
Coping with silent and fail-stop errors at scale by combining

replication and checkpointing

Anne Benoita, Aurélien Cavelanb, Franck Cappelloc, Padma Raghavand, Yves Roberta,e,
Hongyang Sund,∗

aEcole Normale Superieure de Lyon & INRIA, France
bUniversity of Basel, Switzerland

cArgonne National Laboratory, USA
dVanderbilt University, USA

eUniversity of Tennessee Knoxville, USA

Abstract

This paper provides a model and an analytical study of replication as a technique to cope with
silent errors, as well as a mixture of both silent and fail-stop errors on large-scale platforms.
Compared with fail-stop errors that are immediately detected when they occur, silent errors require
a detection mechanism. To detect silent errors, many application-speci�c techniques are available,
either based on algorithms (e.g., ABFT), invariant preservation or data analytics, but replication
remains the most transparent and least intrusive technique. We explore the right level (duplication,
triplication or more) of replication for two frameworks: (i) when the platform is subject to only
silent errors, and (ii) when the platform is subject to both silent and fail-stop errors. A higher
level of replication is more expensive in terms of resource usage but enables to tolerate more errors
and to even correct some errors, hence there is a trade-o� to be found. Replication is combined
with checkpointing and comes with two �avors: process replication and group replication. Process
replication applies to message-passing applications with communicating processes. Each process
is replicated, and the platform is composed of process pairs, or triplets. Group replication applies
to black-box applications, whose parallel execution is replicated several times. The platform is
partitioned into two halves (or three thirds). In both scenarios, results are compared before
each checkpoint, which is taken only when both results (duplication) or two out of three results
(triplication) coincide. Otherwise, one or more silent errors have been detected, and the application
rolls back to the last checkpoint, as well as when fail-stop errors have struck. We provide a detailed
analytical study for all of these scenarios, with formulas to decide, for each scenario, the optimal
parameters as a function of the error rate, checkpoint cost, and platform size. We also report a
set of extensive simulation results that nicely corroborates the analytical model.

1. Introduction

Triple Modular Redundancy, or TMR [38], is the standard fault-tolerance approach for critical
systems, such as embedded or aeronautical devices [1]. With TMR, computations are executed
three times, and a majority voting is conducted to select the correct result out of the three available
ones. Indeed, if two or more results agree, they are declared correct, because the probability of
two or more errors leading to the same wrong result is assumed so low that it can be ignored.
While triplication seems very expensive in terms or resources, anybody sitting in a plane would
heartily agree that it is worth the price.

On the contrary, duplication, let alone triplication, has a bad reputation in the High Perfor-
mance Computing (HPC) community: Who would be ready to waste half or two-thirds of the

IA preliminary version [6] of this paper has appeared in the Proceedings of the ACM Workshop on Fault-
Tolerance for HPC at Extreme Scale, June 2017.

∗Corresponding author

Preprint submitted to Journal of Parallel and Distributed Computing June 23, 2018

precious computing resources? However, despite its high cost, several authors have been advo-
cating the use of duplication in HPC in the recent years [45, 53, 28, 30]. In a nutshell, this is
because platform sizes have become so large that fail-stop errors are likely to strike at a high rate
during application execution. More precisely, the MTBF (Mean Time Between Failures) µP of
the platform decreases linearly with the number of processors P , since µP = µind

P , where µind is
the MTBF of each individual component (see Proposition 1.2 in [34]). Take µind = 10 years as
an example. If P = 105 then µP ≈ 50 minutes and if P = 106 then µP ≈ 5 minutes: from the
resilience's point of view, scale is the enemy. Given any value of µind, there is a threshold for
the number of processors above which the platform throughput will decrease [27, 42, 45, 30]: the
platform MTBF becomes so small that the applications experience too many failures, hence too
many recoveries and re-execution delays, to progress e�ciently. All this explains why duplication
has been considered for HPC applications despite its cost. The authors in [30] propose process
replication by which each process in a parallel MPI (Message Passing Interface) application is du-
plicated on multiple physical processors while maintaining synchronous execution of the replicas.
This approach is e�ective because the MTBF of a set of two replicas (which is the average delay
for failures to strike both processors in the replica set) is much larger than the MTBF of a single
processor.

