for Step 3 produced a dataset of about 2,000 data
points, of which we used 80% for training, 10% for testing
and the remaining 10% for validation. Table [I| illustrates the
performance of the resource stressor prediction model. We see
that the learned models have high accuracy for both the test
and the trained dataset. We used the same accuracy measure,
coeffecient of determination (R?), as in prior studies [21]. We
observe an accuracy of 99.1% and 99.3% for the training and
testing data, respectively, for memory bandwidth. The learned
model also has low bias and variance since both testing and
validation errors converge for most cases.

TABLE I
PERFORMANCE OF LEARNED MODELS FOR RESOURCE STRESSORS

Feature Test Train Validation
Accuracy  Accuracy  Accuracy
MEM_BW 99.305 99.073 98.930
CPUPERCENT 89.896 88.776 88.889
MEMORY 98.310 98.346 86.143
L3_BW 99.085 98.839 98.037
NETWORK 99.663 99.665 99.673
L3_SYSTEM_BW 99.367 98.888 98.452
L2_BW 99.454 99.130 97.916
DISK_IO_TIME 88.002 88.464 88.519

Figure [7] shows the accuracy of FECBench in predicting
the actual resource utilizations for the co-located workloads.
We see that the resource utilization predicted by FECBench
are quite accurate as the bulk of the points fall close to the
diagonal region of the chart with very few outliers.
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Fig. 7. Predicted resource utilizations across different resource types. Points
concentrated along the diagonal indicate that the predicted values match the
actual observed values.

C. Validating the Design Space Exploration Strategy

For this experiment, the goal is to find the right application
combinations that exert pressure in a tunable fashion along
multiple resource dimensions (in our case, CPU, memory
bandwidth and disk resources). We set the number of samples



for the LHS strategy to 300 in the design of experiments, and
got coverage for around 264 bins, i.e., 88%. To allow for easier
visualization of the coverage, we project the three dimensional
datapoints on a two dimensional scale as shown in Figure [§]
demonstrating good coverage of the design space.

D. Validating the Accuracy of the Performance Models

We used specific applications drawn from the DaCaPo
benchmark, the Parsec benchmark and the Keras machine
learning application model as target applications whose perfor-
mance models we were interested in. Specifically, from the Da-
CaPo benchmark, we chose PMD which is an application that
analyzes large-scale Java source code classes for source code
problems. From the Parsec benchmark, we chose the Canneal
application, which uses a cache-aware simulated annealing
approach for routing cost minimization in chip design. The
Canneal program has a very high bandwidth requirement and
also large working sets [31]. From the Keras machine learning
application model, we used InceptionResnetV2, which rep-
resents an emerging workload class for prediction inference
serving systems [15].

We first build performance models for these three appli-
cations using our approach as discussed in Section To
test the effectiveness of the learned application performance
models, we co-locate the target applications with the web
search workload from the CloudSuite benchmark [44], which
uses the Apache Solr search engine framework and emulates
varying number of clients that query this web search engine.
We ran four different scenarios with varying number of clients:
600, 800, 900, and 1000. We placed our target application with
a co-located web-search server on the host compute node. We
assigned two cores to the target application and the rest of the
cores to the web-search server.

Figure [9] shows the mean absolute percent errors (MAPESs)
for the three applications under varying degrees of loads
generated by the clients of the co-located web search appli-
cation. For example, when the number of clients is 800, the
MAPEs are 6.6%, 11.8% and 14.5% for PMD, Canneal and
InceptionResnetV2, respectively. Also, the median percentage
errors for all the cases are below 5.4%, 7.6% and 13.5%
for PMD, Canneal and InceptionResnetV2, respectively. To
showcase the total number of correct predictions made by
the system, we leverage a CDF curve that has been used in
the literature to showcase the effectiveness of the machine
learning models [45)]. Figure [E] illustrates that, for the PMD
application, 80% of the predictions have error rates less than
9%. For the Canneal application, 80% of the predictions have
error rates below 15%. For the InceptionResNetV?2 application,
about 70% of the predictions have error rates below 25%.

