
Cluster Computing manuscript No.
(will be inserted by the editor)

MILP Formulations for Spatio-Temporal Thermal-Aware
Scheduling in Cloud and HPC Datacenters

Jean-Marc Pierson · Patricia Stolf · Hongyang Sun · Henri
Casanova

Submitted: August 31st, 2018, Received: date / Accepted: date

Abstract This paper focuses on scheduling prob-
lems related to the execution of computational jobs
in datacenters with thermal constraints. Mixed in-
teger linear programming (MILP) formulations are
proposed that encompass both spatial and temporal
aspects of the temperature evolution under a uni-
fied model. This model takes into account the dy-
namics of heat production and dissipation in or-
der to schedule jobs at appropriate times on ap-
propriate machines. The proposed MILP formula-
tions are applicable to both high-performance com-
puting (HPC) and Cloud settings, and can target
several objectives including energy and makespan
minimization, while incorporating the cooling costs
and dynamic voltage and frequency scaling (DVFS)
capabilities of servers. The applicability and useful-
ness of our formulations are demonstrated via sev-
eral HPC and Cloud case-studies.

Keywords HPC and Cloud datacenters · thermal
modeling · thermal-aware scheduling · makespan ·
energy consumption · linear programming

1 Introduction

In this paper, we consider the problem of schedul-
ing computational jobs in datacenters with both en-

Jean-Marc Pierson and Patricia Stolf
IRIT, University of Toulouse, CNRS, INPT, UPS, UT1,
UT2J, France. E-mail: jean-marc.pierson@irit.fr, patri-
cia.stolf@irit.fr

Hongyang Sun
Vanderbilt University, Nashville, TN, USA. E-mail:
hongyang.sun@vanderbilt.edu

Henri Casanova
University of Hawai at Manoa, HI, USA. E-mail: hen-
ric@hawaii.edu

ergy consumption and application performance ob-
jectives, while enforcing constraints on heat pro-
duction. This represents an important problem in
datacenter optimization as cooling constitutes a sig-
nificant part of the total energy consumption in to-
day’s datacenters [7], [14]. Effective thermal man-
agement to prevent hotspots and server overheat-
ing also plays an critical role in ensuring the ap-
plication performance [7], [27]. Although similar
problems have been considered in the literature (see
Section 2 for a review of related work), to the best
of our knowledge, thermal-aware scheduling has
not been formalized as a generally applicable con-
strained optimization problem, which is the goal of
this paper.

While prior works have proposed thermal-aware
scheduling algorithms on servers with individual
and steady-state temperature constraints, we argue
that a formulation based on both spatial and tempo-
ral thermal models at the entire datacenter level is
needed. More specifically, a thermal model should
account for heat recirculation within a datacenter
(i.e., spatial dispersion of heat between servers) and
temperature evolution throughout time (e.g., tem-
perature increases as computation is being performed).
Such behaviors have been modeled in the litera-
ture using air flows and spatial locations of servers
(e.g., [19], [34], [1]), based on the physical charac-
teristics (thermal capacitance and resistance) of the
processors (e.g., [28], [29], [2]), as well as holis-
tically linking both temporal and spatial properties
(e.g., [32], [11]). Moreover, these models have been
validated by several studies (e.g., [29], [34], [25],
[21], [1]) using computational fluid dynamics (CFD)
simulations on cyber-physical systems, and thus pro-
vide reliable means of modeling the temperature



2

evolution of servers in datacenters and of study-
ing related scheduling problems. The objective of
this paper is to develop a formulation for the opti-
mization problem of job scheduling based on these
models.

Since most resource allocation problems can be
framed as constrained optimization problems with
both integer and real (in practice rational) variables,
we formulate the problem using mixed integer lin-
ear programming (MILP). Integer variables are needed
to encode the assignment of jobs to compute re-
sources. Due to the presence of these integer vari-
ables, computing optimal solutions based on MILP
formulations is often infeasible in polynomial time.
Nevertheless, MILP formulations are still useful due
to several reasons: (1) They can be solved for small
problem instances, making it possible to assess the
efficacy of a polynomial heuristic, which can then
be used to solve large problem instances; (2) Most
MILP solvers return an upper bound on the distance-
to-optimal of returned solutions. Therefore, even
though an optimal solution may not be found for a
large instance, in practice a solver can return a solu-
tion that is close to optimal and quantifiably so; (3)
MILP formulations can be relaxed by making all
variables rational, and then solved in polynomial
time in practice (even though computing the opti-
mal solution is still NP-complete in theory). The
solution to the relaxed formulation is not feasible,
but it can serve as a starting point to construct a fea-
sible solution, e.g., via rounding off rational vari-
ables to integers [30].

In this paper, by relying on a spatio-temporal
thermal model and MILP formulations, we propose
a unified framework for thermal-aware scheduling
of computational jobs for both Cloud and HPC dat-
acenters. This is by contrast with previously pro-
posed formulations, which are typically valid in one
particular setting [7]. The proposed formulation can
be used to optimize a wide range of relevant per-
formance and energy objectives under datacenter-
wide thermal or placement constraints while incor-
porating cooling costs and dynamic voltage and fre-
quency scaling (DVFS) capabilities of servers.

The following summarizes the main contribu-
tions of this paper:

– We employ an analytical thermal model of dat-
acenters that takes into account both spatial and
temporal temperature behaviors;

– We propose MILP formulations for several schedul-
ing problems with various objective functions
based on the thermal model;

– We demonstrate the applicability and usefulness
of our formulations in several case-studies in
both HPC and Cloud settings.

The remainder of this paper is organized as fol-
lows: Section 2 discusses related work. Section 3
gives a high-level description of our problem state-
ment. Section 4 details our thermal models and how
they capture relevant datacenter heat management
concerns. Section 5 gives our MILP formulations
for several relevant job scheduling problems. Sec-
tion 6 presents quantitative results for an HPC and
Cloud case study and presents a comparison be-
tween the optimal MILP solution and those from
two heuristics. Finally, Section 7 concludes with a
brief summary of our findings and perspectives on
future work.

2 Related Work

In this section, we review the literature on schedul-
ing for Cloud and HPC datacenters. We first review
works that have proposed MILP formulations for
energy-aware scheduling problems. We then dis-
cuss works that have proposed thermal models of
datacenters. Finally, we review works that have pro-
posed scheduling heuristics that take thermal con-
siderations into account.

2.1 MILP Formulations for Energy-Aware
Resource Allocation and Scheduling Problems

MILP formulation, due to its usefulness, has been
proposed in many previous works to solve resource
allocation and/or job scheduling problems.

Borgetto et al. [5] have studied energy-aware
resource allocation for HPC jobs in datacenters. They
have proposed MILP formulations for several multi-
objective optimization problems, including maxi-
mizing job performance under power consumption
constraints, minimizing power consumption under
job performance constraints, as well as optimizing
a linear combination of both objectives. Kantarci et
al. [12] have considered Virtual Machine (VM) al-
location for cloud datacenters interconnected via a
backbone network. An MILP formulation has been
proposed for backbone topology virtualization and
VM placement with the objective of minimizing
power consumption. Sharrock et al. [26] have pro-
posed an MILP formulation for striking a desirable
compromise between the energy cost of network
equipment in a datacenter and the quality of service
provided to applications. Gu et al. [9] have applied



3

an MILP formulation to the problem of minimiz-
ing the total energy cost in green cloud datacen-
ters. Given an energy budget, requests are sched-
uled on different servers and sources by account-
ing for time-varying and location-varying electric-
ity prices as well as renewable energy options. Barkat
and Capone [3] have considered using energy stor-
age technologies (i.e., batteries) as a green energy
source to reduce carbon emissions from datacen-
ters. They have considered geographically distributed
cloud infrastructures using batteries for energy stor-
age, and proposed an MILP formulation for com-
puting an optimal configuration that considers ser-
vice scenarios, storage capacities, as well as the en-
ergy consumed to route requests to different data-
center locations. Haque et al. [10] have proposed
GreenPar, a scheduler for HPC jobs in datacenters
partially powered by green renewable energy. Based
on an MILP formulation, this scheduler executes
the workload adaptively so as to maximize green
energy consumption and minimize grid energy con-
sumption, while respecting service-level agreements
(SLAs). Metwally et al. [15] have used a two-phase
MILP formulation to improve the resource utiliza-
tion of cloud datacenters under the infrastructure-
as-a-service (IaaS) paradigm. Mohamma Ali et al.
[18] have presented a new datacenter design using
disaggregated server (DS) that arranges resources
in different physical pools, and developed an MILP
model to optimize the VM allocation for DS-based
datacenters.

