
A Scalability and Sensitivity Study of Parallel
Geometric Algorithms for Graph Partitioning

Shad Kirmani∗, Hongyang Sun†, Padma Raghavan†
∗eBay Inc. Brisbane, CA, USA

†Vanderbilt University, Nashville, TN, USA

Abstract—Graph partitioning arises in many computational
simulation workloads, including those that involve finite difference
or finite element methods, where partitioning enables efficient
parallel processing of the entire simulation. We focus on parallel
geometric algorithms for partitioning large graphs whose vertices
are associated with coordinates in two- or three-dimensional
space on multi-core processors. Compared with other types of
partitioning algorithms, geometric schemes generally show better
scalability on a large number of processors or cores. This paper
studies the scalability and sensitivity of two parallel algorithms,
namely, recursive coordinate bisection (denoted by pRCB) and
geometric mesh partitioning (denoted by pGMP), in terms of their
robustness to several key factors that affect the partition quality,
including coordinate perturbation, approximate embedding, mesh
quality and graph planarity. Our results indicate that the quality
of a partition as measured by the size of the edge separator (or
cutsize) remains consistently better for pGMP compared to pRCB.
On average for our test suite, relative to pRCB, pGMP yields
25% smaller cutsizes on the original embedding, and across all
perturbations cutsizes that are smaller by at least 8% and by as
much as 50%. Not surprisingly, higher quality cuts are obtained
at the expense of longer execution times; on a single core, pGMP
has an average execution time that is almost 10 times slower than
that of pRCB, but it scales better and catches up at 32-cores to be
slower by less than 20%. With the current trends in core counts
that continue to increase per chip, these results suggest that pGMP
presents an attractive solution if a modest number of cores can be
deployed to reduce execution times while providing high quality
partitions.

Index Terms—Recursive coordinate bisection; geometric mesh
partitioning; graph embedding

I. INTRODUCTION

Long-running computational modeling and simulation work-
loads are typically executed on supercomputers using a large
number of processors or cores to reduce the execution time
that may otherwise be prohibitive. Many such workloads can
be modeled as graphs, which are then partitioned recursively to
provide a mapping of the application to the processors [26]. A
key step concerns partitioning a graph into two subgraphs so
that they ideally have equal size to balance the workloads and
the fewest number of edges connecting them (small separator
size or cutsize) to reduce data movement or communication.

Graph partitioning has been extensively studied by the liter-
ature. For general graphs, partitioning has been shown to be
NP-complete [13], and hence many heuristic solutions have
been developed (e.g., [1], [6], [18], [25]). When additional
information is available, partitioning can become somewhat eas-
ier. For instance, in scientific computing, many problems have
associated coordinate information, such as when numerically

solving partial differential equations (PDEs) on a mesh, and
this is when geometric partitioning comes into play.

Geometric partitioning algorithms work on graphs whose
vertices have associated coordinates in two or three dimensions,
such as those involving finite difference or finite element meth-
ods. Parallel algorithms using line or plane separators, such
as recursive coordinate bisection (RCB) [3], cartesian nested
dissection (CND) [15] or Multi-Jagged [8] have been shown
to provide good partition quality and scale well; the Zoltan
library [4] for parallel RCB is well-established and used widely.
Another algorithm called geometric mesh partitioning (GMP)
that uses sphere separators was shown to be provably good for
certain classes of well-shaped finite-element meshes [14], [23].

One limitation of geometric algorithms, however, is that not
all graphs have associated coordinate information. For such
graphs, multi-level partitioning algorithms, such as ParMetis
[19] and Pt-Scotch [25], have good performance on a modest
number of cores but do not scale well on higher core counts.
Recently, the ScalaPart algorithm [20] was developed to com-
bine the parallel scalability of RCB or CND with the higher
partition quality typical of GMP and a broader applicability to
arbitrary graphs without coordinates. ScalaPart is a multi-level
method with graph embedding to impart coordinates, followed
by geometric mesh partitioning with sphere separators and a
geometric variant of the Fiduccia-Mattheyses method [11] to
refine the separators and reduce cutsizes.

In this paper, we focus on graphs that have coordinates or
associated embeddings to study the scalability and sensitivity of
two parallel geometric algorithms RCB and GMP (henceforth
denoted by pRCB and pGMP, respectively). We consider several
factors that could impact their performance. For instance, the
coordinates of a graph’s vertices may originate from a physical
process or a scientific simulation, and these coordinates may
be subject to perturbations due to errors in measurement or the
need to refine the mesh during the simulation. We are interested
in how well parallel geometric algorithms scale with the number
of cores in a system, and how their partition qualities are
affected by coordinate perturbation and approximate embedding,
as well as by other factors such as mesh quality and graph
planarity. Such a study is instrumental in characterizing the
parallel performance and robustness of the algorithms as well
as their quality-performance trade-offs. The results will help not
only in better utilizing these existing algorithms but also in the
design of new parallel geometric schemes.

We conduct extensive experiments on a 32-core cluster using
a set of sparse graph benchmarks with force-based embedding

and finite-element meshes. We compare the performance of
pRCB as implemented in Zoltan, and pGMP as used in Scala-
Part. The following summarizes our main findings:
• Scalability: pRCB is much faster than pGMP, especially

on a single core (where pRCB is almost 10 times faster).
This is due to its efficient implementation in Zoltan and
RCB’s simpler line/plane separators to partition the graphs.
However, pGMP scales well with increasing number of
cores and catches up at 32 cores to be slower by less than
20%.

