When Amdahl Meets Young/Daly

Aurélien Cavelan®  Jiafan Li®  Yves Robert!:2
Hongyang Sun?!

LENS Lyon & INRIA, France.
2University of Tennessee Knoxville, USA.

3East China Normal University, China.

IEEE Cluster’'16@Taipei, Taiwan
September 14, 2016



What is the optimal number of processors to
execute a parallel job obeying Amdahl’s law
on a failure-prone platform?
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Speedup with P processors and « sequential fraction:

» Bounded above by 1/«

» Strictly increasing function of P
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Allocating processors on a failure-prone platform?
» Same speedup ©

» More errors/failures @

,
MTBF pp = ’I';d

» Increased resilience overhead ®



Resilience for HPC

Fail-stop errors: e.g., resource crash, node failure
- Instantaneous error detection

Standard approach: periodic checkpointing, rollback and recovery
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Resilience for HPC

Fail-stop errors: e.g., resource crash, node failure
- Instantaneous error detection

Standard approach: periodic checkpointing, rollback and recovery

2. recover
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3. re-execute T

Optimal checkpointing interval a la Young/Daly:

T =+2uC
where 1 is MTBF and C is checkpointing time

» First-order approximation formula

» With fixed processor allocation



Coping with Silent Errors

Silent errors (or Silent Data Corruptions or SDCs): e.g., soft faults
in L1 cache, ALU, double bit flip, due to cosmic radiation,
packaging pollution, etc.

- Arbitrary detection latency

Promising approach: combine checkpointing with verification (for
error detection)
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Coping with Silent Errors

Silent errors (or Silent Data Corruptions or SDCs): e.g., soft faults
in L1 cache, ALU, double bit flip, due to cosmic radiation,
packaging pollution, etc.

- Arbitrary detection latency

Promising approach: combine checkpointing with verification (for
error detection)

1. silent error
3. recover
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4. re-execute T

» Extension of Young/Daly: T* = /u(V + C)

» Many methods to detect silent errors



Methods for Detecting Silent Errors

General-purpose approaches
> Replication [Fiala et al. 2012] or triple modular redundancy and voting
[Lyons and Vanderkulk 1962)
Application-specific approaches

> Algorithm-based fault tolerance (ABFT): checksums in dense matrices
Limited to one error detection and/or correction in practice [Huang and
Abraham 1984)

> Partial differential equations (PDE): use lower-order scheme as
verification mechanism [Benson, Schmit and Schreiber 2014]

> Generalized minimal residual method (GMRES): inner-outer iterations
[Hoemmen and Heroux 2011]

> Preconditioned conjugate gradients (PCG): orthogonalization check every
k iterations, re-orthogonalization if problem detected [Sao and Vuduc
2013, Chen 2013
Data-analytics approaches

> Dynamic monitoring of HPC datasets based on physical laws (e.g.,
temperature limit, speed limit) and space or temporal proximity
[Bautista-Gomez and Cappello 2014]

> Time-series prediction, spatial multivariate interpolation [Di et al. 2014]
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» Optimal checkpointing interval T*
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Coping with both fail-stop and silent errors:

without error

Mcl 7 Ve 7 [Vc]
Time
pattern
Fail-stop error
e| [o[r] 7 [v[e| 7 [v]€]
Time
Silent error
Me| 7 IV[rR[ 7 [ve] 7




Models

Error model: exponential distribution, Ajng = 1/ tind
(memoryless and independent)

error rate error probability

. _\
Fail-stop errors | Ab = fA\inaP | gb =1—e T
Silent errors Ap=SAindP | gp=1— e el

Resilience model:

Checkpointing time Cp=a+b/P+cP
Verification time Vp=v+u/P
Down time (fail-stop) | D

All coefficients (a, b, c, v, u, f,s, D) are assumed to be constants



Main Results

Exact execution time of a pattern in expectation (see paper)

First-order approximation of optimal P*, T* and H*
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Exact execution time of a pattern in expectation (see paper)
First-order approximation of optimal P*, T* and H*
» Case 1: checkpoint cost increases with P (Cp = cP + o(P))
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Main Results

Exact execution time of a pattern in expectation (see paper)
First-order approximation of optimal P*, T* and H*
» Case 1: checkpoint cost increases with P (Cp = cP + o(P))
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Limitation of First-Order Approximation

Difficulty with other (less practical) cases:
eg, Cp+Vp=h/Pora=0

Observation: Suppose P = ©()\, }) and T = O(\,.}). Then,
for first-order approx. to accurately estimate error probabilities
(e.g., e PP e *PVP and e**T), we need:

1/2 ifc#0

x < 0, where § =
1 ifc=0

x+y<l1
= P.T< 1/)\ind = Uind (MTBF)



Limitation of First-Order Approximation

Difficulty with other (less practical) cases:
eg, Cp+Vp=h/Pora=0

Observation: Suppose P = ©()\, }) and T = O(\,.}). Then,
for first-order approx. to accurately estimate error probabilities
(e.g., e PP e *PVP and e**T), we need:

x < 0, where § = /2 ife0
1 ifc=0
x+y<l1

= P. T 1/)\ind = Uind (MTBF)

Possible solution: second or high-order approximations with
numerical methods



Simulation Settings

Table: Model parameters from SCR library [Moody et al. 2010]

Platform Hera Atlas Coastal | Coastal SSD
Aind 1.69e-8 | 1.62e-8 | 2.34e-9 2.34e-9
f 0.2188 | 0.0625 | 0.1667 0.1667
s 0.7812 | 0.9375 | 0.8333 0.8333
P 512 1024 2048 2048
Cp 300s 439s 1051s 2500s
Vp 15.4s 9.1s 4.5s 180s

Table: Different resilience scenarios
Scenario 1 2 3 4 5 6
Cp cP | cP a a | b/P | b/P
Vp v |u/P| v |u/P| v |u/P




Simulation Results
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Simulation Results

- Impact of sequential fraction o and error rate )4

10° . - T 0.120 : - T
Scenario 1 (first-order) Scenario 1 (first-order)
© @ Scenario 1 (optimal) © @ Scenario 1 (optimal)
3 10t Scenario 3 (first-order) B Scenario 3 (first-order)
2 BB Scenario 3 (optimal) 2 0.115 |/ ™™ Scenario 3 (optimal)
5 #—+ Scenario 5 (first-order) o #—+ Scenario 5 (first-order)
3 ¢4 Scenario 5 (optimal) 3 44 Scenario 5 (optimal)
S 107} 1 H
S S
3 2 0110
K3 %
o 103} 4 v
o o
2 2
& ©
204 S 0105}
£ 10"y i E
@ A
10 . . . 0.100 === e Y )
0 0.0001 0.001 0.01 0.1 le-12 le-11 le-10 1e-09 1e-08

Sequential fraction o Individual error rate X,



Simulation Results

- Order of optimal P* and T*

Optimal number of processors P*
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Conclusion

What to remember
» Optimal P* and T* as function of MTBF fing = 1/Aing

1 Checkpointing cost increases with P
« ~1/4y T ~1/2
=P = e(/\ind/ )’ T = e()‘ind/ )
2 Checkpointing/verification cost remains constant
= P =0(\?), T = 00"

Future work

» Explore different speedup profiles, weak scaling, higher-order
approximations
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