2.2 Datacenter Thermal Models

Several authors have considered thermal-aware job
scheduling in datacenters. While most works rely
on thermal models that capture either the spatial
correlation or the temporal correlation, very few
consider both of them simultaneously.

A spatial thermal model characterizes the spa-
tial correlation of the temperatures in different servers
of a datacenter, leading to a “thermal map” of the
datacenter. Moore et al. [19] have introduced the
notion of heat recirculation to capture the thermal
profile of a datacenter by taking physical layout and
heat flow into account. Tang et al. [33] formally
defined a heat-distribution matrix via an abstract
heat flow model for the optimization of the cool-
ing cost of a datacenter. This abstract spatial model
has been successfully validated by several compu-
tational fluid dynamics (CFD) simulations [34], [25],
[21], [1] that have shown high accuracy of the model
within the natural range of temperature fluctuation.

This model has subsequently been adopted in many
thermal-aware scheduling research works (see Sec-
tion 2.3). In contrast to a spatial model, a tempo-
ral thermal model accounts for the temperature of
a single server over different time intervals. Ramos
and Bianchini [24] have predicted the temperature
of servers in a datacenter based on a simple tem-
poral model governed by heat transfer laws. By ex-
ploring the duality between electrical circuits and
heat transfer, Skadron et al. [28] have proposed the
lumped-RC model to capture the transient temper-
ature variation in processors. The model has been
validated using a commercial, finite-element simu-
lator of 3D fluid and heat flow for chips with mea-
sured errors below 6% and usually within 3% [29].
The authors have also developed HotSpot, a ther-
mal modeling and simulation tool for microproces-
sor architectures [29]. Like the spatial model, the
temporal model has also become widely adopted
by thermal-aware scheduling researchers (see Sec-
tion 2.3). Our prior work [32], [11] has considered
a holistic thermal model that captures both spatial
and temporal aspects of temperature distribution in
datacenters. In this work, we build on this spatio-
temporal model to formulate a variety of thermal-
aware scheduling problems.

2.3 Thermal-Aware Scheduling Heuristics

Many existing works have proposed thermal-aware
scheduling heuristics with the objective of mini-
mizing cooling cost, energy consumption, and/or
application performance. Here, we focus on works
that consider the thermal models referenced in Sec-
tion 2.2. For a more complete literature review, read-
ers are referred to the survey [7] on thermal-aware
scheduling for datacenters.

Based on a spatial thermal model, a simple job
placement heuristic, often used as a baseline by re-
searchers is “coolest first”, which places a job on
the server with the lowest (inlet) temperature. Moore
et al. [19] have proposed several heuristics, and in
particular MinHR, which assigns each job to the
server that contributes minimally to the heat recir-
culation in the datacenter. Pakbaznia and Pedram
[22] have proposed to reduce the total energy con-
sumption of a datacenter by performing server con-
solidation in a way that accounts for heat recircula-
tion. Mukherjee et al. [17] have considered a sim-
ilar problem while taking the temporal job place-
ments into account (but without a temporal thermal
model). Sun et al. [31] have studied performance-
energy tradeoff in heterogeneous datacenters while



4

considering heat recirculation effects, and proposed
server placement strategies that minimize cooling
cost. By assuming specific heat recirculation pat-
terns, Mukherjee et al. [20] have designed approx-
imation algorithms for a couple of related thermal-
aware scheduling problems. Liu et al. [13] have de-
signed scheduling algorithms for big-data jobs us-
ing DVFS under a similar spatial thermal model.

In terms of works that leverage a temporal ther-
mal model, Wang et al. [36] have applied the lumped-
RC model to predict the temperatures of the servers
in a datacenter in order to make job placement de-
cisions. Rajan and Yu [23] have relied on the same
model to maintain the temperature of the system
below a threshold by using DVFS while maximiz-
ing application throughput. Zhang and Chatha [39]
have designed polynomial-time approximation schemes
for the discrete version of the problem (assuming a
discrete set of available DVFS levels) with the ob-
jective of minimizing application makespan. Yang
et al. [37] have proposed intelligent ordering of the
jobs based on their thermal characteristics for re-
ducing the number of thermal constraint violations.
Mhedheb and Streit [16] have considered thermal-
aware VM management in Cloud datacenters to min-
imize energy using migration techniques. Van Damme
et al. [35] have characterized the optimal workload
distribution in a datacenter using KKT conditions
with a thermal constraint.

In our prior work, we have considered thermal-
aware scheduling while relying a spatio-temporal
model. Specifically, Sun et al. [32] have proposed
thermal-aware strategies to minimize the makespan
of a set of HPC jobs by using DVFS to ensure that
the temperature remains below a threshold in a ho-
mogeneous datacenter. Herzog and Pierson [11] have
considered a similar problem but used a multi-agent
based system approach for performing job assign-
ment. In contrast to [32] and [11], which proposed
heuristic solutions in an HPC setting to optimize
makespan, we construct MILP formulations for both
HPC and Cloud settings with both makespan and
energy as objectives. As discussed previously, the
solutions of our MILP formulation make it possi-
ble to assess the quality of solutions produced by
these heuristics for small problem instances, and
to guide the design of better heuristics for solving
these thermal-aware scheduling problems for large
instances.

3 Problem Statement

We consider a general thermal-aware scheduling prob-
lem: given a datacenter platform and a workload to
execute on that platform, optimize a performance
or energy objective subject to thermal constraints.
We use the following assumptions:

– Platform: the platform is a set of (heterogeneous)
servers, or nodes, in a datacenter with air cool-
ing. We consider a typical datacenter layout with
several rows of node racks organized in alter-
nating cold and hot aisles. Cold air is provided
by the CRAC (Computer Room Air Condition-
ing) unit and we assume that the air tempera-
ture from the CRAC is constant. Each node is
defined by a maximum compute speed (i.e., a
number of operations per second that can be
performed at full utilization), as well as by pa-
rameters that determine its power and thermal
behaviors (see details in Section 4).

– Workload: the workload is a set of single-node,
independent jobs, each of which is character-
ized by an amount of computation to perform
(i.e., a number of operations) and a maximum
utilization of a node’s compute capacity. We do
not model other resource demands (e.g., mem-
ory, network bandwidth).

– Objectives: a scheduling problem can be framed
to address different objectives, and we consider
two main objectives:
– Makespan minimization: This objective cor-

responds to a Service Level Agreement be-
tween datacenter providers and users. The
makespan of a workload is defined as the
time elapsed between the time when the work-
load enters the system and the time when
its last job completes. Makespan minimiza-
tion thus leads to users receiving job results
quickly, but it also reduces the amount of
time nodes are powered on and computing,
which can also lead to energy consumption
reduction.

– Energy consumption minimization: This ob-
jective corresponds to the environmental im-
pact of datacenters in terms of carbon emis-
sion as well as to operating costs. A key
motivation to reduce energy consumption is
to reduce the heat generated by the nodes,
which can thus reduce the datacenter cool-
ing cost.

– Constraints: The minimization of the objective
functions above are subject to constraints on
node temperatures. These temperatures should



5

always be below some datacenter specified thresh-
old. Additional constraints (e.g., on the frequency
of job migrations, on space sharing policies)
can also be specified depending on the scenario
at hand (i.e., HPC or Cloud). Finally, we always
minimize energy consumption under a makespan
constraint (otherwise an optimal solution could
consist in not computing anything, since an in-
finite makespan has zero energy consumption).

4 Thermal Models

We consider a datacenter with N nodes, {n1,n2, · · · ,nN}.
Node i is characterized by the following parame-
ters: thermal resistance Ri, thermal capacitance Ci,
compute speed si, and idle power consumption Pidle

i .
Time is discretized between time t = 0 and time
t = L with a time step ∆ t. When the objective is
to minimize the makespan, L is the first timestep at
which a feasible solution is reached; when the ob-
jective is to minimize the energy consumption sub-
ject to a makespan constraint M, then L = M.