• Sensitivity: pGMP is generally more robust to perturbations
of the graph geometry due to the use of more sophisticated
sphere separators. Specifically, pGMP consistently outper-
forms pRCB in terms of the cutsize by at least 8% and by
as much as 50% for different graph perturbations starting
from an original embedding where pGMP is on average
25% better.

These results suggest that pGMP presents an attractive al-
ternative to pRCB and a robust solution for partitioning large
graphs from a modest number of cores with competitive parallel
performance and high partition quality.

The rest of this paper is organized as follows. Section II
provides the relevant background and a brief overview of the re-
lated work. Section III develops our evaluation methodology by
discussing the factors that could affect the partitioning quality.
The performance evaluation of pRCB and pGMP with respect
to these factors are presented in Section IV. We summarize our
findings and remark on future directions in Section V.

II. BACKGROUND AND RELATED WORK

Many graph partitioning algorithms have been developed,
including multi-level methods, spectral methods and geometric
methods, as well as their combinations [9]. This section gives a
background of these methods and surveys the related work with
an emphasis on the geometric algorithms.

A. Graph Partitioning Problem

First, we briefly describe the graph partitioning problem
to be considered: Given an unweighted and undirected graph
G = (V,E), where V is the set of vertices, E is the set of
edges. For geometric algorithms, a set C of two- or three-
dimensional coordinates corresponding to the set of vertices is
also provided. We focus on sparse graphs with |V | = N and
|E| = M such that M is a small constant times N . Using
a graph partitioning algorithm, we would like to partition the
set of vertices V into two disjoint subsets V1 and V2 of nearly
equal size such that the total number of edges connecting the
vertices in V1 and the vertices in V2 is minimized. In other
words, V1∪V2 = V , V1∩V2 = φ, and |V1| ≈ |V2| ≈ 1

2 |V |, with
an edge separator S whose cutsize |S| is as small as possible,
where S = {(i, j)|(i, j) ∈ E, and i ∈ V1, j ∈ V2}.

B. Brief Overview of Different Partitioning Algorithms

Graph partitioning using multi-level methods has been proven
to be very successful. These methods coarsen a graph in multiple
steps, each of which preserves the graph’s global structure, and
the coarsest graph is partitioned. The graph is then uncoarsened,

and after each uncoarsening step, the partition is refined till a
partition is obtained for the original graph [16]. ParMetis [19]
and Pt-Scotch [25] are two popular implementations of parallel
multi-level partitioning algorithms. Spectral methods provide
another popular approach to partition graphs with many practical
applications, such as computer vision and VLSI circuit design.
These methods rely on computing the eigenvectors of the
Laplacian matrix that correspond to the graph for defining
a partition [10], [12], and this involves solving a relaxed
constraint optimization problem. Spectral methods can produce
high-quality partitions but are computationally expensive for
computing the eigenvectors for large graphs [28]. This paper
focuses on geometric methods, which work for graphs that have
coordinates associated with the vertices in 2D/3D spaces [3], [4],
[15], such as scientific computing problems that involve finite
difference or finite element methods. If a graph does not already
have associated coordinates, graph embedding can be applied to
assign coordinates to them [17], [20]. The assigned coordinates
can then be used to partition the graph. The rest of this section
gives more details on embedding and geometric methods.

C. Force-Based Graph Embedding

For graphs that do not have associated coordinates, force-
based embedding has been proven useful in providing coordi-
nates to these graphs, such as the one proposed by Hu [17],
which calculates attractive and repulsive forces for all the
vertices of a graph and moves them iteratively in the direc-
tion of the net force. The attractive forces are applied only
between the neighbors while the repulsive force of a vertex is
exerted by all the other vertices in the graph. Specifically, for
a graph G = (V,E), the attractive force on a vertex i ∈ V

is Fa(i) =
∑

(i,j)∈E
||ci−cj ||2

K while the repulsive force is
Fr(i) = −

∑
j∈V,j 6=i

CK2

||ci−cj || , where ci and cj represent the
coordinates of vertices i and j, respectively, ||ci−cj || represents
the geometric distance between the two vertices, and C and K
are empirical constants [17]. Note that computing the repulsive
forces is in fact N -body type of calculations and can therefore
be approximated by using the Barnes-Hut approach [2].

D. Recursive Coordinate Bisection

One geometric algorithm to partition a graph with associated
or embedded coordinate information is to find the median of the
coordinates in one of the dimensions. The vertices on one side of
the median are assigned to one partition and the vertices on the
other side are assigned to the other partition. If more partitions
are required, this step is repeated recursively on each of the
partitions. This algorithm, despite its simplicity, provides good
results and is called recursive coordinate bisection (RCB) [3].
The Zoltan library [4] has implemented a parallel version of
RCB to partition graphs with coordinate information, and the
execution times have been shown to be less than those required
by multi-level algorithms, such as ParMetis and Pt-Scotch. The
partition quality produced by the multi-level methods, however,
is generally better than the one produced by RCB.

