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Abstract—Pre-trained deep learning models are increasingly
being used to offer a variety of compute-intensive predictive
analytics services such as fitness tracking, speech and image
recognition. The stateless and highly parallelizable nature of
deep learning models makes them well-suited for serverless
computing paradigm. However, making effective resource man-
agement decisions for these services is a hard problem due to
the dynamic workloads and diverse set of available resource
configurations that have different deployment and management
costs. To address these challenges, we present a distributed and
scalable deep-learning prediction serving system called Barista
and make the following contributions. First, we present a fast and
effective methodology for forecasting workloads by identifying
various trends. Second, we formulate an optimization problem
to minimize the total cost incurred while ensuring bounded
prediction latency with reasonable accuracy. Third, we propose
an efficient heuristic to identify suitable compute resource con-
figurations. Fourth, we propose an intelligent agent to allocate
and manage the compute resources by horizontal and vertical
scaling to maintain the required prediction latency. Finally, using
representative real-world workloads for an urban transportation
service, we demonstrate and validate the capabilities of Barista.

Keywords—Resource Management, Machine Learning Models,
Predictive Analytics, Serverless Computing, Containers

I. INTRODUCTION

A. Emerging Trends

Cloud-hosted, predictive analytics services based on pre-
trained deep learning models [1] have given rise to a di-
verse set of applications, such as speech recognition, natural
language processing, fitness tracking, online recommendation
systems, fraudulent behavior detection, genomics, and com-
puter vision. End-users of these services query these pre-
trained models using an interactive web or mobile interface
through RESTful APIs. Based on the supplied input, these pre-
trained models infer the target values and return the prediction
results to the end-users. As an example, a speech recognition
system transcribes spoken words into text [2].

These prediction services are usually containerized and
encapsulated with all the required software packages [3]. Thus,
deployer of these services can preferably use the function-
as-a-service (FaaS) approach to hosting these services in
an event-driven manner, wherein the functions are executed
on the occurrence of some trigger or event (e.g., incoming
request). This overall approach can be handled using serverless
computing [4], since the service creator needs only to provide
the function logic, the trigger conditions, and the service level
objectives (SLOs), such as latency bounds, which are on order
of few seconds. It is then the responsibility of the serverless

platform provider to provide the hosting environment for these
services and to ensure that the SLOs are met.

B. Challenges and State-of-the-Art

The execution environments for deep learning-based predic-
tion services typically comprise containers running on a cluster
of virtual machines (VMs). These prediction services are
usually stateless, parallelizable (multi-threaded), and compute-
intensive. The model sizes of these prediction services are
large (hundreds of megabytes to gigabytes), which takes a
significant time to load them into the containers and provision
the infrastructure. Moreover, due to the parallelizable nature
of these models, their running times can be substantially
reduced by assigning more CPU cores (see Figure 1). How-
ever, allocating more memory only marginally improves the
running times. Thus, a naïve approach to assuring SLOs is
to over-provision the service infrastructure; however, doing so
imposes unnecessary costs on the serverless provider. Efficient
management of computing resources dynamically is required
to minimize the cost of hosting these services in the cloud
[4]–[6].

Although a substantial amount of literature exists on finding
the sweet spot between resource over-provisioning (which
wastes resources and increases cost) and under-provisioning
(which violates SLOs) [7]–[9], these works focus primarily
on long-running analytics jobs for which the goal is to
find optimal configurations to meet the SLOs and scale the
resources dynamically to handle their variable workloads.

In contrast, the prediction services are latency sensitive and
have short running times. Moreover, the incoming request
patterns (workloads) can fluctuate significantly and follow a
diurnal model, which requires rapid management of resources
to meet the variable workload demands. A reactive approach is
not suitable as the prediction latency may increase significantly
due to infrastructure provisioning time (e.g., an order of
minutes due to VM creation and model loading times). Hence,
the desired solution is one that can forecast the workload
patterns and can estimate the required resources for the appli-
cation to maintain the SLOs under the forecasted workload.
Determining the right cluster configurations and dynamically
allocation of resources are hard due to the variability of cloud
configurations (VM instance types), the number of VMs, and
their deployment and management costs [7], [10].

Only recently have some solutions started to emerge to
address these concerns [5], [11]. Nevertheless, there remain
many unresolved problems. First, current horizontal elasticity



solutions for prediction services often do not account for the
container-based service lifecycle states (e.g., whether the VM
is already up or not, or whether the container is running, and
if so whether the model is loaded or not). Each such state
incurs a hosting cost and impacts the running time. Second,
vertical elasticity solutions for containers do not yet fully
exploit the parallelizable aspects of the pre-trained models.
Third, proactive resource scaling decisions require effective
workload forecasting and must be able to monitor the service
lifecycle states, both of which are missing in prior efforts [12],
[13]. Finally, existing strategies for container allocation tend
to overlook performance interference issues from other co-
located containerized services, which may cause unpredictable
performance degradation [14].

C. Solution Approach
To address these unresolved problems, we present a server-

less framework, called Barista, which hosts containerized, pre-
trained deep learning models for predictive analytics in the
cloud environment, and meets the SLOs of these services
while minimizing hosting costs. Barista comprises an efficient,
data-driven and scalable resource allocator, which estimates
the resource requirements ahead of time by exploiting the
variable patterns of the incoming requests, and a forecast-
aware scheduling mechanism, which improves resource uti-
lization while preventing physical resource exhaustion. We
show how serverless computing concepts for dynamically
scaling the resources vertically and horizontally can be uti-
lized under different scenarios. Barista efficiently and cost-
effectively provisions (scale-up and scale-down) resources for
a prediction analytics service to meet its prediction latency
bounds. Specifically, we make the following contributions:

1) Workload Forecast: We propose a hierarchical method-
ology to forecast the workload based on historical data.