T in
i (t), resp. T out

i (t), is the inlet, resp. outlet,
temperature of node i at time t. We consider T out

i (t)
to be the temperature of node i itself. The ther-
mal constraint, to avoid overheating, is then that
T out

i (t) should be below a threshold temperature
T thresh. T thresh is typically determined based on the
junction temperature of the chips [8]. Pi(t) is the
total power consumption of node i at time t. We
assume that T in

i (t), T out
i (t), and Pi(t) are constant

over the interval [t, t +∆ t), thus the smaller the ∆ t
the more realistic (i.e., approximately continuous)
the model. Table 1 summarizes the notations used
throughout this paper.

With the above definitions, the temperature evo-
lution of node i is:

T out
i (t +∆ t) = Pi(t)Ri +T in

i (t)+

(T out
i (t)−Pi(t)Ri−T in

i (t))× e−
∆ t

RiCi .
(1)

Given a workload allocation for node i at time t,
i.e., a power consumption, the above model makes
it possible to compute the temperature variation over
the next time interval of duration ∆ t. This “RC model”
is used in many previous works [28], [39], [36].

One of the challenges of thermal modeling is
capturing the effects of air recirculation. Air recir-
culation causes the inlet temperature of a node to
deviate from that provided by the CRAC unit, i.e.,
its temperature is higher due to the hot air recircu-
lated from the outlets of other nodes in the datacen-
ter. The heat produced by all nodes in the datacen-

ter, including adjacent nodes, impacts the temper-
ature of each node. The work by Tang et al. [33],
[34] has made advances toward modeling air re-
circulation, but only in the context of steady-state
execution without considering temporal evolution
(i.e., ∆ t = ∞). Let T sup be the temperature supplied
to the datacenter by the CRAC unit. The work in
Tang et al. [33], [34] gives:

−→
T in(t) =

−−→
T sup(t)+D×−→P (t) , (2)

where
−→
T in(t) is an N-dimensional vector whose com-

ponents are the T in
i (t)’s,

−−→
T sup(t) is an N-dimensional

vector whose components are all equal to T sup,
−→
P (t)

is an N-dimensional vector whose components are
the Pi(t)’s, and D is an N-by-N air recirculation ma-
trix, which is constant and computed for a given
datacenter configuration.

Combining the RC model and the air recircu-
lation model, i.e., temporal and spatial temperature
evolution, Sun et al. [32] compute all T out values
in matrix/vector form as follows:
−−→
T out(t +∆ t) =

−→
P (t)×R+

−→
T in(t)+

(
−−→
T out(t)−−→P (t)×R−

−→
T in(t))×F ,

(3)

where R = diag(R1, . . . ,RN) and

F = diag(e−
∆ t

R1C1 , . . . ,e−
∆ t

RNCN ). Note that R and F
are constant.

Let J be the number of independent jobs to be
executed on the platform. Job j is defined by an
amount of work (number of CPU cycles) w j, and a
maximum fraction α j of a compute node’s compute
capacity that it can use. For instance, a job with
α j = 0.5 will only utilize half of a node’s compute
capacity.

As discussed previously, we consider two ob-
jectives: the makespan, denoted by M, which is the
time when all the jobs in the workload are com-
pleted, and the energy consumption, denoted by E,
which is the total energy consumed during the exe-
cution of the workload. We consider the following
two execution scenarios:

– Scenario 1 – High Performance Computing
(HPC): In this scenario, only one job can be
executed on a node at any time and no job mi-
gration is allowed, i.e., once a job has begun
executing on a node it must finish execution on
that node. Furthermore, no temporal interleav-
ing of job execution on a node is allowed: a job
scheduled on a node must wait for other jobs
previously scheduled on that node to complete



6

Table 1: List of notations.

Notation Meaning
N Number of compute nodes
Ri Thermal resistance of node n (W/◦C)
Ci Thermal capacitance of node n (J/◦C)
si Compute speed of node i (ops/s)
Pidle

i Power consumption of node i when idle (W)
Pi(t) Power consumption of node n at time t (W)
T in

i (t) Inlet temperature of node n at time t (◦C)
T out

i (t) Outlet temperature of node n at time t (◦C)
T sup Temperature supplied by the CRAC unit (◦C)
T thresh Threshold temperature (◦C)
−→
T in(t) N-dimensional vector of the T in

i ’s
−−→
T out(t) N-dimensional vector of the T out

i ’s
−−→
T sup N-dimensional vector with all components equal to T sup
−−−→
T thresh N-dimensional vector with all components equal to T thresh

R diag(R1, . . . ,RN)

F diag(e−
∆ t

R1C1 , . . . ,e−
∆ t

RNCN )
D air recirculation matrix
J number of jobs
w j amount of work of job j (ops)
p j dynamic power consumption constant over time of job j
α j maximum node utilization of job j (%)
αi, j,t the fraction of node i used by job j at time t
ei, j true if job j runs on node i
ei, j,t true if job j runs on node i at time t
startedi, j,t true if job j has already started on node i at time t
endedi, j,t true if job j has finished on node i at time t
Poni,t true if node i is switched on at time t
−→
CV Vector of node fraction allocations for Cloud scenario
βi, j,t,v v-th value of

−→
CV chosen for job j on node i at time t

c j completion time of job j
M Makespan
E Energy

before beginning executing. However, a job can
be temporarily suspended and resumed later, so
as to allow the node’s temperature to decrease.

– Scenario 2 – Cloud: In this scenario, several
jobs can share the same node and job execu-
tion interleaving is also allowed. Task migra-
tion, however, is still not allowed. The ratio-
nale is that in real-world datacenters jobs are
rarely migrated. Migrations only happen during
scheduled resource consolidation phases, which
we do not consider in this work.
Figure 1 shows the roadmap of the overall for-

mulation and optimization process for both scenar-
ios.

5 MILP Formulations

In this section, we present MILP formulations for
the thermal-aware scheduling problems described

in the previous section, detailing how they can be
applied to both HPC and Cloud settings.

5.1 Task Placement Constraints

To express generic job placement constraints we
define the following variables:
– αi, j,t : the fraction of node i used by job j at time

t. We consider two cases. If αi, j,t is declared as
a binary variable, then only one job can be al-
located to one node at a given time, which is
in line with Scenario 1 (HPC). Once a job has
begun executing on a node, the only option for
decreasing the temperature of the node is then
to temporarily suspend the job’s execution. If,
instead, αi, j,t is declared as a rational variable,
then several jobs can run on one node simulta-
neously, and the fraction of the node’s compute
capacity that is used by a job can be reduced in
order to decrease temperature.



7

MILP formulation for thermal-
aware scheduling

 Min Makespan
 Min Energy subject to Makespan
subject to a temperature threshold
in HPC or Cloud scenario

Set of jobs
(amount of work, 

dynamic power, etc.)

Set of nodes
(thermal parameters, 

idle power, etc.)

HPC scenario
 No migration
 Whole CPU allocation
 Jobs can be suspended

but no interleaving

Cloud scenario
 No migration
 Fractional CPU allocation
 Jobs can be suspended

and interleaved

Datacenter
(supplied temperature, 
air recirculation matrix)

Fig. 1: Roadmap of our overall approach for both scenarios.

– ei, j: a binary variable that equals 1 if job j runs
on node i, and 0 otherwise.
Given i∈{1, . . . ,N} (nodes), j∈{1, . . . ,J} (jobs),

and t ∈ {0, . . . ,L} (timesteps), we have the follow-
ing constraints:

∀i, j 0≤ ei, j ≤ 1 (4)

∀i, j, t 0≤ αi, j,t ≤ α j (5)

∀i, j, t αi, j,t ≤ ei, j (6)

∀i, t ∑ j αi, j,t ≤ 1 (7)

∀ j ∑t ∑i αi, j,tsi = w j (8)

∀ j ∑i ei, j = 1 (9)

∀t
−−→
T out(t)≤

−−−→
T thresh (10)

– Constraint (4): the ei, j variables are binary;
– Constraint (5): a job cannot use more than its

maximum resource usage;
– Constraint (6): if a job is not running on a node,

then it is not using any of its resources;
– Constraint (7): the total compute capacity of a

node is not exceeded;
– Constraint (8): the work of each job is fully ex-

ecuted;
– Constraint (9): a job runs only on one node (true

for all timesteps, since there is no job migra-
tion);

– Constraint (10): the temperature threshold is re-
spected.
In what follows we provide additional variables

and constraints specific to HPC and Cloud settings.

5.1.1 HPC Setting

In an HPC environment, a node is generally dedi-
cated to one application of one user, who has been
allocated the node for their need. Even if the op-
erating system (OS) uses some processing power,

in this work we consider that the entire processing
power of a node is allocated to the user’s job and
we ignore the impact of the OS.