Process replication may not always be a feasible option, since its features must be provided
by the application. Some prototype MPI implementations [30, 31] are convincing proofs of con-
cept and do provide such capabilities. However, many other programming frameworks (not only
MPI-like frameworks, but also concurrent objects, distributed components, work�ows, algorith-
mic skeletons) do not provide an equivalent to transparent process replication for the purpose
of fault-tolerance, and enhancing them with transparent replication may be non-trivial. When
transparent replication is not (yet) provided by the runtime system, one solution could be to
implement it explicitly within the application, but this is a labor-intensive process especially for
legacy applications. Another approach introduced in [17] is group replication, a technique that
can be used whenever process replication is not available. Group replication is agnostic to the
parallel programming model, and thus views the application as an unmodi�ed black box. The
only requirement is that the application be startable from a saved checkpoint �le. Group replica-
tion consists in executing multiple application instances concurrently. For instance, two distinct
P -process application instances could be executed on a 2P -processor platform. At �rst glance,
it may seem paradoxical that better performance can be achieved by using group duplication.
After all, in the above example, 50% of the platform is �wasted� to perform redundant compu-
tation. The key point here is that each application instance runs at a smaller scale. As a result
each instance can use lower checkpointing frequency, and can thus have better parallel e�ciency
in the presence of faults, when compared to a single application instance running at full scale.
In some cases, the application makespan can then be comparable to, or even shorter than that
obtained when running a single application instance. In the end, the cost of wasting processor
power for redundant computation can be o�set by the bene�t of reduced checkpointing frequency.
Furthermore, in group replication, once an instance saves a checkpoint, the other instance can
use this checkpoint immediately to �jump ahead� in its execution. Hence, group replication is
more e�cient than the mere independent execution of several instances: each time one instance
successfully completes a given �chunk of work�, all the other instances immediately bene�t from
this success. To implement group replication, the runtime system needs to perform the typical
operations needed for system-assisted checkpoint/restart: determining checkpointing frequencies
for each application instance, causing checkpoints to be saved, detecting application failures, and
restarting an application instance from a saved checkpoint after a failure. The only additional
feature is that the system must be able to stop an instance and let it resume execution from a
checkpoint �le produced by another instance as soon as it is produced.

Process or group replication has been mainly proposed in HPC to cope with fail-stop errors.
However, another challenge is represented by silent errors, or silent data corruption, whose threat
can no longer be ignored [41, 54, 39]. There are several causes of silent errors, such as cosmic
radiation, packaging pollution, among others. Silent errors can strike the cache and memory
(bit �ips) as well as CPU operations; in the latter case they resemble �oating-point errors due

2

to improper rounding, but have a dramatically larger impact because any bit of the result, not
only the low-order mantissa bits, can be corrupted. In contrast to a fail-stop error whose detec-
tion is immediate, a silent error is identi�ed only when the corrupted data leads to an unusual
application behavior. Such detection latency raises a new challenge: if the error struck before
the last checkpoint, and is detected after that checkpoint, then the checkpoint is corrupted and
cannot be used for rollback. To address the problem of detection latency in silent errors, many
application-speci�c detectors, or veri�cation mechanisms, have been proposed (see Section 2 for
a survey). It is not clear, however, whether a special-purpose detector can be designed for each
scienti�c application. In addition, application-speci�c veri�cation mechanisms can only protect
an application from certain types of errors, and fail to provide accurate and e�cient detection of
all silent errors. In fact, providing such detectors for scienti�c applications has been identi�ed as
one of the hardest challenges1 towards extreme-scale computing [15, 16].

Altogether, silent errors call for revisiting replication in the framework of scienti�c applications
executing on large-scale HPC platforms. Because replication is now applied at the process level,
scale becomes an even harder-to-�ght enemy. Processor count ranges to about 105 on the K-
computer and TaihuLight systems. The number of processors could increase further to 106 (hence
106 or more processes) on Exascale systems, with billions of threads [24]. In addition, the proba-
bility of several errors striking during an execution can get signi�cant, depending upon whether
or not circuit manufacturers increase signi�cantly the protection of the logic, latch/�ip-�ops and
static arrays in the processors. In a recent paper [47], the authors consider that with signi�cant
more protection (more hardware, more power consumption), the FIT2 rate for undetected errors
on a processor circuit could be maintained to around 20. But without additional protection com-
pared to the current situation, the FIT rate for undetected errors could be as high as 5,000 (or 1
error every 200,000 hours). Combining 10 millions of devices with this FIT rate would result in a
silent error in the system every 72 seconds. This work aims at providing a quantitative assessment
of the potential of duplication and triplication to mitigate such a threat.

The main contributions of this work are summarized as follows:

• We develop an analytical model to study the performance of all replication scenarios to cope
with silent errors, namely, duplication, triplication, and more for both process and group
replications;

• We derive closed-form formulas for the optimal checkpointing period, the optimal process
count, as well as the expected application speedup as a function of error rate, checkpoint
cost, and platform size;

• We develop an extended model and derive the corresponding closed-form formulas when the
platform is subject to both fail-stop and silent errors;

• We conduct a comprehensive set of simulations whose results corroborate the analytical
studies.

The rest of the paper is organized as follows. We �rst survey the related work in Section 2.
We then focus on silent errors only and introduce the performance model in Section 3. We derive
the general expected execution time in Section 4. The analysis for process replication is presented
in Section 5, followed by the analysis for group replication in Section 6. Section 7 extends the
previous results to the more general framework where the platform is confronted with both fail-stop
and silent errors. Section 8 is devoted to the simulation results. Finally, we provide concluding
remarks and directions for future work in Section 9.