2) Resource Estimation: Barista allows service providers to
communicate the performance constraints of their service
models regarding their SLOs. An analytical model is
provided to estimation the resources based on latency
bound, workload forecasting, and the profiled execution
time model on different cloud configurations.

3) Serverless Resource Allocation: Barista provides a novel
mechanism using the serverless paradigm to allocate
resources proactively based on the difference between
resource requirement estimation and current infrastructure
state in an event-driven fashion.

D. Organization of the Paper
The rest of the paper is organized as follows: Section II

presents a survey of existing solutions in the literature and
compares them with Barista; Section III presents the prob-
lem formulation; Section IV presents the design of Barista;
Section V evaluates the Barista resource allocator for a proto-
typical case study; and finally, Section VI presents concluding
remarks alluding to future directions.

II. BACKGROUND AND RELATED WORK
This section provides an overview of the literature along

the dimensions of deep learning-based prediction services,

infrastructure elasticity, serverless computing, and workload
forecasting, all of which are critical for the success of the
presented work on Barista.

A. Deep Learning-based Prediction Services
Pre-trained models based on deep learning techniques are

increasingly being used in prediction analytics services. In
this approach, all the learned internal parameters are stored
in the form of a vector of scores for each category along with
their weights in a pre-trained deep learning model of desired
accuracy [1]. Once the models are trained, these prediction
models are seamlessly integrated into applications to predict
outcomes based on new input data [15].

B. Serverless Computing
Serverless computing focuses on providing zero admin-

istration by automating deployment and management tasks.
In this paradigm, the responsibility of deployment and man-
agement is delegated to a cloud infrastructure provider or a
mediating entity. The execution platform leverages container
technology to deploy and scale the latency- sensitive prediction
service components, which helps to minimize idle resource
capacity [16]. These features are beneficial to the design and
deployment of parallelizable deep learning prediction services.

However, due to variation in workloads, the providers of
prediction services are required to modify their resource re-
quirements by monitoring the resources continuously [13], and
that reactive approach can often violate the SLOs. The MxNet
deep learning framework [17] shows the feasibility of using
serverless computing AWS Lambda framework [18]. There
are several efforts [19]–[23] to deploy and orchestrate VMs
or containers dynamically with all software dependencies.
Barista’s focus is orthogonal to these efforts; Barista intel-
ligently and efficiently manages the containerized allocation
based on resource estimation by workload forecasting and
profiling the execution time of prediction services.

C. Dynamic Infrastructure Elasticity
Most state-of-the-art technology and research strategies to

horizontally or vertically scale the resources are heuristics-
driven or rule-based and have custom triggers. Selecting
optimal cloud configurations is an NP-hard problem, and
various models are presented based on heuristics [14], [24].
In Barista, we lease required VMs from the cloud provider
to meet the latency bounds based on time series forecasting
of the incoming workloads. We propose an efficient heuristic
to select the configuration of VM types to guarantee bounded
prediction latency while minimizing the cost.

Swayam [5] presented a short-term predictive provisioning
model to guarantee SLO while minimizing resource waste.
However, they only consider horizontal scaling by allocating
more backend containers from the resource pool. Model load-
ing time for deep learning models is significant, especially
when the container is in cold state [17]. In contrast, Barista
proactively considers infrastructure provisioning time to scale
the system and also allows vertical resource scaling.

Vertical elasticity adds flexibility as it eliminates the over-
head in starting a new VM and loading the service model. Prior



Fig. 1: Box plots of prediction times for different deep learning pre-trained models on different numbers of CPU cores (2, 4 and 8).

efforts to scale the CPU resources vertically appear in [25],
[26] including an approach that uses the discrete-time feedback
controller leveraging MAPE-K loop for containerized applica-
tions [27]. Barista uses an efficient, proactive method to trigger
the scaling of resources horizontally while relying on vertical
scaling reactively to allocate and de-allocate CPU cores for
model correction when our estimation model cannot predict
accurately. Our reactive approach can also handle sudden
workload spikes within a threshold.

D. Workload Forecasting
Workload forecasting is indispensable for service providers

to anticipate changes in resource demands and make proactive
resource allocation decisions. Various forecasting methods
based on time series analysis are described in [28]. Dejavu [29]
and Bubble-Flux [30] proposed self-adaptive resource man-
agement algorithms, which leverage workload prediction and
application performance characterization to predict resource
requirements. These efforts employ a linear model for work-
load prediction, which often results in low-quality forecasts
with high uncertainty.

Several non-linear methodologies based on Support Vector
Machine [31], Error Correction Neural Network (ECNN) [32],
Gaussian processes [3], [33] are proposed to predict work-
loads. However, these models fail to capture longer-term
trends, which are key traits of cloud-hosted services [34].
In [34], a hybrid model called Prophet is proposed for forecast-
ing workloads by combining linear/logistic trend models with
a Fourier series-based seasonality model. According to the
authors, Prophet is easier to use than the widely used ARIMA
models [27], [35] as it handles missing values automatically.
Moreover, the ARIMA model generally struggles to produce
good quality forecasts as it lacks seasonality detection.