Hence, in an HPC setting only one job runs on
a node at a time, and we add the following binary
variables accordingly:
– ei, j,t : equals 1 if job j is running on node i at

time t and 0 otherwise.
– startedi, j,t : equals 1 if job j has already started

on node i at time t and 0 otherwise.
– endedi, j,t : equals 1 if job j has completed on

node i at time t and 0 otherwise.
We can then add the following constraints:

∀i, t ∑ j ei, j,t ≤ 1 (11)

∀i, j, t startedi, j,t ≥ αi, j,t (12)

∀i, j, t startedi, j,t+1 ≥ startedi, j,t (13)

∀i, j, t endedi, j,t+1 ≥ endedi, j,t (14)

∀i, j, t ei, j,t = startedi, j,t − endedi, j,t (15)

∀i, j, t startedi, j,t + endedi, j,t +αi, j,t ≤ 2 (16)

∀i, j, t startedi, j,t ≤ ei, j (17)

∀i, j, t endedi, j,t ≤ ei, j (18)

∀i, j, t ei, j,t ≤ ei, j (19)

– Constraint (11): only one job is running on a
node at a given time;

– Constraint (12): a job can be started only if it is
given sufficient resources;

– Constraint (13): when a job has already started
at time t, it also has already started at time t+1;

– Constraint (14): when a job is finished at time
t, it is also finished at time t +1;

– Constraint (15): a job runs only when it is started
and not finished;

– Constraint (16): a job is not given resources once
it is finished;



8

– Constraint (17): a job can only be started on a
node where it is allocated;

– Constraint (18): a job can only be finished on a
node where it is allocated;

– Constraint (19): a job can only run on a node
where it is allocated.
Constraints (12) to (18) aim to compute the time

interval during which a job is executing, possibly
with some idle periods to decrease a node’s temper-
ature. In an HPC setting, constraint (11) prevents
interleaving of job executions: another job cannot
be executed during an idle period due to a running
job being temporarily suspended.

5.1.2 Cloud Setting

In a Cloud computing environment, several virtual
machines share the processor. Virtual cores are ded-
icated to virtual machines, and these virtual cores
are mapped on physical processor cores, depend-
ing on the virtualization layer. In any case, several
virtual machines share the node at the same time,
and some virtual machines can be suspended tem-
porarily to allow other virtual machines to access
the physical resources. Similarly to the HPC set-
ting, we ignore the usage of the processor by the
OS and the virtualization layer.

In a Cloud setting, we allow interleaving of job
executions on a node and allow several jobs per
node at any time. Therefore Constraint (11) defined
in the previous section is not necessary. All other
constraints are maintained.

We introduce two variables to represent that jobs
can use an arbitrary fraction of a node’s compute
capacity:

–
−→
CV : is a vector of node allocations, which con-
tains the fraction of node compute capacities
that can be allocated to jobs;

– βi, j,t,v: is a binary variable which is equal to 1 if
the v-th value of

−→
CV is chosen for job j on node

i at time t and 0 otherwise.
We then need a single constraints to guarantee

that, at any time for one job on one node, only one−→
CV value can be chosen:

∀i, j, t ∑v βi, j,t,v = 1 . (20)

Then, αi, j,t is computed as follows:

αi, j,t =
−→
CV [v]×βi, j,t,v .

For example, if fractions of a node’s computational
power are allocated in 10% increments, we would
have:
−→
CV = (0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1) ,

and we could then express the fact that job j = 0
on node i = 0 at time t = 0 uses 90% of the node’s
computational power as:

β0,0,0,9 = 1 .

5.2 Objective Functions

5.2.1 Minimize Makespan

The makespan M is defined as the time when all
job in the workload are completed. The completion
time of each job j is computed as follows:

c j =
N

∑
i=1

(ei, j,0+

L

∑
t=1

(
ei, j,t + t× (startedi, j,t − startedi, j,t−1))

)
(21)

We can then write the following constraint, spec-
ifying that the makespan is greater than the comple-
tion time of each job:

∀ j M ≥ c j . (22)

In other words, minimizing the makespan is equiv-
alent to minimizing the maximum c j.

5.2.2 Minimize Energy Consumption

The energy consumption comes from two sources:
computing and cooling. The computing energy is
given by the total computing power of all nodes in-
tegrated over time, which is usually composed of
a static part (when nodes are powered on but idle)
and a dynamic part (when nodes are on and com-
puting). In [19], the cooling energy consumption
is given as a function of the energy consumed by
computing, which makes it possible to express the
total energy consumption of the datacenter as:

E = ∆ t×∑
t

(
∑

i
Pi(t)

)
×
(

1+
1

CoP(T sup)

)
,

(23)

where CoP is a quadratic function, i.e., CoP(T sup)=

a(T sup)2 +bT sup +c, with a, b and c depending on
the performance of the cooling device. Note that
when T sup is a variable, the problem is no longer
linear because E is not linear in T sup. However, this
difficulty can be resolved by approximating E as a
step function of T sup. If T sup is a constant, as as-
sumed in this work, the cooling energy turns out to



9

be a fixed overhead on top of the computing energy,
so the total energy consumed by the system can be
minimized by only considering the energy due to
computing.

We consider that a node consumes no power
when no job is running, i.e., we assume that when
no job is running on the node then the node is ei-
ther powered off or put into a suspended mode. The
power consumption and the time to switch from
the suspended mode to the running mode are ne-
glected. If at least one job is running on node i,
then a fixed Pidle

i power consumption is added to
the power consumption due the job execution. In
terms of our MILP formulation, we add the follow-
ing binary variable

– Poni,t : equals 1 if node i is powered on at time t
and the two following constraints:

∀i, t Poni,t = ∑ j αi, j,t (for HPC setting) (24)

∀i, t Poni,t ≥ ∑ j αi, j,t (for Cloud setting) . (25)

– Constraints (24) and (25): at any time, if at least
one job has been allocated resources on one node,
the node is powered on. Note that Constraint (25)
does not force Poni,t to be equal to zero when
the node is idle. This will be realized by the
linear program solver when minimizing the en-
ergy consumption.
We consider that each job j has a power con-

sumption p j that is constant over time. Hence, the
power consumption of node i at any time t is a
function of the fractions of node i’s compute capac-
ity allocated to jobs running on node i, the power
consumption of these jobs, and the idle power con-
sumption of node i if it is powered on:

Pi(t) = ∑
j

αi, j,t × p j +Pidle
i ×Poni,t . (26)

A constraint on makespan can be added to for-
mulate the “Optimize E subject to M” problem. It
says that the makespan should be at most a factor
of x larger than a target makespan value M, which
could be a job’s deadline or Mopt obtained by the
“Optimize M” problem. A trade-off between per-
formance (makespan) and energy consumption can
be obtained:

∀ j c j ≤ x×M . (27)

5.3 Accounting for DVFS Capabilities

Some nodes may have DVFS capabilities, which
makes it possible to dynamically manage their power
consumption. The dynamic power consumption of
a node is usually a convex function of its variable

speed [6], [38]. In practice, nodes only provide a
relatively small set of discrete speeds to choose from.
The node speeds are variables represented by si,t
which corresponds to the DVFS level of node i at
time t. The dynamic power consumption of a node
executing a job j at speed si,t can be approximated
by sβ

i,t p j, where β > 1 denotes the power parameter
(usually 2 or 3 for CMOS-based processors), and
the execution time of the job is w j/si,t .

Accounting for DVFS capabilities in our MILP
formulation can be done by modeling the power
consumption of node i at time t as follows:

Pi(t) = ∑
j

αi, j,t × sβ

i,t × p j +Pidle
i ×Poni,t . (28)

With this modification, however, the formula-
tion for the energy consumption would no longer
be a linear function. As a result, the optimization
problem is no longer a linear program. One option
is, again, to approximate the energy as a step func-
tion. In all experiments that follow, we do not con-
sider this DVFS model and instead use the constant
dynamic power model in Equation (26).