1More generally, trustworthy computing, which aims at guaranteeing the correctness of the results of a long-
lasting computation on a large-scale supercomputer, has received considerable attention recently [14].

2The Failures in Time (FIT) rate of a device is the number of failures that can be expected in one billion (109)
device-hours of operation.

3

2. Related work

We survey the related work in this section. We start with replication for HPC applications in
Section 2.1 and cover application-speci�c silent-error detectors in Section 2.2.

2.1. Replication for fail-stop errors

Checkpointing policies have been widely studied. We refer to [34] for a survey of various
protocols and the derivation of the Young's and Daly's formula [51, 22] for the optimal check-
pointing periods. Recent advances include multi-level approaches [39, 23, 7], or the use of SSD or
NVRAM as secondary storage [16]. Combining replication with checkpointing has been proposed
in [45, 53, 28] for HPC platforms, and in [36, 50] for grid computing.

The use of redundant MPI processes is analyzed in [29, 30, 18]. In particular, the work by
Ferreira et al. [30] has studied the use of process replication for MPI applications, using 2 replicas
per MPI process. They provide a theoretical analysis of parallel e�ciency, an MPI implementation
that supports transparent process replication (including failure detection, consistent message or-
dering among replicas, etc.), and a set of experimental and simulation results. Partial redundancy
is studied in [26, 48, 49] (in combination with coordinated checkpointing) to decrease the over-
head of full replication. Adaptive redundancy is introduced in [32], where a subset of processes is
dynamically selected for replication. Thread-level replication has been investigated in [52, 21, 43],
which target process-level replication in order to detect (and correct) silent errors striking in all
communication-related operations. Finally, Ni et al [40] introduce process duplication to cope with
both fail-stop and silent errors. Their pioneering work contains many interesting results but dif-
fers from this work as follows: (i) they limit themselves to perfectly parallel applications while we
investigate speedup pro�les that obey Amdahl's law; (ii) they do not investigate triplication; and
(iii) they compute an upper bound on the optimal period and do not determine optimal processor
counts.

2.2. Silent error detection and correction

Application-speci�c information enables ad-hoc solutions, which dramatically decrease the cost
of error detection. Algorithm-based fault tolerance (ABFT) [35, 12, 46] is a well-known technique,
which uses checksums to detect up to a certain number of errors in linear algebra kernels. Unfor-
tunately, ABFT can only protect datasets in linear algebra kernels, and it must be implemented
for each di�erent kernel, which incurs a large amount of work for large HPC applications. Other
techniques have also been advocated. Benson, Schmit and Schreiber [10] compare the result of a
higher-order scheme with that of a lower-order one to detect errors in the numerical analysis of
ODEs and PDEs. Sao and Vuduc [44] investigate self-stabilizing corrections after error detection
in the conjugate gradient method. Bridges et al. [33] propose linear solvers to tolerant soft faults
using selective reliability. Elliot et al. [25] design a fault-tolerant GMRES capable of converging
despite silent errors. Bronevetsky and de Supinski [13] provide a comparative study of detection
costs for iterative methods.

Recently, several silent error detectors based on data analytics have been proposed, showing
promising results. These detectors use several interpolation techniques such as time series pre-
diction [11] and spatial multivariate interpolation [3, 4, 5]. Such techniques o�er large detection
coverage for a negligible overhead. However, these detectors do not guarantee full coverage; they
can detect only a certain percentage of corruptions (i.e., partial veri�cation with an imperfect
recall). Nonetheless, the accuracy-to-cost ratios of these detectors are high, which makes them
interesting alternatives at large scale. Similar detectors have also been designed to detect silent
errors in the temperature data of the Orbital Thermal Imaging Spectrometer (OTIS) [20].

Again, all the papers quoted in this section provide application-speci�c detectors, while our
approach is agnostic of the application characteristics. The only information required is whether
we can use process replication. If not, we can view the application as a black box and use group
replication.

4

Table 1: List of Notations.
Parameters

T Length (or period) of a pattern

P Number of processes allocated to an application

n Number of (process or group) replicas

S(P) Speedup function of an application

H(P) Error-free execution overhead

En(T, P) Expected execution time of a pattern

Hn(T, P) Expected execution overhead of a pattern

Sn(T, P) Expected speedup function of a pattern

λ = 1
µind

Silent error rate of an individual process

Pn(T, P) Silent error probability of a pattern

C Checkpointing cost

R Recovery cost

V Veri�cation cost (comparison of replicas)

3. Model

This section presents the analytical model for evaluating the performance of di�erent replication
scenarios when the platform is subject to silent errors. Table 1 summarizes the main notations for
this framework. The extension to both fail-stop and silent errors will be discussed in Section 7,
and additional notations will be introduced then for the extended framework.