E. Geometric Mesh Partitioning

Another geometric algorithm called geometric mesh parti-
tioning (GMP) has been shown to compute provably good
partitions under certain assumptions regarding the mesh [14],
[23]. GMP constructs sphere separators (as opposed to line or
plane separators used in RCB) by projecting the vertices of
a graph onto the surface of a sphere in a higher dimension,
computing a center point, selecting a random great circle
through the center point and then projecting this great circle
back to the original coordinate space to define a partition. A
serial Matlab implementation of GMP is provided by [14], [23].
Recently, the ScalaPart algorithm [20] implemented a parallel
multi-level version of GMP by combining it with Fiduccia-
Matheyeses refinement [11] on the geometric band around the
partition. It provides very high quality partitions in parallel over
a large number of cores. Performing refinement in the band
around the partition was first proposed in a multi-level algorithm
by Pellegrini and Roman as part of the Scotch package [25], but
the band they calculated was based on graph distance whereas
ScalaPart computes the band using geometric distance.

III. EVALUATION METHODOLOGY

This section presents the methodology used to evaluate the
performance of the following two parallel geometric partitioning
algorithms.
• pRCB: a parallel version of the recursive coordinate bisec-

tion algorithm [3] implemented in the Zoltan library [4]. It
partitions a graph using line or plane separators.

• pGMP: a parallel version of the geometric mesh parti-
tioning algorithm [14], [23] developed as the ScalaPart
algorithm [20]. It partitions a graph using multiple sphere
separators and refines the partitions based on a geometric
variant of the Fiduccia-Mattheyses method [11].

We motivate the study by discussing several factors in the
following that could affect their performance.

A. Number of Tries in pGMP and Performance Scalability

We first consider a parameter specific to pGMP, which uses
a number of tries and on each try produces a different sphere
separator. The ScalaPart algorithm [20] uses 7 tries by default
and out of them it selects the top 3 in terms of cutsize
and performs Fiduccia-Matheyeses refinement [11] in the band
around the partitions. The best of the 3 partitions in terms of
cutsize after the refinement is selected as the final partition.

In general, the quality of a partition produced by geometric
mesh partitioning algorithms can be affected by the number of
tries [14], [23]. Since pGMP is built upon these earlier work, it
should also be sensitive to the number of tries. On the one hand,
a larger number of tries produces more separators, increasing the
search space and hence the probability of finding a better quality
partition. On the other hand, using a larger number of tries
increases the amount of computation and communication, and
hence the execution time. In particular, for every try, pGMP first
computes a partition in parallel and then evaluates the quality of
that partition (also in parallel) by calculating the cutsize. The
latter requires all the vertices to know on which side of the
partition their neighbors lie. Since a vertex and its neighbors

can be distributed across different processors, calculating the
cutsize involves communication among the processors.

Given the trade-off between the partition quality and execu-
tion time, we would like to evaluate the impact of the number
of tries on pGMP. Moreover, the execution times and hence
speedups of both pGMP and pRCB should be affected by the
number of cores. Hence, we are interested in answering the
following questions: What is the impact of the number of tries on
the performance of pGMP? How does the parallel performance
of both pGMP and pRCB scale with the number of cores?

B. Geometry of Graphs

We now discuss several factors concerning the geometry of
the graphs that could affect the partitioning algorithms.

1) Coordinate perturbation: Recall that geometric partition-
ing is only feasible for graphs that have coordinate information.
In many scientific computing problems related to physical
processes or scientific simulations, the graphs already have
coordinates associated with them, such as when numerically
solving partial differential equations using finite difference or
finite element methods. For these problems, the coordinates
associated with the vertices of a graph are sometimes subject to
perturbations due to errors in measurement or the need to refine
the mesh during the simulation. An illustration of a graph with
associated coordinates and its perturbed coordinates are shown
in Figure 1. The original coordinates are obtained using force-
based embedding [17] and the perturbed coordinates are created
by moving each vertex by a small constant displacement in a
random direction. Ideally, we would like a partitioning algorithm
to preserve the partition quality even for graphs with largely
perturbed coordinates. Hence, we are interested in the answer
to the following question: How sensitive are pRCB and pGMP
to perturbations of the graphs’ coordinates?

2) Approximate embedding: Although some graphs do not
have coordinate information available, we can still use geometric
partitioning algorithms by assigning coordinates to their vertices
with an embedding algorithm, as demonstrated in ScalaPart [20].
However, graph embedding can be an expensive pre-processing
step, even if done in parallel [20]. The most popular method to
embed a graph in 2D/3D spaces is via force-based embedding,
which requires a number of iterations to balance the repulsive
and attractive forces on each vertex of the graph, as explained
in Section II-C. To reduce the computation cost, approximations
are often used for calculating the forces, such as applying
Barnes-Hut type of space decomposition, coarsening the graph
and stopping at a certain number of iterations. In such cases,
we would have to deal with graphs whose coordinates are not
optimally embedded. Similarly to the coordinates perturbation
scenario stated previously, we are interested in the answer to
the following question: How robust are the parallel geometric
partitioning algorithms to the non-optimal coordinates obtained
from an approximate embedding algorithm?

3) Mesh quality: For many problems in scientific computing,
such as the ones using finite element or finite difference meth-
ods, the graph is often represented as a 2D mesh. Sometimes,
the mesh generated for solving these problems may not be
of very high quality [21], [22], thus we have to deal with

(a) Original coordinates (b) Perturbed coordinates

Fig. 1: Original coordinates for a graph obtained using force-based embedding [17] and its perturbed coordinates.

bad quality meshes and partition them for parallel processing.
Triangle meshes are the most popular kind of meshes used. In
an ideal triangle mesh, all three sides of each triangle should
be of the same length, i.e., the mesh is made of equilateral
triangles. In reality, getting such an ideal mesh is difficult if not
impossible. We use a simple measure for the quality of a mesh
triangle known as the edge ratio [24], defined as the ratio of the
shortest edge and the longest edge in the triangle. The overall
mesh quality is then defined as the average edge ratio of all
triangles in the mesh. Hence, for an ideal triangle mesh, this
average ratio should be one. A smaller number for the average
edge ratio implies a mesh of poorer quality. We are interested in
answering the following question: How does the mesh quality
affect the partition qualities of pRCB and pGMP?