In general, workload forecasting methods tend to lack
feedback to update predictions based on recent performance.
Therefore, Barista extends Prophet with a non-linear decision-
based model that modifies the forecast according to previous
prediction errors. Barista workload forecasting model esti-
mates the resource requirement and proactively scales the
infrastructure to guarantee application SLOs.

III. SYSTEM MODEL AND PROBLEM
DESCRIPTION

This section first describes the infrastructure model and
assumptions and then presents the problem formulation, which
has two subproblems. First, given the SLO of the service,

the properties of the pre-trained model and the costs of
VM configurations, we determine the cost-effective VM types
by solving an optimization problem to meet the SLO (Sec-
tion III-B). We then consider the dynamic management of
VM and container resources through workload forecasting and
infrastructure elasticity (Section III-C).

A. Infrastructure Model and Assumptions

To explore the serverless capabilities, we assume that the
deep learning pre-trained model for a predictive analytics
service is encapsulated inside containers which are executed in
a cluster of VMs. All the requests to the service are assumed to
be homogeneous, i.e., they execute the same prediction model,
and the service is stateless. Since deep learning models are
generally compute-intensive, they benefit from executing on
multiple cores. We validate this claim in Figure 1, which shows
the range of prediction time latencies for several pre-trained
deep-learning models on a VM hosted on AMD Opteron
2300 (Gen 3 Class Opteron) physical machine with different
numbers of assigned CPU cores, demonstrating good speedup
behaviors. The results are obtained by running 10,000 trial
executions in isolation for each model.

The VM lifecycle in cloud infrastructure for service deploy-
ment and management is considered as follows.

1 VM Cold: VM has not been deployed.
2 VM Warm: VM is deployed, but the container inside the

VM has not been downloaded.
3 Container Cold: the container is downloaded, but the

pre-trained deep-learning model has not been loaded into
the container’s memory.

4 Container Warm: the deep-learning model is loaded,
and the container is ready to serve the prediction requests.

Finally, we assume that once a VM is deployed, it is leased
from the cloud provider for a minimum duration of τvm time.
During this time, the deployment cost is paid for even if the
VM is not used (because we do not scale down the system
immediately). This could happen when the prediction model is
unloaded from the container’s memory during lightly-loaded
periods so that the VM could serve other batch jobs in the
background (e.g., deep analytics or map-reduce applications).

B. VM Flavor Selection and Initial Deployment

We first consider the static problem of serving a fixed set
of requests that execute a deep-learning prediction model by
finding the most cost-effective VM flavor type. Let λ denote



the constraint specified by the SLO of the model regarding
its execution latency,1 and let tp denote the latency when the
model is executed on p CPU cores. Further, let min_mem
denotes the minimum amount of memory required to run a
prediction model.

To serve the prediction requests, we need to deploy a
set of VMs from the cloud provider that offers a col-
lection of m possible configurations (flavors), denoted as
{vm1, vm2, . . . , vmm}. We consider three parameters to spec-
ify each configuration vmi: 1 pi, the number of available
cores; 2 memi, the memory capacity; and 3 costi, the
cost of deployment. In particular, the cost includes both the
running cost and the management cost of deploying the VM.
For each configuration vmi, suppose αi ∈ {0, 1, 2, . . . , }
number of VMs are deployed. Then, the total deployment
cost is given by total_cost =

∑m
i=1 αi · costi. While each

deployed VM is assumed to serve only one request at a time
(because each request benefits from consuming all the cores
as the prediction service is highly-parallelizable), it could
serve multiple requests one after another. In this case, the
request that is served later in the pipeline needs to wait for
the preceding requests to be first completed, which will delay
its prediction time.

The optimization problem concerns deploying a set of VMs,
i.e., to choose αi’s for all i = 1, . . . ,m, so that the total cost is
minimized while the SLOs of all the requests can be satisfied
(i.e., with latency no larger than λ). Section IV-D presents our
VM deployment solution.

C. Dynamic Resource Provisioning via Workload Forecasting
and Infrastructure Elasticity

The resources must be provisioned dynamically to meet the
SLOs under workload variations. Since the reactive approach
can be detrimental to response times, we use a proactive
approach to handle the variation in the workload by forecasting
the future service demands based on historical workload
patterns of a deep-learning prediction model.

With the forecasted future workload (i.e., number of ser-
vice requests), the VM deployment decision (as described in
Section III-B) must also be adapted accordingly. Horizontal
scaling [36] is a promising approach to provision the re-
sources dynamically. To that end, we exploit the four cloud
infrastructure states described earlier. Figure 2 illustrates the
actions needed to transition between the states. Each action
incurs a state transition time. Specifically, we denote the VM
deployment time by tvm, the container service download time
by tcd, and the pre-trained model loading time by tml.2

Figure 3 shows concrete timings for the different predic-
tion services we tested on our experimental infrastructure.
Further, we refer to the total time to set up the service as
tsetup = tvm + tcd + tml. This motivates the need to forecast

1Depending on the SLO, the execution latency can be flexibly defined based
on, e.g., worst-case latency or x-percentile latency. In this paper, we consider
the 95th percentile latency.