The model presented here is a classical one, similar to those of the literature for replication [30],
only with a di�erent objective (quantifying replication for silent errors). Recall that µind denotes
the MTBE of an individual processor or process3 of the system, and let λ = 1

µind
denote the

silent error rate of the processor. The error rate for a collection of P processors is then given by
λP = 1

µP
= P

µind
= λP [34]. Assuming that the error arrivals follow Exponential distribution, the

probability that a computation is hit by a silent error during time T on P processes is given by
P(T, P) = 1− e−λPT .

Consider long-lasting HPC applications that execute for hours or even days on a large-scale
platform. Resilience is enforced by the combined use of replication and periodic checkpointing.
Before each checkpoint, the results of di�erent replicas are compared. Only when both results
(for duplication) or two out of three results (for triplication) coincide4, in which case a consensus
is said to be reached, the checkpoint is taken. Otherwise, silent errors are assumed to have been
detected, and they cannot be corrected through consensus. The application then rolls back to the
last checkpoint. There are two di�erent types of replications:

• Process replication: Each process of the application is replicated, and the results of di�erent
processes are independently compared. A rollback is needed when at least one process fails
to reach a consensus;

• Group replication: The entire application (as a black box) is replicated, and the results of
all replicas (as a whole) are compared. A rollback is needed when these group replicas fail
to reach a consensus.

The computational chunk between two checkpoints is called a periodic pattern. For a replica-
tion scenario with n replicas, the objective is to minimize the expected total execution time (or
makespan) of an application by �nding the optimal pattern parameters:

• T : length (or period) of the pattern;

3We assume that each process is executed by a dedicated processor. Hence, we will use �processor� and �process�
interchangeably. We also use MTBE instead of MTBF to emphasize that we deal with (silent) errors, not failures.

4For n > 3 replicas, the results of k replicas should coincide, where 2 ≤ k < n is a design parameter set by the
system to control the level of reliability. k = bn

2
c+ 1 is a widely-used choice (majority voting).

5

• P : number of processes allocated to the application.

Indeed, for long-lasting applications, it su�ces to focus on a single pattern, since the pattern
repeats itself over time. To see this, let Wtotal denote the total amount of work of the application
and suppose the application has an error-free speedup function S(P) when executed on P proces-
sors. In this paper, we focus on a speedup function that obeys Amdahl's law5:

S(P) =
1

α+ 1−α
P

, (1)

where α ∈ [0, 1] denotes the sequential fraction of the application that cannot be parallelized. For
convenience, we also de�ne H(P) = 1

S(P) to be the execution overhead. For a pattern of length T

and run by P processes, the amount of work done in a pattern is therefore Wpattern = T · S(P),
and the total number of patterns in the application can be approximated as m = Wtotal

Wpattern
=

Wtotal

T ·S(P) = Wtotal

T H(P). Now, let En(T, P) denote the expected execution time of the pattern with

n replicas in either replication scenario. De�ne Hn(T, P) = En(T,P)
T H(P) to be the expected

execution overhead of the pattern, and Sn(T, P) = 1
Hn(T,P) the expected speedup. The expected

makespan of the application can then be written as Etotal ≈ En(T, P)m = En(T, P)Wtotal

T H(P) =

Hn(T, P) ·Wtotal = Wtotal

Sn(T,P) . Since Wtotal is �xed, this shows that the optimal expected makespan

can be achieved by minimizing the expected execution overhead of a pattern, or equivalently,
maximizing its expected speedup.

Now, we describe a model for the costs of checkpoint, recovery and consensus veri�cation.
First, the checkpoint cost clearly depends on the protocol and storage type. Note that only the
result of one replica needs to be checkpointed, so the cost does not increase with the number of
replicas. To save the application's memory footprint M to the storage system using P processes,
we envision the following two scenarios:

• C = O(Mτio): In this case, checkpoints are being written to the remote storage system, whose
bandwidth is the I/O bottleneck. Here, τio is the remote I/O bandwidth.

• C = O(M
τnetP

): This case corresponds to in-memory checkpoints, where each process stores
M
P data locally (e.g., on SSDs). Here, τnet is the process network bandwidth.

The recovery cost is assumed to be the same as the checkpointing cost, i.e., R = C, as it involves
the same I/O operations. This is a common assumption [39], although practical recovery cost can
be somewhat smaller than the checkpoint cost [23]. Finally, verifying consensus is performed by
communicating and comparing M

P data stored on each process, which can be executed concur-

rently by all process pairs (or triplets). Hence, the veri�cation cost satis�es V = O(MP). Overall,
we use the following general expression to account for the combined cost of veri�cation and check-
point/recovery:

V + C = c+
d

P
, (2)

where c and d are constants that depend on the application memory footprint, checkpointing pro-
tocol, network or I/O bandwidth, etc. Here, c = 0 corresponds to the in-memory checkpointing
scenario discussed above. Finally, we assume that checkpoints, recoveries, and consensus veri�ca-
tions are all protected from silent errors6.