4) Graph planarity: Finally, the planarity of a graph plays an
important role in graph embedding and partitioning. It has been
found that partitioning graphs that are non-planar is substantially
more difficult than partitioning planar graphs [5]. For some
graphs in particular, such as social network graphs, extra edges
may be dynamically added to the existing set of edges, which
may require the graph to be re-embedded or re-partitioned.
These extra edges could make a planar graph non-planar or
increase its non-planarity. We are interested in the performance
of the parallel geometric partitioning algorithms on these types
of graphs. In other words, what is the impact of additional edges
(that turn a planar graph into a non-planar one or increase its
non-planarity) on the performance of pRCB and pGMP?

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the pRCB
and pGMP algorithms and study the effects of different factors
described in the previous section. Experiments are conducted
using graphs from the following two test suites:

• UFL sparse matrix collection [7]: The graphs in this test
suite are listed in Table I. The number of vertices ranges
from 1 to 21 millions and the number of edges ranges
from 5 to 100 millions. This test suite contains structural
problems from both 2D and 3D spaces, and is used in all
but the mesh quality and graph planarity experiments.

• Triangle mesh graphs: Three mesh graphs are created by
the Triangle mesh generator [27], and they are called
twoholes, mechanic, square with hole from [24] as listed
in Table II. The number of elements in this test suite is less

TABLE I: Graphs from the UFL Sparse matrix collection [7].

Graph N(106) M(106)

ecology1 1 4.99
ecology2 0.99 4.99

delaunay n20 1.05 6.29
G3 circuit 1.58 7.66
kkt power 2.06 12.77

hugetrace-00000 4.59 13.76
delaunay n23 8.39 50.33
delaunay n24 16.77 100.66

hugebubbles-00020 21.20 63.58

TABLE II: Three mesh graphs from [24].

Mesh N M

mechanic 12618 49959
twoholes 11337 45071

square with hole 116559 461076

than the UFL test suite, and it is used in the mesh quality
and graph planarity experiments.

Since both partitioning algorithms are geometric, they require
coordinates for the vertices of the graphs. All graphs in the UFL
test suite are provided with coordinates using force-based multi-
level graph embedding [17]. The experiments are conducted on
a cluster of servers with two quad-core Intel Nehalem processors
(Intel Xeon X5550 processor, 2.66GHz, 32GB RAM, 32KB L1
cache, 256KB L2 cache per core, 8MB shared L3 cache). Four
servers are used interconnected by QDR infiniband providing
up to 32 cores.

While the quality of the partitions should be measured by both
the cutsize and the balance of the partitions, most applications
can tolerate a slight partition imbalance from the ideal if it leads
to a smaller cutsize. Consequently, we report only the cutsizes
as the quality measure, and allow a small imbalance of at most
1% in the partition size.

A. Impact of Number of Tries on pGMP

To study the impact of number of tries on the performance
of pGMP, we experiment with 1, 3, 5, 7 and 9 tries, which have
the corresponding numbers of sphere separators. We denote the
resulting algorithm by pGMP-x, where x denotes the number
of tries.

TABLE III: Cutsizes and execution times (in seconds) of pRCB and pGMP-x on 32 cores for the UFL test suite.

pRCB pGMP-1 pGMP-3 pGMP-5 pGMP-7 pGMP-9
(cutsize, exectime) (cutsize, exectime) (cutsize, exectime) (cutsize, exectime) (cutsize, exectime) (cutsize, exectime)

ecology1 (1091, 0.324) (1260, 0.14) (1065, 0.278) (1076, 0.35) (1073, 0.308) (1100, 0.392)
ecology2 (1060, 0.284) (1106, 0.128) (1254, 0.249) (1063, 0.191) (1051, 0.213) (1038, 0.34)

delaunay n20 (2922, 0.208) (2813, 0.241) (2456, 0.297) (2040, 0.218) (1970, 0.328) (2285, 0.298)
G3 circuit (1372, 0.646) (1147, 0.232) (1149, 0.384) (1257, 0.253) (1142, 0.339) (1162, 0.427)
kkt power (48301, 0.386) (28945, 0.254) (22586, 0.585) (24376, 0.489) (22451, 0.469) (22806, 0.598)

hugetrace-00000 (1013, 0.506) (730, 0.411) (737, 0.522) (696, 0.842) (747, 0.896) (814, 1.045)
delaunay n23 (8275, 0.733) (5923, 0.565) (5889, 0.909) (6374, 1.305) (6897, 1.731) (6292, 2.068)

delaunay 24 (13328, 1.253) (11388, 0.954) (10343, 2.386) (8004, 2.871) (8382, 3.858) (8148, 4.667)
hugebubbles-00020 (2373, 2.188) (1803, 1.136) (1622, 2.275) (1729, 3.782) (1729, 5.753) (1686, 7.883)

Geometric mean (3392, 0.553) (2828, 0.342) (2639, 0.611) (2539, 0.653) (2530, 0.788) (2568, 0.976)
Normalized (1.00, 1.00) (0.83, 0.62) (0.78, 1.1) (0.75, 1.18) (0.75, 1.42) (0.76, 1.76)