2The time required to unload the model from memory, denoted by tmu, is
negligible and thus not considered. The time taken to move from any state
to VM Cold is denoted by texp. This duration does not impact the resource
manager logic and hence is also ignored.
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Fig. 2: An abstract state machine showing different states and transitions associ-
ated with a life cycle of a VM in cloud infrastructure. Edges are labeled with actions
and time duration to complete the state transition.

the future workload t′setup = tsetup + tforecast time ahead to
guarantee the SLO with certain accuracy, where tforecast is
the time taken to obtain the forecast. The forecasting needs to
be performed for t′setup time into the future to account for the
infrastructure setup time.

Fig. 3: The setup times (in seconds) for different deep-learning prediction models
as per our experiment. The blue bar shows VM deployment time (tvm), orange
bars show the specific pre-trained model container download time (tcd), and grey
bar show prediction model loading time (tml).

When the VM is not serving any requests, the infrastruc-
ture state transitions from Container Warm to Container
Cold. Later on, when the load increases and the VM needs
to serve requests again, the model will be reloaded. As a
result, we also need to check the infrastructure state ahead
of time to make decisions for downloading the container and
loading the model if it is not already in the Container
Warm state. We account for all of these times in meeting
the SLOs, while avoiding excess over-provisioning of the
infrastructure resources. Section IV-E presents our combined
solution to the dynamic resource management problem that
incorporates infrastructure elasticity, workload forecasting, and
VM deployment.

Moreover, if the workload forecaster over-estimates the
workload, we allow the excess resources to be utilized by
the low-priority batch jobs via vertical scaling. Co-locating



various jobs on a server can cause performance interferences.
In our approach, we assume 10% performance degradation (for
the worst-case scenario based on our experiment) if a latency-
sensitive prediction service is co-hosted with batch jobs.

IV. DESIGN & IMPLEMENTATION OF BARISTA

In this section, we give the architectural insights of Barista
by describing its various components. We also explain our so-
lutions to the problems of static VM deployment and dynamic
resource provisioning as mentioned in Section III.

A. Architecture of Barista

Barista architecture consists of a pool of frontend and
backend servers, load balancers to distribute the requests, a
platform manager to allocate and scale backends for different
prediction services as shown in Figure 4. Frontend servers are
the virtual machines, which host the user interface, whereas
backend servers host the containerized pre-trained deep learn-
ing model. End users send their requests to the frontend load
balancer, which redirects the requests to the frontend servers
based on the round robin policy. Each frontend server forwards
the request to the backend load balancer, which then redirects
the request to one of the backend servers assigned to serve
the prediction query based on the least loaded connection
policy. Each backend server processes a single request at
a time and gives the prediction result back. The platform
manager is an integral part of Barista, which is responsible
for dynamic provisioning of resources in cloud infrastructure
by forecasting workload patterns and estimating the execution
time of various prediction queries. The platform manager
(as zoomed in Figure 4) consists of a prediction service
profiler, a request monitor, a request forecaster, a prediction
latency monitor, and a resource manager. They are described
as follows:

1 Prediction Service Profiler: It profiles the execution time
of a prediction service on different numbers of CPU cores
and finds the best distribution (as shown in Figure 5).
This provides the 95th percentile latency estimate of the
execution time for the prediction service based on the
assigned number of cores.

2 Request Monitor: It monitors and logs the number of
aggregated incoming requests received every minute by
the backend load balancer.

3 Request Forecaster: It predicts the number of requests
infrastructure provisioning time steps into the future
based on the historical data. The forecaster also updates
its model every minute based on the previous prediction
errors and the actual data from the request monitor to
diminish uncertainty.

4 Prediction Latency Monitor: It monitors and logs the
SLO violations for the incoming requests every five
seconds. SLO is defined over the response time of the
backend servers to a prediction query requested by the
frontend servers.

5 Resource Manager: It allocates the required number
of virtual machines for the forecasted workloads and

performs intelligent scaling based on resource estimation
and provisioning strategies as discussed in Section IV-D.
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Fig. 4: Architecture of Barista serving system.

The operation of the platform manager can be categorized
into two phases, online and offline, as shown in Figure 5. In the
offline or design phase, the execution time of the deep learning
model is profiled on different VM configurations followed by
distribution estimation. The workload forecasting model is also
trained in this phase. In the online or runtime phase, based on
the output of workload forecaster and execution time estimator,
resources are estimated and provisioned. The actual workload
is also being monitored and stored, which is used to update the
forecasting model based on the last five error predictions and
rolling training window. The following subsections provide
more details on these operations.
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Fig. 5: Data flow model of Barista platform manager.

B. Execution Time Distribution Estimation

An inaccurate estimate of the execution time of a pre-trained
deep learning model can result in erroneous output produced
by the resource manager, which may lead to over- or under-
provisioning of resources. Thus, in Barista, extensive offline
profiling of different deep learning models is performed on
various VM configurations. Figure 1 shows our experiments
on configurations involving 2, 4 and 8 CPU cores with required
memory size, where each experiment contains 10,000 trails.
The execution times are random in nature and follows an
unknown distribution. In Barista, the resource manager uses
the 95th percentile statistic of the execution time to provision



resources. In order to accurately calculate the percentile values,
we remove sample bias and estimate the unknown distribution.

Barista prediction service profiler estimates the distribu-
tion using non-parametric methods and compares the sample
with different reference probability distributions iteratively.
For quantifying the goodness of fit, we use one-sample
Kolmogorov-Smirnov (K-S) test [37] to rank different hy-
pothesized distributions. Given the cumulative distribution
function F0 of the hypothesized distribution and the empirical
distribution function Fdata(x) of the observed dataset, the test
statistic (Dn ) can be calculated by Equation (1), where supx
is the supremum of the set of distances and n is the size of the
data. According to [38], if the sample comes from distribution
F0(x), then Dn converges to 0 almost surely in the limit when
n goes to infinity.