5The model is generally applicable to other speedup functions as well.
6Disk operations (remote checkpoint/recovery) are typically protected by RAID [19] or I/O integrity protection

mechanisms [37], and in-memory operations (local checkpoint and veri�cation) can be performed on protected
memory space or using redundancy. In both cases, the costs of protecting these operations can be well captured by
the constants in the general expression of Equation (2).

6

4. Expected execution time

In this section, we compute the expected execution time of a periodic pattern, which will be
used in the next two sections to derive the optimal pattern parameters.

Theorem 1. The expected time to execute a periodic pattern of length T using P processes and
n replicas can be expressed as

En(T, P) = T + V + C +
Pn(T, P)

1− Pn(T, P)
(T + V +R) , (3)

where Pn(T, P) denotes the probability that the execution fails due to silent errors striking during
the pattern, thereby forcing to roll back to the last checkpoint.

Proof. Since replicas are synchronized, we can express the expected execution time as follows:

En(T, P) = T + V + Pn(T, P) ·
(
R+ En(T, P)

)
+
(
1− Pn(T, P)

)
· C . (4)

First, the pattern of length T is executed followed by the veri�cation (through comparison and/or
voting), which incurs cost V . With probability Pn(T, P), the pattern fails due to silent errors. In
this case, we need to re-execute the pattern after performing a recovery from the last checkpoint
with cost R. Otherwise, with probability 1−Pn(T, P), the execution succeeds and the checkpoint
with cost C is taken at the end of the pattern.

Now, solving for En(T, P) from Equation (4), we can obtain the expected execution time of
the pattern as shown in Equation (3).

Remarks. Theorem 1 is applicable to both process replication and group replication. The only
di�erence lies in the computation of failure probability Pn(T, P), which depends on the replication
scenario and on the number of replicas n.

5. Process replication

In this section, we consider process replication. We �rst derive the optimal computing patterns
when each process of the application is duplicated (Section 5.1) and triplicated (Section 5.2),
respectively. Finally, we generalize the results to an arbitrary but constant number of replications
per process under a general process replication framework (Section 5.3).

5.1. Process duplication

We start with process duplication, that is, each process has two replicas. The following lemma
shows the failure probability of a given computing pattern in this case.

Lemma 1. Using process duplication, the failure probability of a computing pattern of length T
and with P processes is given by

Pprc
2 (T, P) = 1− e−2λTP . (5)

Proof. With duplication, errors cannot be corrected (no consensus), hence a process fails if either
one of its replicas fails or both replicas fail. In other words, there is an error if the results of
both replicas do not coincide (we neglect the quite unlikely scenario with one error in each replica
leading to the same wrong result). Let Pprc

1 (T, 1) = 1 − e−λT denote the probability of a single
process failure. Therefore, we can write the failure probability of any duplicated process as follows:

Pprc
2 (T, 1) =

(
2

2

)
Pprc

1 (T, 1)2 +

(
2

1

)
(1− Pprc

1 (T, 1))Pprc
1 (T, 1)

=
(
1− e−λT

)2
+ 2e−λT

(
1− e−λT

)
= 1− e−2λT .

7

Now, because we have P independent processes, the probability that the application gets
interrupted by silent errors is the probability that at least one process fails because of silent
errors, which can be expressed as:

Pprc
2 (T, P) = 1− P(�No process fails�)

= 1− (1− Pprc
2 (T, 1))

P

= 1− e−2λPT .

Using the failure probability in Lemma 1, we derive the optimal computing pattern for pro-
cess duplication as shown in the following theorem. Recall that the application speedup follows
Amdahl's law as shown in Equation (1) and the cost of veri�cation and checkpoint is modeled by
Equation (2).

Theorem 2. A �rst-order approximation to the optimal number of processes for an application
with 2 replicas per process is given by

Popt = min

Q2 ,
(

1

2

(
1− α
α

)2
1

λc

) 1
3

 , (6)

where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected speedup function of the application are

Topt(Popt) =

(
V + C

2λPopt

) 1
2

, (7)

Sprc2 (Popt) =
S(Popt)

1 + 2
(
2λ(V + C)Popt

) 1
2

. (8)

Proof. First, we can derive, from Theorem 1 and Lemma 1, the expected execution time of a
pattern with length T and P duplicated processes as follows:

Eprc
2 (T, P) = T + V + C +

(
e2λPT − 1

)
(T + V +R)

= T + V + C + 2λPT (T + V +R) + o(λPT 2) .