E. FECBench in Action: A Concrete Use Case

Besides validating the efficacy of FECBench on applica-
tions drawn from the benchmarking suites, we have applied
FECBench to interference-aware load balancing of topics for
a publish-process-subscribe system [46]. The Publish/Sub-
scribe (pub/sub) communication pattern allows asynchronous

and anonymous exchange of information (topic of interest)
between publishers (data producers) and subscribers (data
receivers). Therefore, pub/sub is widely used to meet the
scalable data distribution needs of IoT applications, where
large amounts of data produced by sensors are distributed and
processed by receivers for closed-loop actuation. The need for
processing sensor data is accomplished on broker nodes that
route information between publishers and subscribers.

In a publish-process-subscribe system, a topic’s latency can
suffer significantly due to the processing demands of other co-
located topics at the same broker. Figure |1 1| demonstrates this
effect. Here, a topic is characterized by its processing interval
p, i.e., average time for processing each incoming message on
the topic, and cumulative publishing rate r, at which messages
arrive at the topic. Figure [IT(a) shows that topics A, B and
C show wide variations in their 90th percentile latencies (~
100ms to ~ 800ms) under varying background loads.

For latency-critical IoT applications, it is necessary to
ensure that a topic’s latency is within a desirable QoS value.
Therefore, it is important to co-locate topics at the brokers
in an interference-aware manner such that none of the topics
in the system violate their latency QoS. To this end, one
approach is to learn a latency prediction model for the brokers
in the pub/sub system by leveraging the FECBench approach.
Subsequently, the latency prediction model can be used to
determine which topics can be safely co-located at a broker
without incurring QoS violations. Figure [TT(b) shows how
such an interference-aware method can reduce the percentage
of topics in the system that suffer from QoS violations.
Here, the interference-aware approach, which uses the latency
prediction model obtained by the FECBench approach, is able
to meet the QoS for ~ 95% of the topics in the system. This is
significantly better than a naive approach based on round robin
scheduling, which is only able to meet the QoS for ~ 80% of
the topics in the system.

VII. CONCLUSION

Making effective dynamic resource management decisions
to maintain application service level objectives (SLOs) in
multi-tenant cloud platforms including the emerging fog/edge
environments requires an accurate understanding of the ap-
plication performance in the presence of different levels of
performance interference that an application is likely to en-
counter when co-located with other workloads. Data-driven
performance models can capture these properties, which in
turn can be used in a feedback loop to make effective
resource management decisions [47], [48]]. The vast num-
ber of applications, their co-location patterns, differences in
their workload types, platform heterogeneity and an overall
lack of a systematic performance model building frame-
work make it an extremely daunting task for developers
to build such performance models. FECBench (Fog/Edge/-
Cloud Benchmarking) is a framework that addresses these
challenges, thereby relieving the developers from expending
significant time and effort, and incurring prohibitive costs in
this process. It provides an extensible resource monitoring
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and metrics collection capability, a collection of disparate
benchmarks integrated within a single framework, and a
systematic and scalable model building process with an ex-
tensible knowledge base application combinations that create
resource stress across the multi-dimensional resources design
space. Empirical evaluations on different application use cases
demonstrate that the predicted application performance using
the FECBench approach incurs a median error of only 7.6%
across all test cases, with 5.4% in the best case and 13.5%
in the worst case. FECBench is available in open source at

30%

35%  >40%

https://github.com/doc-vu/fecbench.

So far, FECBench has been evaluated on a single hardware
platform. Its efficacy needs to be validated on a variety of
hardware platforms. To that end, we will explore the use
of transfer learning to minimize the efforts. Our use of 106
applications did not provide coverage across every possible
resource dimension and hence improving the coverage is
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another area of future work.
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