6 Experimental Case-Study

To evaluate the correctness and usefulness of our
proposed MILP formulations, we solve formulations
for small problem instances in the HPC and Cloud
settings. We use the commercial Gurobi solver (ver-
sion 6.5) with a Gurobi gap of 0.01%, which repre-
sents the difference between the computed solution
and a computed bound on the optimal solution. In
the rest of this section, we simply call this value
the “gap”. Note that the evaluation of the spatio-
temporal model of temperature evolution is not part
of this work, since they have been already evaluated
in previous works [19], [34], [29]. We run the ex-
periments on an Intel Xeon E5-2603 processor with
a 1.60GHz CPU and 32 GB of RAM.

6.1 Experimental Setup

Workload – We consider a set of 12 jobs to be exe-
cuted on 6 homogeneous nodes. Because the nodes
are homogeneous, for each node i, Ri = R and Ci =

C. Thermal parameters are based on those in [29],
[37]: we set R = 0.7 and the values of F are con-
stant and defined to be e−

∆ t
RC = 0.5 (which deter-

mines the value of C). For each job j, we generate
values for the work (w j), resp. the dynamic power



10

consumption (p j), via sampling from a uniform prob-
ability distribution with range 1-10 timesteps, resp.
50-120 Watts according to typical node power con-
sumption [40]. In this manner, we generate 40 dif-
ferent instances for which we solve the MILP for-
mulations in Section 5.

We set α j = 1 for both HPC and Cloud con-
texts, meaning that jobs can fully utilize nodes. In
the HPC context αi, j,t can be 0 or 1. In the Cloud
context αi, j,t takes discrete values between 0 and
1 in 0.1 increments (as specified by the

−→
CV vec-

tor), which represents realistic partial node alloca-
tion schemes in typical clouds.
Datacenter – We adopt a classical air recirculation
matrix configuration (denoted by D) that is repre-
sentative of typical datacenters [4]. The maximum
node temperature T thresh is typically between 85◦C
and 100◦C [8]. We opt for Tthresh = 100◦C for the
output temperature of all nodes. The static power
of a node, Pidle

i , varies among architectures but is
typically in the range of 10-50 Watts. We assume it
contributes 15◦C to the temperature of each proces-
sor [8]. Since power and temperature are linked by
Equation (3) (thermal model), with the chosen ther-
mal resistance R and capacitance C, a temperature
increase of 15◦C gives an idle power of 42 Watts.
Hence, we set Pidle

i = 42 Watts.

6.2 Node Resource Allocation Examples

Before describing objective functions and results
obtained when solving our 40 problem instances,
we illustrate patterns of job executions and node
temperature variations in typical solutions both in
HPC and Cloud settings.

6.2.1 HPC Setting

The top part of Figure 2 depicts the load (vertical
axis) of a typical node for 15 time steps (on the
horizontal axis). At each time step, the node exe-
cutes a single job, as dictated by the HPC setting.
Among the 12 jobs in the workload, 3 are executed
on this node (job IDs are shown above each bar).
Job 5 is the first to execute at time step 0. Due to
the increase in temperature, the node is suspended
during the next time step, to avoid exceeding the
temperature threshold. Job 5 then resumes at time
step 2, followed by two idle time steps, again to al-
low for the node temperature to decrease. Then jobs
8 and 10 execute in sequence without the node be-
ing suspended due to its temperature being below
threshold (e.g., because nearby nodes have lower

temperature than at earlier time steps). According
to the constraints in the HPC setting, jobs execute
one after the other and the compute capacity of a
node is either allocated entirely to a job or not al-
located at all. The bottom part of Figure 2 shows
the node temperature (vertical axis) at each time
step (horizontal axis). As expected we see valleys
corresponding to time steps in which the node is
suspended, and we see temperature increases as the
node computes (e.g., from time step 5 onward).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Lo
a
d

5 5 8 8 8 8 8 8 8 8 10 10 

Node 2

0
1
2
3
4
5
6
7
8
9
10
11

(a) Job execution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
timesteps

0

20

40

60

80

100

T_
ou

t

T_out 2

(b) Node temperature

Fig. 2: Example workload execution and tempera-
ture variation on a node in the HPC setting.

6.2.2 Cloud Setting

Figure 3 shows a similar example as in the previ-
ous section, but for the Cloud setting. Jobs are al-
lowed to share the node during the same time step.
For example, at time step 3, jobs 5 and 8 share
the compute capacity of the node (job 5 uses 10%,
job 8 uses 90%). Also, the node’s compute capac-
ity is not necessarily used fully at each time step.



11

For instance, at time step 0, job 8 uses only 80% of
the capacity. This makes it possible to manage the
node’s temperature without introducing idle peri-
ods but instead by merely reducing the node usage.
As a result, the evolution of the node’s temperature
(bottom of Figure 3) is smoother than in the HPC
setting (bottom of Figure 2).

0 1 2 3 4 5 6 7 8 9 10 11
timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Lo
a
d

8 

8 8 5 8 

5 8 

8 5 8 8 

5 8 

8 

5 

8 

Node 3

0
1
2
3
4
5
6
7
8
9
10
11

(a) Job execution

0 1 2 3 4 5 6 7 8 9 10 11
timesteps

0

20

40

60

80

100

T_
ou

t

T_out 3

(b) Node temperature

Fig. 3: Example workload execution and tempera-
ture variation on a node in the Cloud setting.

6.3 Optimization Objectives

We consider the following two optimization prob-
lems, for which we have given MILP formulations
in Section 5:

– Minimize the makespan M;
– Minimize the energy E, subject to a makespan

constraint.

Both optimization problems are subject to thermal
constraints. The reason why we impose an addi-
tional makespan constraint for optimizing E is as

follows. Recall that we consider that when a node
is idle it can be powered off/suspended, thus mak-
ing its power consumption zero. Optimizing solely
the energy without considering the makespan can
thus lead to arbitrarily many idle time steps (since
this does not increase energy consumption and in
fact helps with thermal constraints). But in practice,
this can lead to unacceptably large makespans. To
the extreme, if the only objective is the energy, then
one should keep all nodes powered off.

To illustrate this point, for one of our instances,
we ran our solver to optimize the makespan and
to optimize the energy without any makespan con-
straint, in an HPC setting. Makespan and energy
Results are shown in Table 2. These results show
that, when optimizing the makespan (the “Optimize
M” column), our solver produces a solution with a
makespan of 8 and an energy consumption of 4107.28.
When optimizing the energy (the “Optimize E” col-
umn), our solver leads to the same energy, but a
makespan of 20 (more than twice longer than the
optimal makespan). When running the solver to min-
imize the energy but adding the constraint that the
makespan should be below or equal to 8, we obtain
the same energy consumption of 4107.28 (the “Op-
timize E subject to M” column). In this particular
case, all optimization problems have solutions with
the same energy.

To better understand the above we pick a node
and plot its load and power consumption through-
out the execution in the HPC setting for the “Opti-
mize M” (Figure 4), “Optimize E” (Figure 5), and
“Optimize E subject to M” (Figure 6) approaches.
In all three figures the node is either fully utilized
by a single job or idle, which is consistent with the
assumptions of the HPC setting (and the fact that
we set αi, j,t = 1 for each job j). In Figure 4 we
see that out of the 8 timesteps that make up the
makespan, the compute node is kept idle during 2
timesteps so as to reduce temperature. During each
non-idle timestep, the node executes job 5 then job
2. Figure 5 shows a very different picture, in which
there are many more idle timesteps. And yet, it is
possible to have fewer idle timesteps while respect-
ing thermal constraints (as in Figure 4). The reason
for this behavior is that since there is no incentive
to finish earlier in the “Optimize E” problem, the
solver finds an “easy” solution with a much higher
makespan. The energy spent during the unneces-
sary time steps is zero based on our assumption
when no jobs runs on a node. The results in Fig-
ure 6, for “Optimize E subject to M”, show that it
is possible, in this case, to optimize the energy and
achieve the same energy consumption (see Table 2)



12

Table 2: Example makespan and energy values when solving optimization problems in an HPC setting.

Optimize M Optimize E Optimize E subject to M
Makespan (M) 8 20 8

Energy (E) 4107.28 4107.28 4107.28

with much fewer time-steps. The produced solution
is different from that in Figure 4 for “Optimize M”
(different jobs are executed). But it results in simi-
lar makespan and energy consumption.

The power depends on the jobs power consump-
tion. Each job as a dynamic power consumption
(p j). In HPC, the power consumed during a time-
step depends on which job is executed. When a job
is executing it has the whole CPU so the power is
equal to job’s consumption. In the cloud, if a job
only has a ratio αi, j,t of the CPU of a node, the
power on that node due to that job is equal to the
αi, j,t ratio of the job consumption.