The second equation above is obtained by applying Taylor series to approximate ez = 1+z+o(z) for
z < 1, while assuming λPT = Θ(λε), where ε > 0. Now, substituting Eprc

2 (T, P) into Hprc
2 (T, P) =

H(P)
Eprc2 (T,P)

T , we can get the expected execution overhead as:

Hprc
2 (T, P) = H(P)

(
1 +

V + C

T
+ 2λPT + o(λPT)

)
. (9)

The optimal overhead can then be achieved by balancing the two terms V+C
T and 2λPT above,

which gives the following optimal checkpointing period as a function of the process count:

Topt(P) =

(
V + C

2λP

) 1
2

. (10)

Now, substituting Topt(P) back into Equation (9), we get the execution overhead as a function of
the process count as follows (lower-order terms ignored):

Hprc
2 (P) = H(P)

(
1 + 2

(
2λ(V + C)P

) 1
2

)
. (11)

Note that Equations (10) and (11) hold true regardless of the form of the function H(P) or the cost
V +C. Recall that we consider Amhdal's law H(P) = α+ 1−α

P and a cost model V +C = c+ d
P .

In order to derive the optimal process count, we consider two cases:

8

Case (1). c > 0 and α > 0 are both constants: we can expand Equation (11) to be

Hprc
2 (P) = α+ 2α

(
2λcP

) 1
2 +

1− α
P

+ o(λ
1
2) . (12)

The optimal overhead can then be achieved by setting

∂Hprc
2 (P)

∂P
= α

(
2λc

P

) 1
2

− 1− α
P 2

= 0 ,

which leads to P ∗ =
(

1
2

(
1−α
α

)2 1
λc

) 1
3

. Since the total number of processes in the system is Q

and each application process is duplicated, the optimal process count is upper-bounded by Q
2 if

P ∗ > Q
2 , due to the convexity of Hprc

2 (P) as shown in Equation (11). Hence, the optimal process
count Popt is given by Equation (6).

Case (2). c = 0 or α = 0: In either case, we can see that Equation (11) becomes a decreasing
function of P . Therefore, the optimal strategy is to utilize all the available Q processes, i.e.,

Popt = Q
2 , which again satis�es Equation (6), since

(
1
2

(
1−α
α

)2 1
λc

) 1
3

=∞.

In either case, the expected application speedup is then given by the reciprocal of the overhead
as shown in Equation (11) with the optimal process count Popt.

Remarks. For fully parallelizable applications, i.e., α = 0, the optimal pattern on a Q-process
platform is characterized by

Popt =
Q

2
, Topt =


√

c
λQ for V + C = c

1
Q

√
2d
λ for V + C = d

P

,

Sprc2 (Popt) =

{
Q

2(1+2
√
λcQ)

for V + C = c
Q

2(1+2
√

2λd)
for V + C = d

P

.

5.2. Process triplication

Now, we consider process triplication, that is, each process has three replicas. This is the
smallest number of replicas that allows an application to recover from silent errors through majority
voting instead of rolling back to the last checkpoint.

Lemma 2. Using process triplication, the failure probability of a computing pattern of length T
and with P processes is given by

Pprc
3 (T, P) = 1−

(
3e−2λT − 2e−3λT

)P
. (13)

Proof. Using triplication, if only one replica fails, the silent error can be masked by the two
successful replicas. Hence, in this case, a process fails if at least two of its replicas are hit by silent
errors. Let Pprc

1 (T, 1) = 1− e−λT denote the probability of a single process failure. Therefore, we
can write the failure probability of any triplicated process as follows:

Pprc
3 (T, 1) =

(
3

3

)
Pprc

1 (T, 1)3 +

(
3

2

)
(1− Pprc

1 (T, 1))Pprc
1 (T, 1)2

=
(
1− e−λT

)3
+ 3e−λT

(
1− e−λT

)2
= 1− 3e−2λT + 2e−3λT .

For P independent processes, the application fails when at least one of its processes fails.
Hence, we have:

Pprc
3 (T, P) = 1− P(�No process fails�)

= 1− (1− Pprc
3 (T, 1))

P

= 1−
(
3e−2λT − 2e−3λT

)P
.

9

The following theorem derives the optimal computing pattern for process triplication. The
proof can be found in Appendix A.

Theorem 3. A �rst-order approximation to the optimal number of processes for an application
with 3 replicas per process is given by

Popt = min

Q3 ,
(

4

3

(
1− α
α

)3(
1

λc

)2
) 1

4

 , (14)

where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected speedup function of the application are

Topt(Popt) =

(
V + C

6λ2Popt

) 1
3

, (15)

Sprc3 (Popt) =
S(Popt)

1 + 3
(

3
4 (λ(V + C))

2
Popt

) 1
3

. (16)

Remarks. For fully parallelizable applications, i.e., α = 0, the optimal pattern on a Q-process
platform is characterized by

Popt =
Q

3
, Topt =

 3

√
c

2λ2Q for V + C = c

3

√
3d

2λ2Q2 for V + C = d
P

,

Sprc3 (Popt) =


Q

3

(
1+3 3

√
(λc2)

2
Q

) for V + C = c

Q

3

(
1+3 3

√
(3λc

2)
2 1
Q

) for V + C = d
P

.