1 3 5 7 9
Number of Tries

0.6

0.7

0.8

0.9

N
or

m
al

iz
ed

 C
ut

si
ze

0.5

1

1.5

2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
eCutsize of pGMP-x

ExecTime of pGMP-x

(a)

1 2 4 8 16 32

Number of Cores

0

2

4

6

8

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

) pGMP-1

pGMP-3

pGMP-5

pGMP-7

pGMP-9

pRCB

(b)

1 2 4 8 16 32

Number of Cores

0

2

4

6

8

10

A
ve

ra
ge

 S
pe

ed
up

pGMP-1

pGMP-3

pGMP-5

pGMP-7

pGMP-9

pRCB

(c)

Fig. 2: (a) Normalized cutsizes and execution times of pGMP-x with different numbers of tries on 32 cores. (b)-(c) Performance
scalability of pRCB and pGMP-x with different numbers of tries when executed on up to 32 cores.

Table III presents the cutsizes and execution times of pRCB
and pGMP-x (with different numbers of tries) on 32 cores
for the UFL test suite. The last two rows show the geometric
means of the cutsizes and execution times for all algorithms
across all graphs, as well as the normalized geometric means
with respect to those of pRCB. Here, geometric mean is used
because it provides an unbias average over all test graphs with
large numerical ranges. Figure 2(a) further plots the normalized
cutsizes and execution times of pGMP-x as a function of the
number x of tries on 32 cores. All reported execution times
refer to the time to partition the graphs only without counting
the embedding time (which is common to both algorithms).

For the partition quality, we can see that pGMP-1, which has
just one try and thus one sphere separator, already improves
the cutsize by 17% on average compared to pRCB. Moreover,
the cutsize of pGMP-x improves further when the number of
tries increases, although the marginal gain becomes smaller.
Indeed, the cutsize of pGMP-7 is only slightly smaller than that
of pGMP-5. The cutsize of pGMP-9 worsens because of the
randomness in the execution and selection of sphere separators.
Overall, pGMP-5 gives 25% improvement over pRCB, and
improves over pGMP-1 by 9.6%.

For the execution time, pGMP-1 with only one try runs faster
than pRCB on 32 cores. Since it also produces a smaller cutsize,
this demonstrates that pGMP-1 is more effective than pRCB. As
the number of tries increases, the execution time of pGMP-x
monotonically increases and becomes more than that of pRCB.
In particular, pGMP-x takes on average 18% more time to

partition the graphs with 5 tries, and significantly more time
with larger number of tries.

B. Performance Scalability

Figure 2(b) shows the scalability of pRCB and pGMP-x
(in terms of average execution time) on up to 32 cores. We
can see that pRCB runs much faster on a single core, but
the gap between the two algorithms reduces with increasing
number of cores. On a sequential execution, pGMP-x is 3x-
15.5x slower than pRCB depending on the number of tries.
This is because pRCB uses line/plane separators to compute the
partitions, which runs more efficiently than the more complex
sphere separators used by pGMP-x. As the number of cores
increases, the execution time of pGMP-x reduces dramatically
while pRCB is not significantly affected. On 32 cores, pGMP-
5 is slower than pRCB by only 18%, while pGMP-1 and
pGMP-3 become even faster than pRCB. Figure 2(c) further
plots the average speedups of both algorithms with respect
to their sequential executions. pGMP-x scales reasonably well
with increasing number of cores and eventually achieves 5x-
7x speedups on 32 cores depending on the number of tries.
On the other hand, pRCB does not scale well on this test
suite, which is largely due to its already very fast sequential
implementation as well as the higher parallel overhead incurred
by data movement and communication (during all-reduce steps).
The result is not surprising given that fixed problem speedups on
large core counts is often adversely impacted by data movement
required to support parallel execution and NUMA effect.

TABLE IV: Cutsizes of pRCB and pGMP under different coordinate perturbations for the UFL test suite.

Perturbation 0% 10% 20% 50% 100% 200%

pRCB pGMP pRCB pGMP pRCB pGMP pRCB pGMP pRCB pGMP pRCB pGMP

ecology1 1091 1076 1087 1113 1097 1146 1151 1140 1241 1106 1574 1068
ecology2 1060 1063 1064 1199 1076 1141 1136 1130 1250 1135 1510 1066

delaunay 20 2922 2040 2920 1949 2938 2295 2996 2288 3277 2227 4257 2735
G3 citcuit 1372 1257 1393 1340 1389 1273 1529 1132 1856 1357 2680 1448
kkt power 48301 24376 48725 16328 49767 18655 55065 18361 67921 18087 96248 17994

hugetrace-00000 1013 696 1014 753 1013 742 1027 854 1071 749 1354 704
delaunay 23 8275 6374 8289 7262 8299 5468 8493 6385 9295 6277 12651 6720
delaunay 24 13328 8004 13492 9422 13632 8375 14363 8475 15647 8192 18983 10999

hugebubbles-00020 2373 1729 2415 1688 2445 1745 2567 1711 2796 1751 3298 1883

Geometric mean 3392 2539 3413 2573 3438 2529 3617 2567 4028 2554 5204 2712
Normalized 1.00 0.75 1.01 0.76 1.01 0.75 1.07 0.76 1.19 0.75 1.53 0.80

TABLE V: Cutsizes of pRCB and pGMP under different approximate embeddings for the UFL test suite.