0 1 2 3 4 5 6 7
timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Lo
a
d

5 5 5 2 2 2 

Node 1

0
1
2
3
4
5
6
7
8
9
10
11

(a) Job execution

0 1 2 3 4 5 6 7
timesteps

0

20

40

60

80

100

120

140

Po
w

er

Power 1

(b) Node power

Fig. 4: Workload execution and power consump-
tion on a node when optimizing makespan (HPC
setting).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Lo
a
d

6 6 6 6 6 0 

Node 1

0
1
2
3
4
5
6
7
8
9
10
11

(a) Job execution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
timesteps

0

20

40

60

80

100

120

140

160

Po
w

er

Power 1

(b) Node power

Fig. 5: Workload execution and power consumption
on a node when optimizing energy (HPC setting).

Figure 7 shows results for “Optimize E” but in
the Cloud setting. We see that the node is idle for
only one timestep, but the node is shared by dif-
ferent jobs during two time-steps. This flexibility,
in contrast to the HPC setting, makes it possible
to perform more computation per time unit while
managing the temperature so as to closely respect
thermal constraints. In this case, it turns out that a
better makespan (of 7) can be achieve in the Cloud
setting than in HPC setting.

Equation (27) expresses a general constraint for
the “Optimize E subject to M” problem. The makespan
should be at most a factor x larger than the makespan
obtained by solving the “Optimize M” problem. Pick-
ing a particular value of x would then achieve a par-
ticular trade-off between application performance



13

0 1 2 3 4 5 6 7
timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Lo
a
d

10 10 10 10 10 10 

Node 1

0
1
2
3
4
5
6
7
8
9
10
11

(a) Job execution

0 1 2 3 4 5 6 7
timesteps

0

20

40

60

80

100

120

Po
w

er

Power 1

(b) Node power

Fig. 6: Workload execution and power consump-
tion on a node when optimizing energy subject to
makespan (HPC setting).

and energy consumption. For instance, picking x =
2 would mean that one is willing to reduce the en-
ergy consumption at the cost of having a makespan
twice as large as the optimal makespan. In all our
experiments in this work, we use x = 1, which cor-
responds to not tolerating any increase in makespan
for the sake of saving extra energy. The rationale
for this strategy is that makespan and energy are
tied anyway (a shorter makespan can reduce energy
consumption because nodes are used for a shorter
period of time). As in the example above, our re-
sults show that energy can be minimized with this
stringent makespan constraint (i.e., inserting addi-
tional idle steps increases the makespan but does
not reduce energy consumption in our results).

For both optimization problems, we consider
theoretical (i.e., ideal) bounds on the optimal so-
lution. A lower bound on the makespan is obtained
by assuming that the workload is perfectly balanced
across the nodes and that all jobs are executed at

0 1 2 3 4 5 6
timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Lo
a
d

1 2 2 1 7 2 1 7 

Node 1

0
1
2
3
4
5
6
7
8
9
10
11

(a) Job execution

0 1 2 3 4 5 6
timesteps

0

20

40

60

80

100

120

140

Po
w

er

Power 1

(b) Node power

Fig. 7: Workload execution and power consump-
tion on a node when optimizing energy subject to
makespan (Cloud setting).

full speed (αi, j,t = α j for each timestep t during
which a job is executed). This lower bound can-
not be achieved because load balancing is not per-
fect and because of thermal constraints. An upper
bound on the energy is obtained by assuming that
all nodes are powered on during the execution of
the workload.

6.4 Case-Study Results

6.4.1 HPC Setting

Figure 8 shows average results over the 40 instances
as obtained by the solver in the HPC setting, with
makespan results in Figure 8(a) and energy results
in Figure 8(b). In this figure, “The objective” refers
to the case where the shown metric coincides with
the optimization objective and “Not the objective”
is when it does not. For instance, in Figure 8(a),
the “Not the objective” bar is the average makespan



14

values obtained when optimizing the energy. First,
we observe that the makespan is the same in both
optimization problems. This is because the energy
is optimized under the makespan constraint discussed
earlier. Moreover, the energy is also the same in
both optimization problems. It turns out that, in HPC
settings, makespan and energy are equivalent ob-
jectives. This is because we have homogeneous nodes
and a node’s compute capacity is allocated either
fully to a job or not at all, in which case the node is
powered off. The allocation of jobs to nodes could
vary when optimizing one objective or the other,
but the energy is always directly proportional to the
makespan (see Equation (23)).

0

2

4

6

8

10

12

14

16

M
a
ke

sp
a
n

The objective Not the objective LowerBound

(a) Makespan

0

2000

4000

6000

8000

10000

E
n
e
rg

y

The objective Not the objective UpperBound

(b) Energy

Fig. 8: Makespan and energy for different optimiza-
tion problems in the HPC setting.

On average, the makespan found by the MILP
solver is greater than the lower bound by 35.9%,
which is expected since the lower bound cannot
be achieved due to the scheduling and temperature
constraints. Conversely, the energy found by the

solver is lower than the upper bound by 41.7% on
average.

6.4.2 Cloud Setting

In the Cloud setting, solving the linear program takes
longer than in the HPC setting. This is because the
search space is larger: Fractions of node compute
capacity can be allocated to jobs (from 0 to 1 in
steps of 0.1). Furthermore, unlike in the HPC set-
ting, the energy takes continuous values, which ren-
ders the energy minimization more time consum-
ing. When minimizing the energy, for most instances,
a solution with a gap of 0.01% is not produced within
10 hours. Figure 9 plots the gap for each instance,
as well as the average value. For 11 out of the 40
instances, the gap is below 1%. The maximum gap
among all instances is just under 5%, and the mean
gap is 1.87% with a fairly low standard deviation
below 0.32%.

0 5 10 15 20 25 30 35 40
Instances

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

['
G

a
p
 i
n
 %

',
 '
M

e
a
n
 G

a
p
 i
n
 %

']

Gap in % Mean Gap in %

Fig. 9: Gap of each instance and mean gap for en-
ergy optimization results in the Cloud setting.

Figure 10(a) shows makespan results. Like in
Figure 8(a), the makespan value is the same when
the optimization objective is the makespan or the
energy (due to the use of a makespan constraint
when optimizing energy). Here the makespan is greater
than the lower bound by 28.9% on average.

Figure 10(b) shows energy results. The achieved
average energy is lower when the optimization ob-
jective is the energy. In other words, when optimiz-
ing for the makespan one ends up consuming more
energy than the minimum achievable energy con-
sumption. This is because the energy is not directly
proportional to the makespan, since in the Cloud
setting a node can be partially allocated to a job (or
several jobs), thus leaving some compute capacity



15

unused. On average, the optimized energy value is
lower than the upper bound by 39% while the en-
ergy obtained by optimizing the makespan is lower
than the upper bound by only 30%.

0

2

4

6

8

10

12

14

M
a
ke

sp
a
n

The objective Not the objective LowerBound

(a) Makespan

0

2000

4000

6000

8000

10000

E
n
e
rg

y

The objective Not the objective UpperBound

(b) Energy

Fig. 10: Makespan and energy for different opti-
mization problems in the Cloud setting.

Figure 11 shows, for each instance, the differ-
ence between the energy when it is the optimiza-
tion objective and the energy when the optimization
objective is the makespan. It also plots the gap for
each instance since the energy optimization in the
Cloud setting gives results with non-zero gap val-
ues. The maximum difference for the energy metric
in both optimizations among all instances is above
12%, and the mean energy difference is 6.7%. The
mean gap is around 2%, meaning that it does not
explain the above differences. The results show that
for the optimal makespan it is possible to achieve
better energy consumption, which was not possi-
ble in the HPC setting. In the Cloud setting there
is more flexibility to allocate resources: the execu-
tion can benefit from sharing the same node among

multiple jobs so that energy consumed due to static
power can be saved by optimizing the resource shar-
ing. Thus, optimizing energy under the makespan
constraint produces the best solutions in this con-
text.

6.4.3 HPC vs. Cloud Settings

In both HPC and Cloud settings, the aim is to opti-
mize either the makespan or the energy, while re-
specting a temperature threshold. The Cloud set-
ting is more general since an HPC solution is es-
sentially a more constrained Cloud solution (zero
or full node allocation, no job execution interleav-
ing). In this section, we compare the makespan and
the energy obtained when optimizing either objec-
tive in both HPC and Cloud settings.