Compared with duplication, the ability to correct errors in triplication allows checkpoints to
be taken less frequently (i.e., larger checkpointing period). In terms of the expected speedup,
triplication su�ers from a smaller error-free speedup (Q3 vs Q

2) due to the use of fewer concurrent
processes to perform useful work, but also has a smaller error-induced denominator, especially
on platforms with a large number of processes Q. In Section 8, we will conduct simulations to
evaluate this trade-o� and compare the performance of duplication and triplication.

5.3. General process replication
In this section, we consider a general resilience framework and derive the optimal pattern

using n replicas per process, where n is an arbitrary constant. Moreover, let k denote the number
of �good� replicas (not hit by silent errors) that is required to reach a consensus through voting.
Optimistically, assuming any two replicas that are hit by silent errors will produce di�erent results,
we can set k = 2, i.e., at least two replicas should agree on the result to avoid a rollback. Under a
more pessimistic assumption, we will need a majority of the n replicas to agree on the result, so
in this case we need k = bn2 c+ 1. Our analysis is independent of the choice of k.

As for duplication and triplication, for a given (n, k) pair, we can compute the failure proba-
bility of a pattern with length T and P processes as follows:

Pprc
n,k(T, P) = 1− P(�No process fails�)

= 1− (1− Pprc
n,k(T, 1))P , (17)

where

Pprc
n,k(T, 1) =

k−1∑
j=0

(
n

j

)
(1− Pprc

1 (T, 1))
j Pprc

1 (T, 1)n−j

=

k−1∑
j=0

(
n

j

)
e−λjT

(
1− e−λT

)n−j
(18)

10

denotes the failure probability of a single process with n replicas due to less than k of them
surviving silent errors.

The following theorem shows the general result for (n, k)-process replication. The proof follows
closely those of Theorems 2 and 3, and is therefore omitted here.

Theorem 4. On a system with a total number of Q available processors, a �rst-order approxima-
tion to the optimal number of processes for an application with n replicas per process (k of which
must concur to avoid a rollback) is given by

Popt = min

Qn ,
(
γn,k

(
1− α
α

)n−k+2(
1

λc

)n−k+1
) 1
n−k+3

 . (19)

The associated optimal checkpointing period and the expected speedup function of the application
are

Topt(Popt) =

(
V + C

βn,kλn−k+1Popt

) 1
n−k+2

, (20)

Sprcn,k(Popt) =
S(Popt)

1 + (n− k + 2)
(

(λ(V+C))n−k+1Popt
γn,k

) 1
n−k+2

. (21)

Here, βn,k =
(
n
k−1

)
(n− k + 1) and γn,k = (n−k+1)n−k+1

(n
k−1)

.

Remarks. Theorem 4 encompasses Theorem 2 and Theorem 3 as special cases. We point out
that it even holds for the case without replication, i.e., when n = k = 1. In this case, Theorem 4
evaluates to

Topt(P) =

√
V + C

λP
,

Sprc1 (P) =
S(P)

1 + 2
√
λ(V + C)P

,

which is consistent with the results obtained in [2, 8, 9], provided that a reliable silent error
detector is available. However, as mentioned previously, such a detector is only known in some
application-speci�c domains. For general-purpose computations, replication appears to be the
only viable approach to detect/correct silent errors so far.

6. Group replication

In this section, we consider group replication. Recall that, unlike process replication where
the results of each process from di�erent replicas are independently compared, group replication
compares the outputs of the di�erent groups viewed as independent black-box applications. First,
we make the following technical observation, which establishes the relationship between the two
replication mechanisms from the resilience point of view.

Observation 1. Running an application using group replication with n replicas, where each replica
has P processes and each process has error rate λ, has the same failure probability as running it
using process replication with one process, which has error rate λP and is replicated n times.

The above observation allows us to compute the failure probability for group replication by
transforming the corresponding formulas for process replication while setting P = 1 and λ = λP .
The rest of this section shows the results for duplication, triplication, and a general group repli-
cation framework. Proofs are similar to those in process replication, and are therefore omitted.

11

6.1. Group duplication
By applying Observation 1 on Lemma 1, we can get the failure probability for a given pattern

under group duplication as follows.

Lemma 3. Using group duplication, the failure probability of a computing pattern of length T and
with P processes is given by

Pgrp
2 (T, P) = 1− e−2λTP . (22)

This leads us to the following theorem on the optimal pattern.