Approx. embedding 100% 70% 55% 40%

pRCB pGMP pRCB pGMP pRCB pGMP pRCB pGMP

ecology1 1091 1076 1519 1655 1603 1625 1656 1596
ecology2 1060 1063 1483 1591 1601 1602 1821 1754

delaunay 20 2922 2040 2992 2596 3092 2725 3019 2805
G3 citcuit 1372 1257 2244 2108 2350 2038 2497 2090
kkt power 48301 24376 45584 35895 46797 33170 45606 28546

hugetrace-00000 1013 696 1138 1076 1102 1064 1140 1159
delaunay 23 8275 6374 9748 7298 9305 8250 9145 8382
delaunay 24 13328 8004 13161 10644 13091 11231 13646 12101

hugebubbles-00020 2373 1729 2314 2350 2410 2319 2545 2286

Geometric mean 3392 2539 3948 3600 4033 3631 4163 3687
Normalized 1.00 0.75 1.16 1.06 1.19 1.07 1.23 1.09

Scalability Result: Despite the larger execution time on one
core, pGMP-x (with an appropriate number of tries) can be
competitive with pRCB on as few as 32 cores, thus making it
an attractive solution when high quality partitions are desired.

Given the above result as well as the result from the last
section, we will use pGMP-5 and 32-core executions in all
subsequent experiments for the sensitivity study.

C. Performance Sensitivity to Geometry of Graphs

1) Impact of perturbation of coordinates: We first study
the impact of coordinates perturbation on the quality of the
partitions. In this experiment, we start with the graphs in the
UFL test suite with original coordinates imparted to them by
force-based embedding [17], which is considered to have 0%
perturbation. We then perturb the coordinates by moving each
vertex in a random direction by 10%, 20%, 50%, 100% and
200% of the average edge length from the original embedding.

Table IV shows the cutsizes of pRCB and pGMP under
different coordinates perturbations. The last two rows show the
geometric mean for all graphs, and the normalized value with
respect to that of pRCB under 0% perturbation. We observe that
the average cutsizes computed by both algorithms are not much
affected by perturbations less than 50%. However, the partition
quality of pRCB starts to degrade quickly after the perturbation
reaches 50%, whereas the average cutsize of pGMP does not
increase much even when the perturbation increases to 200%.
Specifically, pGMP has a performance degradation of merely
6.7% at 200% perturbation, whereas pRCB suffers from 53%
degradation. Moreover, at 200% perturbation, pGMP improves

upon pRCB by 48% on average, and it is still 20% better than
pRCB on unperturbed graphs.

Sensitivity Result 1: The partition qualities of both pGMP
and pRCB are insensitive to small coordinates perturbations,
but pGMP is more robust to large perturbations than pRCB.

2) Impact of approximate embedding: We now study the
robustness of the geometric partitioning algorithms to approx-
imate graph embeddings. In this experiment, we again use the
UFL test suite. To obtain approximate embeddings, we stop
the force-based embedding prematurely at a certain number of
iterations before convergence. Specifically, we obtain 3 sets
of approximate embeddings for the graphs by stopping the
embedding algorithm at 70%, 55% and 40% of the number of
iterations required to get the original embedding.

Table V shows the impact of approximate embeddings on
the quality of the partitions. The last two rows report the
geometric mean for all graphs, and the normalized value with
respect to that of pRCB under the original embedding. As
expected, the partition qualities of both algorithms become
worse when the embedding algorithm is stopped prematurely.
We observe that the quality of pRCB keeps dropping with
fewer embedding iterations. In particular, the cutsize increases
by 16%, 19% and 23% at 70%, 55% and 40% of the original
number of iterations, respectively. The quality of pGMP, on the
other hand, experiences a substantial degradation at 70% of the
original number of iterations, but it remains relatively stable
after that. Specifically, the cutsize increases by 41.3%, 42.7%
and 45.3% at 70%, 55% and 40% of the original number of

TABLE VI: Cutsizes of pRCB and pGMP for the original mesh test suite (q = 0) and their shifted versions (q = 1, 2, 3).

Mesh quality q = 0 q = 1 q = 2 q = 3

pRCB pGMP pRCB pGMP pRCB pGMP pRCB pGMP

mechanic-q 196 86 195 140 213 152 243 252
twoholes-q 208 202 215 201 237 248 263 236

square with hole-q 407 421 411 384 453 449 504 423

Geometric mean 255 194 258 221 284 257 318 293
Normalized 1.00 0.76 1.01 0.87 1.11 1.01 1.25 1.15

TABLE VII: Three original meshes (q = 0) and their shifted
versions (q = 1, 2, 3) with respective average edge ratios.

Average edge ratio

Mesh quality q = 0 q = 1 q = 2 q = 3

mechanic-q 0.74 0.63 0.48 0.41
twoholes-q 0.74 0.63 0.47 0.40

square with hole-q 0.73 0.62 0.47 0.40

iterations, respectively. However, the quality of pGMP is still
better under all approximate embeddings, with improvements
of 8.6%, 10.1%, 11.4%, respectively, over pRCB.

Sensitivity Result 2: The partition quality of pGMP degrades
more than that of pRCB with fewer embedding iterations, but
pGMP remains better than pRCB with the same approximate
embedding.