Figure 12 shows results for each metric (makespan
or energy) when that metric is the optimization ob-
jective, in both HPC and Cloud settings. Figure 12(a)
shows the makespan results. We can see that the
makespan is lower (by 11%) in the Cloud setting.
This is because being able to allocate less than 100%
of a node’s compute capacity makes it possible to
complete all tasks earlier while respecting tempera-
ture constraints. Indeed, utilizing fractions of a node
allows to decrease the temperature without ever pow-
ering down the node, whereas in an HPC setting
idle periods are needed to decrease the temperature.
Moreover, in the Cloud setting, job interleaving is
allowed, which also helps to handle the nodes’ tem-
peratures without introducing idle periods (i.e., jobs
that consume less power can be selected for ex-
ecution). Figure 12(b) is similar to Figure 12(a),
but shows average energy results. In the Cloud set-
ting, the energy is slightly higher (by 1.9%). This is
due to the gap in the energy optimization solution,
which is 0% in an HPC setting but has an average
value of 2% in the Cloud setting.

Figure 13 shows results for each metric (makespan
or energy) when that metric is not the optimization
objective, in both HPC and Cloud settings. Figure
13(a) shows makespan results. The results are iden-
tical to those in Figure 12(a). Again, this is be-
cause the energy is always optimized subject to a
makespan constraint. Figure 13(b) shows that when
the objective is the makespan, the energy achieved
in the Cloud setting is 8.7% higher than the one
achieved in the HPC setting. Note that the makespan
is lower in the Cloud setting than in the HPC set-
ting when the makespan is the optimization objec-
tive (Figure 12(a)). A better makespan is achieved
in the Cloud setting by allocating fractions of the
nodes’ compute capacities, which leads to temper-



16

0 5 10 15 20 25 30 35 40
Instances

0

2

4

6

8

10

12

14

['
G

a
p
 i
n
 %

',
 '
D

if
f 

E
 i
n
 C

lo
u
d
 i
n
 %

']

Gap in % Diff E in Cloud in %

Fig. 11: Gurobi gap and the difference of energy consumption between optimizing energy and optimizing
makespan in the Cloud setting.

0

2

4

6

8

10

12

14

16

M
a
ke

sp
a
n

HPC Cloud

(a) Makespan optimization

0

1000

2000

3000

4000

5000

6000

7000

8000

E
n
e
rg

y

HPC Cloud

(b) Energy optimization

Fig. 12: Makespan and energy in both HPC and
Cloud settings with matching objectives.

ature decreases. This is in contrast to the HPC set-
ting, where idle periods are introduced, which saves
energy (e.g., a node’s static power consumption)
but increases the makespan significantly. Overall,

the results confirm the intuition that, in the Cloud
setting, the best approach is to optimize energy sub-
ject to a makespan constraint.

0

2

4

6

8

10

12

14

16

M
a
ke

sp
a
n

HPC Cloud

(a) Energy optimization

0

1000

2000

3000

4000

5000

6000

7000

8000

E
n
e
rg

y

HPC Cloud

(b) Makespan optimization

Fig. 13: Makespan and energy in both HPC and
Cloud settings with opposite objectives.



17

6.4.4 MILP vs. Heuristics

As mentioned in Section 1, one use of an MILP for-
mulation for a resource allocation problem is to as-
sess, on small instances, the effectiveness of polynomial-
time heuristics in an absolute sense. In this section,
we demonstrate this use by evaluating two heuris-
tics that have been proposed in the HPC setting (to
the best of our knowledge no usable thermal-aware
heuristic has been proposed in the Cloud setting).
Specifically, we consider the Coolest heuristic [19],
[33] and the Spatio-Temporal heuristic [32]:

– Coolest: a simple thermal-aware scheduling heuris-
tic that places a job on the node with the low-
est temperature at the time of assignment. This
heuristic is not designed to be aware of the tem-
perature threshold. To ensure that the threshold
is not exceeded, we augment the heuristic so
that it suspends a node when further execution
would make the node’s temperature exceed the
threshold, and resumes it as soon as it is safe to
do so.

– Spatio-Temporal: a thermal-aware scheduling heuris-
tic that aims at minimize the makespan subject
to a temperature threshold while taking both spa-
tial and temporal temperature evolution into ac-
count. A job is placed on a node to balance
the loads of all nodes in a thermal-aware man-
ner (e.g., with potential idle steps included to
avoid violation of the temperature threshold).
The nodes’ temperatures are regulated via DVFS,
in a concerted manner based again on their thermal-
aware loads. Nodes are ensured to remain be-
low the threshold temperature by choosing at
which frequency each job should run or, in the
case without DVFS capabilities, when a node
should be temporarily suspended. In our exper-
iments, we do not consider DVFS capabilities.

Neither heuristic aims to minimize energy, and
Coolest does not even aim to minimize makespan,
but both heuristics aim to schedule the workload
from a thermal-aware perspective: Coolest aims to
have a homogeneous thermal map in a datacenter
while Spatio-Temporal aims to maintain the tem-
perature below a threshold. Here, we only report
on makespan results, since the energy obtained by
the MILP and the two heuristics is the same. This
is because, in the HPC setting, each job consumes
a fixed amount of energy regardless of the sched-
ule (due to using 0% or 100% of a node’s compute
capacity).

Figure 14(a) plots the makespan of the solution
obtained by the MILP and those achieved by the

two heuristics for each of our 40 problem instances,
while Figure 14(b) shows average makespans. We
can see that the results of the two heuristics are
close: Spatio-Temporal is about 9.5% better than
Coolest on average. Spatio-Temporal performs slightly
better than Coolest because it is makespan-aware
and regulates the temperatures of all nodes in a con-
certed way as compared to the distributed tempera-
ture regulation employed by Coolest. MILP is bet-
ter by 21% compared to Spatio-Temporal and by
28.6% compared to Coolest (the average makespans
computed by MILP, Coolest and Spatio-Temporal
over the 40 instances are 15, 21 and 19, respec-
tively). Neither heuristic attempts to solve the prob-
lem optimally: Coolest chooses the node with the
lower temperature while Spatio-Temporal makes load
balancing based on the concept of thermal-aware
load [32]. These results quantify the “room for im-
provement” for both heuristics, at least on small in-
stances. For these particular heuristics, the room for
improvement is non-negligible, at about 21%, sug-
gesting that striving for better heuristics may be a
worthwhile endeavor.

7 Conclusion and Future Work

In this paper, we have proposed MILP formulations
for datacenter resource allocation problems with ther-
mal constraints. These formulations are the first to
take into account both spatial and temporal aspects
of heat production and dispersion. Through several
case-studies, we have shown the usefulness of these
formulations for both makespan and energy opti-
mizations in HPC and Cloud settings. Although the
size of the problem instances is limited by the ca-
pabilities of our linear program solver and large in-
stances are out of reach, the proposed MILP for-
mulations are valuable for several reasons. In this
paper, we have compared the optimal solutions ob-
tained by MILP to the solutions computed by two
polynomial-time heuristics [19], [32] that were pre-
viously proposed for makespan minimization in HPC
setting. Our comparison provides an absolute mea-
sure of the efficacy of these heuristics.

Our main future direction is to work on im-
proved mathematical formulations in order to find
shortcuts and prune the search tree of the Gurobi
solver (possibly assisted by computational intelli-
gence design frameworks that are being utilized in
smart design process), so as to be able to solve sig-
nificantly larger problem instances. Designing im-
proved heuristics, possibly inspired and informed
by the MILP formulations (e.g., using relaxation



18

0 5 10 15 20 25 30 35 40
Instances

5

10

15

20

25

30

35

['
M

 O
p
ti

m
a
l',

 '
M

 C
o
o
le

st
',
 '
M

 S
p
a
ti

o
-T

e
m

p
o
ra

l']
M Optimal M Coolest M Spatio-Temporal

(a) Makespan for each instance

0

5

10

15

20

25

M
a
ke

sp
a
n

Optimal Coolest Spatio-Temporal

(b) Average makespan

Fig. 14: Makespan obtained by solving the MILP
and by the Coolest and Spatio-Temporal heuristics.

techniques), is another future direction that is worth
investigating.

References

1. Y. Bai, L. Gu and X. Qi. Comparative Study of Energy
Performance between Chip and Inlet Temperature-Aware
Workload Allocation in Air-Cooled Data Center Energies,
11(3):669, 2018.