Dn = supx|F0(x)− Fdata(x)| (1)

C. Workload Forecasting
Barista uses an online rolling window based forecasting

methodology to predict workload to allocate resources proac-
tively. Request forecaster is composed of two main com-
ponents: 1 Forecaster, which is responsible for modeling
both periodic and non-periodic elements associated with time-
varying workloads, and 2 Compensator, which modifies the
forecast produced by the first component according to the
last five forecast errors. These two components are briefly
described as follows:

1) Forecaster: A time-varying workload can be composed
of three main elements - trend, seasonality and holidays [34],
[39], and they are combined as shown in Equation (2) below:

y(t) = g(t) + s(t) + h(t) + εt (2)

where g(t), s(t), h(t) model non-periodic changes, periodic
changes (e.g., daily, weekly and yearly seasonality), and
effects of holidays which occur on potentially irregular sched-
ules over one or more days, and εt represents noise.

The trend function (g(t)) models how the workload has
grown in the past and how it is expected to continue growing.
Modeling web traffic is often similar to population growth
in natural ecosystem, where there is a non-linear growth
that saturates at carrying capacity [34]. This kind of growth
is typically modeled using the logistic function shown in
Equation (3), where C is the carrying capacity, k is the growth
rate, and m is an offset parameter.

g(t) =
C

1 + exp(−k(t−m))
(3)

The seasonality function (s(t)) models multi-period season-
ality that repeats after a certain period. For instance, a five
day work week can produce effects on a time series that
repeat each week. A standard Fourier series, as shown in
Equation (4), is used to provide a flexible model of periodic
effects [40], where P is the expected time series period and
N is the order.

s(t) =
1

2
a0 +

N∑
n=1

[
an cos(

2πnt

P
) + bn sin(

2πnt

P
)

]
(4)

The holiday function (h(t)) models the predictable vari-
ations in workload caused due to holidays. However, these
variations do not follow a periodic pattern, so their effects are
not well modeled by a cycle. The holidays are added in the
form of a list and are assumed independent of each other. An
indicator function is added for each holiday that shows the
effect of a given holiday on the forecast. Barista leverages
Prophet [34] for implementing Forecaster.

2) Compensator: This component adjusts the output of the
forecaster based on the past forecast errors. It can be modeled
as a transformation function c, which changes the output of
the forecaster y based on the errors from the last m forecasts
E = {e1, e2, . . . , em}, as shown in Equation (5) below:

y′ = c(y, yupp, ylow, E) (5)

where yupp and ylow are the upper and lower estimation
bounds of y. The transformation can be learned using data-
driven methods. In Barista, we use H2O’s AutoML frame-
work [41] to find the best hyper-parameter tuned algorithm.

D. Resource Estimation

Resource estimation is one of the two main tasks performed
by the resource manager. Depending upon the forecasted value,
the SLO and the service type, the resource manager solves the
static VM deployment problem described in Section III-B. Due
to the NP-hardness of the problem, this subsection presents a
greedy heuristic to perform static VM deployment.

For each VM configuration vmi, we can compute the
number of requests n_reqi it is able to serve for a deep
learning prediction service while meeting the SLOs:

n_reqi =

{
b λtpi c, if memi ≥ min_mem

0, otherwise

Recall that λ is the model’s SLO timing constraint, min_mem
is the model’s minimum memory requirement, tpi is the
latency to serve each request of the model using configuration
vmi with pi CPU cores, and memi is amount of memory
available in vmi. We can then define the cost per request for
each configuration vmi as follows:

cpri =
costi
n_reqi

Let i∗ denote the index of the VM configuration with the
minimum cost per request, i.e., cpri∗ = mini=1...m{cpri}.
Clearly, given an estimated workload y′ from the output of
Equation (5), an optimal rational solution will deploy α∗ =

y′

n_reqi∗
VMs of configuration vmi∗ and incurs a total cost:

total_cost∗ =
y′

n_reqi∗
· costi∗ (6)

To find the optimal integral solution is unfortunately NP-
hard (via a simple reduction from the knapsack or the subset
sum problem). However, Equation (6) nevertheless serves as
a lower bound on the optimal total cost.

To solve the integral problem, our greedy algorithm also
chooses a single configuration vmi∗ that has the minimum



cost per request while breaking ties by selecting the con-
figuration with a smaller deployment cost. Thus, it deploys
α = d y′

n_reqi∗
e VMs of configuration vmi∗ for serving y′

requests, and incurs a total cost that satisfies:

total_cost = d y′

n_reqi∗
e · costi∗

<
( y′

n_reqi∗
+ 1
)
· costi∗

= total_cost∗ + costi∗ (7)

Equation (7) shows that the total cost of the greedy algorithm
is no more than the optimal cost plus an additive factor costi∗ .
When serving a large number of requests, the incurred cost is
expected to be close to the optimal. Furthermore, the algorithm
always deploys VMs from the same configuration regardless
of the number of requests to be served. This makes it an
attractive solution for handling dynamic workload variations
without switching between different VM configurations. The
complete algorithm is illustrated in Algorithm 1.