3) Impact of mesh quality: In this experiment, we use the
mesh test suite shown in Table II to evaluate the impact of
mesh quality on the performance of the partitioning algorithms.
Recall that the quality metric we use is the average edge
ratio of all triangles in the mesh. Thus, meshes with higher
average edge ratios are of better quality than meshes with lower
average edge ratios. To generate meshes of different qualities,
we randomly shift the non-boundary points of the mesh in a way
similar to the coordinates perturbation experiment. However,
the graphs considered in that experiment are not mesh graphs
and all the vertices (including the boundary ones) are subject
to perturbation. In this experiment, the (non-boundary) corners
of the triangles are moved while the validity of the mesh is
maintained by checking the following property [24]: A mesh is
valid if all the triangles in the mesh are valid, and a triangle
is valid if the determinant of its Jacobian is greater than zero.
For instance, if the three corners of a triangle have coordinates
(x0, y0), (x1, y1) and (x2, y2), then the triangle is valid if

J =

∣∣∣∣(x1 − x0) (x2 − x0)
(y1 − y0) (y2 − y0)

∣∣∣∣ > 0. (1)

As we increase the random step size to shift the mesh points,
the quality of the mesh progressively decreases. In Table VII, we
list the original three meshes in the test suite (q = 0) and their
shifted versions in increasing order of step size (q = 1, 2, 3),
together with their respective average edge ratios. We point out
that the average edge ratio of all three meshes are approximately
the same in each of the three versions.

Table VI presents the cutsizes of pRCB and pGMP for the
three meshes and their shifted versions. The last two rows report
the geometric mean for all three meshes, and the normalized

value with respect to that of pRCB for the original meshes. We
observe that the mesh quality does have a significant impact on
the partition quality of the algorithms. For the original meshes
(with average edge ratio around 0.74), pGMP is 24% better than
pRCB on average. As the average edge ratio reduces down to
around 0.63, 0.47 and 0.40, the quality of pRCB degrades by
1%, 11% and 25%, respectively, while pGMP degrades more
by 14.5%, 32.9% and 51.3%, respectively. However, pGMP are
still better than pRCB by 13.9%, 9% and 8% in terms of the
average cutsize under the three shifted meshes.

Sensitivity Result 3: The partition quality degrades more for
pGMP than for pRCB with decreasing quality of the mesh, but
pGMP remains better than pRCB regardless of the mesh quality.

4) Impact of graph planarity: Finally, we evaluate the impact
of planarity of a graph by comparing the qualities of pRCB
and pGMP for a set of planar and non-planar graphs. As in
the previous experiment, we use the three mesh graphs shown
in Table II, which are all planar graphs. To obtain non-planar
graphs, we randomly add 0.1%, 0.3%, 0.5% and 0.7% of extra
edges to a set of randomly selected vertex-pairs in the original
meshes, which turn them into non-planar graphs.

Table VIII presents the cutsizes of pRCB and pGMP for the
three planar graphs and their non-planar versions. The last two
rows report the geometric mean for all three graphs, and the
normalized value with respect to that of pRCB for the planar
graphs. Again, pGMP is 24% better than pRCB on average
for the planar graphs. We can see that when only 0.1% of
extra edges (corresponding to 45-461 extra edges) are added,
the average cutsizes of pRCB and pGMP more than tripled
compared to their original cutsizes. When 0.7% of extra edges
are added, the partition quality degrades by almost 9 times for
pRCB and more than 6 times for pGMP compared to their
respective qualities for the planar graphs. With 0.7% extra edges,
pGMP becomes almost twice as good as pRCB.

Sensitivity Result 4: The qualities of both algorithms are
significantly affected by adding extra edges that turn a graph
from planar to non-planar. Furthermore, the quality gap be-
tween pGMP and pRCB widens with increased non-planarity of
the graphs.

V. CONCLUSION AND FUTURE WORK

We have conducted a scalability and sensitivity study for
the performance of two parallel geometric graph partitioning
algorithms (pRCB and pGMP). The goal was to evaluate the
robustness of the two algorithms by examining a number of fac-
tors that could impact their performance. Extensive experiments

TABLE VIII: Cutsizes of pRCB and pGMP for the three planar graphs (with 0% extra edge) in the mesh test suite and their
non-planar versions (with 0.1%, 0.3%, 0.5%, 0.7% extra edges).

Planarity 0% extra edge 0.1% extra edges 0.3% extra edges 0.5% extra edges 0.7% extra edges

pRCB pGMP pRCB pGMP pRCB pGMP pRCB pGMP pRCB pGMP

mechanic 196 86 434 329 615 489 936 518 1069 616
twoholes 208 202 390 291 698 606 861 607 1022 480

square with hole 407 421 4062 4102 6395 4263 9447 5649 10905 6283

Geometric mean 255 194 882 732 1400 1081 1967 1211 2284 1229
Normalized 1.00 0.76 3.46 2.87 5.49 4.24 7.71 4.75 8.95 4.82

were conducted on a 32-core cluster using two sets of graph
benchmarks. The following summarizes our main findings:
• pGMP with 5 tries (or pGMP-5) appears to be the most

appropriate choice for running the algorithm. It provides
on average 9.6% improvement over only a single try (or
pGMP-1) and 25% improvement over pRCB.

• pGMP has slower execution time but scales well when
executed on multiple cores, while pRCB has better overall
execution time due to its efficient implementation.

• Small coordinate perturbations barely impact the per-
formance of both algorithms. Under large perturbations,
pGMP consistently outperforms pRCB by as much as 48%.

• Approximate embeddings of the graphs degrade the par-
tition qualities of both algorithms, and pGMP maintains
around 10% quality advantage over pRCB.