2. N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to
manage energy and temperature. Journal of the ACM,
54(1):3:1–3:39, 2007.

3. A. Barkat and A. Capone. Effective management of
green cloud data centers using energy storage tech-
nologies. In Proceedings of the 23rd International
Conference on Software, Telecommunications and
Computer Networks (SoftCOM), 2015.

4. BlueTool. http://impact.asu.edu/BlueTool/
5. D. Borgetto, H. Casanova, G. Da Costa, and J.-M. Pier-

son. Energy-aware service allocation. Future Gener.
Comput. Syst., 28(5):94–125769–779, 2012.

6. D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N.
Kudva, A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban,
M. Gupta, and P. W. Cook. Power-aware microarchitec-
ture: Design and modeling challenges for next-generation
microprocessors. IEEE Micro, 20(6):26–44, 2000.

7. M. T. Chaudhry, T. C. Ling, A. Manzoor, S. A. Hussain
and J. Kim. Comparative Study of Energy Performance
between Chip and Inlet Temperature-Aware Workload Al-
location in Air-Cooled Data Center ACM Computing
Surveys, 47(3):39:1–39:48, 2015.

8. K. Ebrahimi, G. F. Jones, and A. S. Fleischer. A review
of data center cooling technology, operating conditions
and the corresponding low-grade waste heat recovery op-
portunities. Renewable and Sustainable Energy Reviews,
31(C):622–638, 2014.

9. C. Gu, L. Zhang, Z. He, H. Huang, X. Jia. Minimizing
energy cost for green cloud data centers by using ESDs. In
Proceedings of the 34th IEEE International Performance
Computing and Communications Conference, 2015.

10. M. E. Haque, I. Goiri, R. Bianchini, and T. D. Nguyen
GreenPar: Scheduling parallel high performance applica-
tions in green datacenters In Proceedings of the 29th ACM
International Conference on Supercomputing (ICS), 2015.

11. C. Herzog and J. Pierson. A Generic Learn-
ing Multi-agent-System Approach for Spatio-Temporal-,
Thermal- and Energy-Aware Scheduling In Proceedings
of the Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP), 2018.

12. B. Kantarci, L. Foschini, A. Corradi, H. T. Mouf-
tah. Inter-and-intra data center VM-placement for energy-
efficient large-scale cloud systems. In Proceedings of the
First International workshop on Management and Security
technologies for Cloud Computing, 2012.

13. H. Liu, B. Liu, L. T. Yang, M. Lin, Y. Deng, K. Bilal and
S. U. Khan. Thermal-Aware and DVFS-Enabled Big Data
Task Scheduling for Data Centers. IEEE Transactions on
Big Data, 2(4):177–190, 2018.

14. G.I. Meijer. Cooling Energy-Hungry Data Centers.
Science, 5976(328):318–319, 2010.

15. K. Metwally, A. Jarray and A. Karmouch. MILP-Based
Approach for Efficient Cloud IaaS Resource Allocation.
In Proceedings of the IEEE 8th International Conference
on Cloud Computing, 2015.

16. Y. Mhedheb and A. Streit. Energy-efficient Task
Scheduling in Data Centers. In Proceedings of the
6th International Conference on Cloud Computing and
Services Science, 2016.

17. T. Mukherjee, A. Banerjee, G. Varsamopoulos, S. K. S.
Gupta, and S. Rungta. Spatio-temporal thermal-aware
job scheduling to minimize energy consumption in virtu-
alized heterogeneous data centers. Computer Networks,
53(17):2888–2904, 2009.

18. H. M. Mohammad Ali, T. E. H. El-Gorashi,
A. Q. Lawey and J. M. H. Elmirghani. Future En-
ergy Efficient Data Centers With Disaggregated Servers.
Journal of Lightwave Technology, 35(24):5361–5380,
2017.

19. J. Moore, J. Chase, P. Ranganathan, and R. Sharma.
Making scheduling “cool”: temperature-aware workload
placement in data centers. In USENIX Conference, 2005.

20. K. Mukherjee, S. Khuller and A. Deshpande. Al-
gorithms for the thermal scheduling problem. In
Proceedings of the IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 2013.

21. S. A. Nada and M. A. Said. Effect of CRAC units layout
on thermal management of data center Applied Thermal
Engineering, 118:339–344, 2017.

22. E. Pakbaznia and M. Pedram. Minimizing data cen-
ter cooling and server power costs. In Proceedings of
the ACM/IEEE International Symposium on Low Power
Electronics and Design (ISLPED), 2009.



19

23. D. Rajan and P. S. Yu. Temperature-aware scheduling:
When is system-throttling good enough? In Proceedings
of the International Conference on Web-Age Information
Management (WAIM), 2008.

24. L. Ramos and R. Bianchini. C-Oracle: Predictive ther-
mal management for data centers. In Proceedings of
the IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2008.

25. A. Sansottera and P. Cremonesi. Cooling-aware
workload placement with performance constraints.
Performance Evaluation, 68(11):1232-1246, 2011.

26. R. Sharrock, T. Monteil, P. Stolf O. Brun. Autonomic
computing to manage green Core networks with Quality
of Service. In Proceedings of the Energy Efficiency in
Large Scale Distributed Systems conference (EE-LSDS),
2013.

27. O. Sarood, P. Miller, E. Totoni, and L. V. Kale. “Cool”
load balancing for high performance computing data cen-
ters. IEEE Transactions on Computers, 61(12):1752–
1764, 2012.

28. K. Skadron, T. Abdelzaher, and M. R. Stan. Control-
theoretic techniques and thermal-RC modeling for ac-
curate and localized dynamic thermal management.
In Proceedings of the International Symposium on
High-Performance Computer Architecture (HPCA), 2002.

29. K. Skadron, M. R. Stan, K. Sankaranarayanan,
W. Huang, S. Velusamy, and D. Tarjan. Temperature-
aware microarchitecture: Modeling and implementa-
tion. ACM Transactions on Architecture and Code
Optimization, 1(1):94–125, 2004.

30. M. Stillwell, D. Schanzenbach, F. Vivien and
H. Casanova. Resource Allocation Algorithms for
Virtualized Service Hosting Platforms J. of Parallel and
Dist. Comp., 70(9):962-974, 2010.

31. H. Sun, P. Stolf, J.-M. Pierson, and G. Da Costa.
Energy-efficient and thermal-aware resource management
for heterogeneous datacenters. Sustainable Computing:
Informatics and Systems, 4(4):292–306, 2014.

32. H. Sun, P. Stolf, and J.-M. Pierson. Spatio-
temporal thermal-aware scheduling for homogeneous
high-performance computing datacenters. Future Gener.
Comput. Syst., 71C:157-170, 2017.

33. Q. Tang, S. K. S. Gupta, and G. Varsamopoulos.
Energy-efficient thermal-aware task scheduling for ho-
mogeneous high-performance computing data centers: A
cyber-physical approach. IEEE Transactions on Parallel
and Distributed Systems, 19(11):1458–1472, 2008.

34. Q. Tang, T. Mukherjee, S. K. S. Gupta, and P. Cayton.
Sensor-based fast thermal evaluation model for energy ef-
ficient high-performance datacenters. In Proceedings of
the Fourth International Conference on Intelligent Sensing
and Information Processing (ICISIP), 2006.

35. T. Van Damme, C. De Persis and P. Tesi. Optimized
Thermal-Aware Job Scheduling and Control of Data Cen-
ters. IFAC-PapersOnLine, 50(1):8244-8249, 2017.

36. L. Wang, S. U. Khan, and J. Dayal. Thermal aware
workload placement with task-temperature profiles in a
data center. Journal of Supercomputing, 61(3):780–803,
2012.

37. J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin.
Dynamic Thermal Management through Task Scheduling.
In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and software (ISPASS),
2008.

38. F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced CPU energy. In Proceedings of the
Annual Symposium on Foundations of Computer Science
(FOCS), 1995.

39. S. Zhang and K. S. Chatha. Approximation algo-
rithm for the temperature-aware scheduling problem. In
Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2007.

40. V. Villebonnet, G. Da Costa, L. Lefevre, JM. Pier-
son, and P. Stolf. Dynamically Building Energy Propor-
tional Data Centers with Heterogeneous Computing Re-
sources (short paper). In IEEE International Conference
On Cluster Computing (CLUSTER 2016), Taipei, Taiwan,
2016.