Algorithm 1: Resource Estimation
1 Initialize: i∗ ← 0, cpr∗ ←∞, cost∗ ←∞, n_req∗ ← 0
2 for i = 1 to m do
3 tpi ← getExecutionTime(vmi,model)
4 memi ← getMemory(vmi)
5 costi ← getCost(vmi)
6 if memi ≥ min_mem then
7 n_reqi ← b λtpi c
8 cpri = costi

n_reqi
. Cost per request

9 if cpri < cpr∗ then
10 i∗ ← i
11 cpr∗ ← cpri
12 n_req∗ ← n_reqi
13 cost∗ ← costi
14 else if cpri = cpr∗ & costi < cost∗ then
15 i∗ ← i
16 n_req∗ ← n_reqi
17 cost∗ ← costi
18 end
19 end
20 end
21 Deploy α← d y′

n_req∗ e VMs of configuration vmi∗

E. Resource Provisioner

Resource provisioning is a critical process running inside
Barista resource manager. Its main objective is to scale the
resources proactively to handle the dynamic workload. Barista
resource provisioner intelligently frees acquired resources for
latency-sensitive services when the predicted workload is
low, i.e., horizontal scaling down. And when the workload
increases, the resource provisioner acquires new resources
while taking into account already freed resources. We use
two sets, κ and ψ, to indicate VMs that are used for latency-
sensitive prediction services. The VMs in κ denote resources
that are actively used for serving latency-sensitive prediction
services while the VMs in ψ are those that have been freed
by resource provisioner.

Algorithm 2: Resource Provisioning
1 Initialize: Flag ← True, α← 0, n_reqi∗ ← 0, i∗ ← 0,

params← {model, λ,min_mem,memi, pi, costi,∀i =
1 . . .m}, κ← ∅, ψ ← ∅, Hcdl, Hmld, Hexp

2 while True do
3 t← GetCurrentTime()
4 y′ ← GetForecast(t, t′setup)
5 if Flag then
6 i∗, n_reqi∗ ← ResourceEstimation(params)
7 Flag ← False
8 end
9 α← d y′

n_reqi∗
e

10 Cκexp, C
ψ
exp ← GetExpireVMCount(t+ t′setup, κ, ψ)

11 δ ← α− (|κ| − Cκexp)
12 if δ > 0 then
13 δscaled ← min

(
|ψ| − Cψexp, δ

)
14 δnew ← max

(
0, δ − δscaled

)
15 for i = 1 to δnew do
16 IP ←DeployVM(i∗)
17 κ.add(IP )
18 Hcdl[t+ tvm] = (IP , model)
19 Hmld[t+ tvm + tcd] = (IP , model)
20 Hexp[t+ τvm] = (IP , model)
21 end
22 HScaleUp(δscaled, κ, ψ)
23 else
24 HScaleDown(δ, ψ, κ)
25 end
26 C ← Hcdl[t]
27 M ← Hmld[t]
28 E ← Hexp[t]
29 foreach c ∈ C do
30 DownloadContainer(c.IP, c.model)
31 end
32 foreach m ∈M do
33 LoadModel(m.IP,m.model)
34 end
35 foreach e ∈ E do
36 ModelUnload(e.IP, e.model)
37 TerminateVM(e.IP )
38 end
39 LoadBalancerUpdate()
40 WakeUpAtNextTick()
41 end

Resource provisioner is implemented as a daemon pro-
cess that is invoked at a fixed interval of time, as shown
in Algorithm 2. On each invocation, the resource manager
obtains a workload forecast t′setup timesteps into the future
[Line 4], where t′setup is the accumulation of infrastructure
provisioning time (tsetup) and forecasting time (tforecast).
Required number of VMs (i.e., α) can be calculated based
on the forecasted workload as indicated in Algorithm 1. The
heuristic presented in Section IV-D depends upon the SLO
and cost per request; the best VM configuration will remain
fixed as long as these two factors are unaltered. Thus, the best
VM configuration index and the maximum number of requests
served per VM are calculated once and stored in variables
i∗ and n_req∗, respectively [Lines 5-8]. After obtaining the
required number of VMs α [Line 9], the difference between
α and |κ| is calculated to find the net number of VMs needed



Fig. 6: Top ranked distribution that describes the variation in the sample data. The distribution (blue) is plotted on top of the histograms (orange) of observations.

at timestep t + t′setup. For this difference, Cκexp (the number
of VMs that will expire at time t+ t′setup) is subtracted from
|κ| to compensate for the VMs that will become unavailable
due to lease expiration. The final difference value is referred
to as δ [Lines 10-11].

A positive value of δ implies more VMs will be required
at t+ t′setup. This requirement is fulfilled by: 1 re-acquiring
δscaled freed VMs, and 2 spawning δnew new VMs, such that
δ = δscaled+δnew [Lines 13-22]. A negative value of δ signi-
fies the abundance of VMs at timestep t+t′setup which leads to
freeing VMs [Lines 23-25]. Here, HScaleUp and HScaleDown
functions scale the resources by re-acquiring δscaled VMs from
κ to ψ and freeing δ VMs from κ and ψ, respectively. New
VMs are spawned by scheduling container download, model
loading and lease expiration events at timestamps t + tvm,
t + tvm + tcd and t + τvm, respectively [Lines 16-20]. Here,
Hcdl, Hmld and Hexp are used to register events related to
downloading containers, loading models and terminating VMs
as key-value pairs, where the timestamps are the keys and the
tuple (IP,model) is the value. Apart from scheduling VMs for
the future, resource provisioner also initiates the routines for
downloading containers and loading models from the previous
forecasts at the current timestamp t, followed by terminating
VMs whose leases expire [Lines 29-38]. In the end, resource
provisioner updates load balancer for newly deployed VMs,
and sleeps till the next tick [Lines 39-40].