• Both algorithms experience increased cutsizes for meshes
with poorer quality, while pGMP again performs 8-14%
better than pRCB.

• Non-planar graphs are significantly harder to partition than
planar graphs, and the performance gap between pGMP
and pRCB increases by up to 50% with less than 1% of
extra edges that turn a planar graph into a non-planar one.

A future direction is to optimize the geometric partitioning
algorithms where multi-level graph embedding and partition
refinement are performed as a pre-processing step and a post-
processing step, respectively [20]. It will be particularly use-
ful to seek optimal combinations of approximate embedding,
partitioning and refinement, as well as a performance profiler
to determine the optimal amount of resources for partitioning
a graph. Together, these may provide a robust partitioning
framework that could offer scalable parallel performance while
producing high quality solutions.

Acknowledgment: This research was supported in part by
the National Science Foundation under the award CCF1719674.

REFERENCES

[1] N. Alon, P. Seymour, and R. Thomas. A separator theorem for graphs with
an excluded minor and its applications. In STOC’90, pages 293–299, 1990.

[2] J. Barnes and P. Hut. A hierarchical O(N logN) force calculation
algorithm. Nature, page 324, 1986.

[3] M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform
problems on multiprocessors. IEEE Trans. Computers, 36(5):570–580,
1987.

[4] E. Boman, K. Devine, R. Heaphy, B. Hendrickson, V. Leung, L. A. Riesen,
C. Vaughan, U. Catalyurek, D. Bozdag, W. Mitchell, and J. Teresco. Zoltan
3.0: Parallel Partitioning, Load-balancing, and Data Management Services;
User’s Guide. Technical Report SAND2007-4748W, Sandia National
Laboratories, Albuquerque, N.M., 2007.

[5] T. N. Bui and A. Peck. Partitioning planar graphs. SIAM J. Comput.,
21(2):203–215, Apr. 1992.

[6] F. R. K. Chung and S.-T. Yau. A near optimal algorithm for edge separators
(preliminary version). In STOC’94, pages 1–8, 1994.

[7] T. A. Davis. University of Florida Sparse Matrix Collection. NA Digest,
92, 1994.

[8] M. Deveci, S. Rajamanickam, K. D. Devine, and U. V. Çatalyürek.
Multi-jagged: A scalable parallel spatial partitioning algorithm. IEEE
Transactions on Parallel and Distributed Systems, 27(3):803–817, 2016.

[9] K. D. Devine, E. G. Boman, and G. Karypis. Partitioning and load
balancing for emerging parallel applications and architectures. In Parallel
Processing for Scientific Computing (Software, Environments and Tools),
chapter 6, pages 99–126. SIAM, 2006.

[10] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of
graphs. IBM J. Res. Dev., 17(5):420–425, Sept. 1973.

[11] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for
improving network partitions. In DAC’82, pages 175–181, 1982.

[12] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices
and its application to graph theory. Czechoslovak Mathematical Journal,
25(4):619–633, 1975.

[13] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete problems. In STOC’74, pages 47–63, 1974.

[14] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh partitioning:
Implementation and experiments. In IPPS’95, pages 418–427, 1995.

[15] M. T. Heath and P. Raghavan. A Cartesian Parallel Nested Dissection
Algorithm. SIAM J. Matrix Anal. Appl., 16(1):235–253, Jan. 1995.

[16] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning
graphs. In Supercomputing’95, page 28, 1995.

[17] Y. F. Hu. Efficient, high-quality force-directed graph drawing. The
Mathematica Journal, 10:37–71, 2006.

[18] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme
for irregular graphs. In Supercomputing’96, page 35, 1996.

[19] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[20] S. Kirmani and P. Raghavan. Scalable parallel graph partitioning. In
Supercomputing’13, pages 51:1–51:10, 2013.

[21] P. M. Knupp. Achieving finite element mesh quality via optimization of
the jacobian matrix norm and associated quantities. part I–A framework for
surface mesh optimization. International Journal for Numerical Methods
in Engineering, 48(3):401–420, 2000.

[22] P. Lamata, I. Roy, B. Blazevic, A. Crozier, S. Land, S. Niederer, D. Hose,
and N. Smith. Quality metrics for high order meshes: Analysis of the
mechanical simulation of the heart beat. IEEE Transactions on Medical
Imaging, 32(1):130–138, 2013.

[23] G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified geometric approach
to graph separators. In FOCS’91, pages 538–547, 1991.

[24] J. Park and S. M. Shontz. An alternating mesh quality metric scheme for
efficient mesh quality improvement. In ICCS’11, pages 292–301, 2011.

[25] F. Pellegrini and J. Roman. Scotch: A software package for static mapping
by dual recursive bipartitioning of process and architecture graphs. In
Proceedings of the International Conference and Exhibition on High-
Performance Computing and Networking, pages 493–498, 1996.

[26] E. Saule, E. O. Baş, and U. V. Çatalyürek. Load-balancing spatially located
computations using rectangular partitions. J. Parallel Distrib. Comput.,
72(10):1201–1214, 2012.

[27] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and
delaunay triangulator. In Proceedings of Workshop on Applied Computa-
tional Geormetry Towards Geometric Engineering (FCRC’96/WACG’96),
pages 203–222, 1996.

[28] D. A. Spielmat. Spectral partitioning works: Planar graphs and finite
element meshes. In FOCS’96, page 96, 1996.