We vertically scale down the number of cores of a particular
container if we meet the SLO with some threshold margin,
and share the cores with the batch jobs. Vertical scaling is
also helpful to allocate more resources for sudden workload
surges. Moreover, if the resource estimator over-estimates the
resources and whenever our prediction services can de-allocate
cores while maintaining the SLO, Barista frees up cores, and
if we miss any SLO, Barista will increase the number of cores
immediately if more cores are available. We de-allocate one
core at a time to minimize latency miss, and we double the
number of cores (within maximum core limits of the VM) for
the prediction service if there is any SLO miss.

V. EVALUATION

In this section, we present experimental validation for the
different phases of our Barista framework.

A. Experiment Setup

Our testbed comprises an OpenStack Cloud Management
system running on a cluster of AMD Opteron 2300 (Gen 3

Class Opteron) physical machines. We emulated the VM con-
figurations as per the Amazon EC2 pricing model3 [42]. We
used the AWS pricing model to emulate our cost model4. We
employed DockerSwarm [43] as our container management
service on top of the VMs. HAProxy (http://www.haproxy.org)
was used as our frontend and backend load balancers. We built
a NodeJS-based frontend web application to relay the query
to the backend predictive analytics service.

B. Predicting Execution Time of Predictive Analytics Services
In this experiment, we considered two different kinds of

predictive analytics applications: image recognition and speech
recognition, based on six different pre-trained deep learning
models: Xception, VGG16, InceptionV3, Resnet50, Inception-
ResnetV2, and Wavenet (see Figure 1). All these models were
profiled on OpenStack VMs of variable numbers of CPU cores.
Based on the data generated from profiling these models,
the best distribution was estimated from a list of available
probability distributions. All the empirical distributions closely
resemble the hypothesized distributions. For example, the best-
fit distributions for the Wavenet service on two and four cores,
for the Resnet50 service on four and eight cores, and for the
InceptionResnetV2 service on four and eight cores are shown
in Figure 6. Based on the best-fit distributions, we calculated
the 95th percentile latency for each service.

C. Workload Forecasting
Two different time series datasets were used to emulate

a realistic workload for predictive analytics services. The
first dataset was collected and published by NYC Taxi and
Limousine Commission [44]. We processed the data to extract
the number of cab requests generated every minute based on
the pick-up and drop-off dates and times [44]. This dataset
provides an appropriate workload for a speech recognition
component in the ride-sharing application to request a ride.
The second dataset contains data on the number and types
of vehicles that entered from each entry point on the toll
section of the Thruway with their exit points [45]. This dataset
can be used to represent a real-world workload of an image
recognition based predictive analytics service that aims to
automatically detect the license plate number of the entering or
exiting car from a toll plaza. We processed the data to extract
the total number of cars entering a toll plaza every minute.

3We considered 47 different VM configurations with 2, 4 and 8 cores. Any
GPU-based or SSD-based configuration was not considered.

4We did not run the experiments on Amazon cloud because of monetary
constraints.



A total of 10,000 data-points from each dataset was used in
our study. We utilized 6000, 500 and 2500 data points for train-
ing, validation and testing the Prophet-based Forecaster model
in both datasets, respectively. We performed hyper-parameter
tuning for the Fourier series order N by iterating over five
different values {10, 15, 20, 25, 30}, and with different sizes
of the training window W ∈ {4000, 5000, 6000}. Out of the
15 possibilities, the configurations with N = 30,W = 6000
and N = 20,W = 6000 produced the least absolute percent-
age error (95th percentile) for the first and second datasets,
respectively. The mean absolute error and absolute percentage
error (95th percentile) for the first and second datasets are
(27.66, 29%) and (27.84, 30.26%), respectively.

Fig. 7: Performance comparison of Barista (blue) and Prophet (green) along
with ground truth (first dataset) (red).

Fig. 8: Performance comparison of Barista (blue) and Prophet (green) along
with ground truth (second dataset) (red).

In Barista, we extended Prophet with a machine learning
based compensator to adjust the forecast based on the last
five prediction errors. We decided to use five errors based
on empirical results. Apart from these five prediction errors,
the recent forecast of Prophet along with the upper and
lower estimation bounds are used as features for learning
the model (see Equation (5)). We used 3000 data points of
Prophet to train the compensator model, and another 1000
data points to test and analyze our hybrid approach. We used
H2O’s implementation of AutoML framework [41] to identify
the best family of learning algorithms and tune the hyper-
parameters. We found that XGBoost-based gradient boosted
trees outperformed other machine learning models such as
neural networks, random forest model, and was selected as
the best model. The mean absolute errors for training, cross-
validation and testing in the first and second datasets are
(12.65, 15.10, 21.26) and (12.24, 15.13, 22.65), respectively.

The forecasting results of Barista and Prophet along with
the actual workloads on the test dataset are shown in Figures 7
and 8. It is visible from the figures that the Barista prediction
curves closely resemble the actual workloads and it predicts
the sudden bursts of requests with more accuracy compared to

Fig. 9: Cumulative absolute percentage error distribution of first dataset.

Fig. 10: Cumulative absolute percentage error distribution of second dataset.

Prophet which often lags and leads. Figures 9 and 10 show the
cumulative percentage error distributions for both approaches.
Barista outperforms Prophet by 37% and 46% in the first and
second datasets, respectively.

D. Resource Selection and Provision

Barista makes resource selection and provision decisions
based on the algorithms described in Sections IV-D and IV-E.
We evaluated our resource estimator and provisioner at differ-
ent time points in the life cycle of the prediction services. We
uniformly distributed the workload traces from one minute
to five seconds in our experiment. We met the target SLOs
(2 seconds and 1.5 seconds) 99% of the time over 12000
seconds for the Resnet and Wavenet services as shown in
Figures 12a and 12b. The SLO (2 seconds) compliance rate
marginally dropped to 97% for the Xception service as shown
in Figure 12c.

Fig. 11: Cost comparison between multiple VM configurations (cost infinity means
the VM is infeasible option; it cannot serve the request within the SLO bound).

Barista not only guarantees SLO compliance but also min-
imizes the running and management cost by intelligently
selecting the VM configuration. As described in Section IV-D,
Barista selects the VM configuration depending on the SLO,
the cost, and the estimated execution time of a prediction
service. We emulated the prices of the VMs according to the
Amazon EC2 instances and considered VM expiration time
on an hourly basis (instance hour as an example scenario).
Figure 11 shows the total cost of hosting the backend VMs
for 10 hours (600 mins) while guaranteeing the SLO bound
for the workload traces [44], [45]. Here, Configuration 1
represents t3.2xlarge, Configuration 2 represents t3.xlarge, and
Configuration 3 represents t3.small (our min_mem constraint



(a) Upper image shows how we guaranteed the 2-
second SLO for the Resnet prediction service and the
experienced latency by using the VM configuration se-
lected by Barista on toll dataset. Lower image shows
the actual request rate, predicted request rate, and
number of allocated VMs (t3.small (2cores)).

(b) Upper image shows how we guaranteed the 1.5-
second SLO for the Wavenet prediction service and
the experienced latency by using the VM configuration
selected by Barista on taxi dataset. Lower image
shows the actual request rate, predicted request rate,
and number of allocated VMs (t3.small (2cores)).

(c) Upper image shows how we guaranteed the 2-
second SLO for the Xception prediction service and
the experienced latency by using the VM configuration
selected by Barista on taxi dataset. Lower image
shows the actual request rate, predicted request rate,
and number of allocated VMs (t3.xlarge (4cores)).

Fig. 12: Barista performance results on selected VM configuration as backend.

is 2GB). We solved the optimization problem for a given
SLO bound to select a VM type, and considered this VM
type as one of the configurations for our experiment. We then
considered two other VM types of the same VM group (here,
a group means Amazon EC2 instance type group, e.g., general
purpose (t3, compute-intensive (c4-5 group)) with different
core capacities. Even if assigning more cores reduces the
running time of a prediction service, because of the cost
difference of different VM configurations, the naive approach
of selecting the VM with the highest number of cores or the
most powerful VM is not always the best option, as more
VMs from a less powerful type can be more cost effective.
This happens because the prediction services are stateless and
utilize all the cores available in that VM, and requests are
always served sequentially. We observe from Figure 11 that
Barista performs 50-95% better than the naive approach.

E. Reactive Vertical Scaling for Model Correction

We monitored the latency of the services every five sec-
onds and make decisions accordingly based on the monitored
latency and the SLO bound. We considered a deployment
scenario where prediction services can run with other co-
located low-priority batch jobs. In this experiment, the goal is
to demonstrate that we can vertically allocate and de-allocate
CPU cores by monitoring the SLO.
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Fig. 13: Vertical Scaling to allocate the number of CPU cores( red line) while
maintaining the SLO bound of 5 seconds. The blue dotted line shows the workload
pattern, and the solid navy blue line shows the latency of the prediction services on
a VM of 8 cores. The green line shows the latency if we dynamically (de)-allocate
the cores.

Figure 13 shows how over-provisioning for two prediction
services (Xception and InceptionV3) could be handled re-
actively by adjusting the CPU cores at runtime. Using our
reactive approach for vertical scaling, we saved approximately
15% and 30% of CPU shares of an eight cores OpenStack VM
for Xception and InceptionV3, respectively, on a particular
workload trace. Our reactive approach also achieves over 98%
of the SLO hits while optimizing the CPU shares significantly.
We also observed similar behaviors for other prediction ser-
vices, thus demonstrating the capabilities of Barista to make
the model correction if there is any resource over-provisioning
due to over-estimated time-series prediction.

VI. CONCLUSION
Summary: Predictive analytics services based on deep

learning pre-trained models can be hosted using serverless
computing paradigm due to their stateless nature. However,
meeting their service level objectives (SLOs), i.e., bounded
response times and bounded hosting costs, is a hard problem
because workloads on these services can fluctuate, and the
state of infrastructure can result in different performance char-
acteristics. To resolve these challenges, this paper describes
Barista, which is a dynamic resource management framework
for providing horizontal and vertical autoscaling of containers
based on predicted service workloads.

Discussions: The Barista approach can be broadly applied to
other compute-intensive and parallelizable simulation services,
where the simulation model needs to be loaded in memory, and
the simulation behavior is determined based on user requests
and user-specified SLO. In this paper, we did not consider
running different co-located prediction services together on
the same machine, where workload patterns for each predic-
tion services can be different. Vertical scaling the different
prediction services at the same time on the same machine is
a dimension of our future work.
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