Theorem 5. A �rst-order approximation to the optimal number of processes for an application
with 2 replica groups is given by

Popt = min

Q2 ,
(

1

2

(
1− α
α

)2
1

λc

) 1
3

 , (23)

where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected speedup function of the application are

Topt(Popt) =

(
V + C

2λPopt

) 1
2

, (24)

Sgrp2 (Popt) =
S(Popt)

1 + 2
(
2λ(V + C)Popt

) 1
2

. (25)

Remarks. Both the failure probability (Lemma 3) and the optimal pattern (Theorem 5) under
group duplication are identical to those of process duplication (Lemma 1 and Theorem 2). Indeed,
in both duplication scenarios, a single silent error that strikes any of the running processes will
cause the whole application to fail.

6.2. Group triplication
Again, applying Observation 1 on Lemma 2, we can get the failure probability for a given

pattern under group triplication.

Lemma 4. Using group triplication, the failure probability of a computing pattern of length T and
with P processes is given by

Pgrp
3 (T, P) = 1−

(
3e−2λTP − 2e−3λTP

)
. (26)

The following lemma shows that, with the same pattern length and process count, group
triplication su�ers from a higher failure probability than its process counterpart.

Lemma 5. Pgrp
3 (T, P) ≥ Pprc

3 (T, P).

Proof. Let us de�ne x = e−λT . From Equations (13) and (26), it su�ces to show that(
3x2 − 2x3

)P ≥ 3x2P − 2x3P .

We prove the above inequality by induction on the number of processes P . The base case holds
trivially with P = 1. Now, suppose the claim holds for any P ≥ 1. Then, we have for P + 1:(

3x2 − 2x3
)P+1

=
(
3x2 − 2x3

)P (
3x2 − 2x3

)
≥
(
3x2P − 2x3P

) (
3x2 − 2x3

)
(By inductive hypothesis)

= 9x2(P+1) − 6x2P+3 − 6x3P+2 + 4x3(P+1)

= 6x2(P+1)
(
1− x− xP + xP+1

)
+ 3x2(P+1) − 2x3(P+1)

= 6x2(P+1)(1− x)(1− xP) + 3x2(P+1) − 2x3(P+1)

≥ 3x2(P+1) − 2x3(P+1) .

The last inequality is because 6x2(P+1)(1− x)(1− xP) ≥ 0 since x = e−λT ∈ [0, 1].

12

The following theorem shows the optimal pattern under group triplication.

Theorem 6. A �rst-order approximation to the optimal number of processes for an application
with 3 replica groups is given by

Popt = min

Q3 ,
(

1

6

(
1− α
α

)3(
1

λc

)2
) 1

5

 , (27)

where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected execution overhead are

Topt(Popt) =

(
V + C

6(λPopt)2

) 1
3

, (28)

Sgrp3 (Popt) =
S(Popt)

1 + 3
(

3
4

(
λ(V + C)Popt

)2) 1
3

. (29)

Remarks. Compared to the result of process triplication (Theorem 3) and under the same
condition (e.g., α = 0 so both scenarios allocate the same number of Popt = Q

3 processes to each
replica), Theorem 6 shows that group triplication needs to place checkpoints more frequently yet
enjoys a smaller execution speedup. Together with Lemma 5, it provides a theoretical explanation
to the intuition that group replication cannot recover from some error combinations that its process
counterpart is capable to handle, thus making process replication a superior replication mechanism
provided that it can be feasibly implemented.

6.3. General group replication

Finally, we consider a general group replication framework and derive the optimal pattern using
a constant number of n replica groups, out of which k of them must agree to avoid a rollback.
Again, the results work for any choice of k.

Now, applying Observation 1 on Equations (17) and (18), we can compute the failure proba-
bility of a pattern with length T and P processes under a (n, k) group replication model:

Pgrp
n,k(T, P) =

k−1∑
j=0

(
n

j

)(
e−λPT

)j (
1− e−λPT

)n−j
. (30)

The following theorem shows the general result for this case.

Theorem 7. On a system with a total number of Q available processors, a �rst-order approxima-
tion to the optimal number of processes for an application with n replica groups (k of which must
concur to avoid a rollback) is given by

Popt = min

Qn ,
(

1

βn,k

(
1− α
α

)n−k+2(
1

λc

)n−k+1
) 1

2n−2k+3

 . (31)

The associated optimal checkpointing period and the expected speedup function of the application
are

Topt(Popt) =

(
C + V

βn,k(λPopt)n−k+1

) 1
n−k+2

, (32)

Sgrpn,k(Popt) =
S(Popt)

1 + (n− k + 2)
(

1
γn,k

(
λ(V + C)Popt

)n−k+1
) 1
n−k+2

. (33)

Here, βn,k =
(
n
k−1

)
(n− k + 1) and γn,k = (n−k+1)n−k+1

(n
k−1)

.

13

Table 2: Additional Notations.
Parameters

λs Silent error rate of an individual process

λf Fail-stop error rate of an individual process

Λ Total error rate of an individual process

Pn(T, P) Silent error probability of a pattern

Qn(T, P) Fail-stop error probability of a pattern

Fn(T, P) Total error probability of a pattern

Elost
n (T, P) Expected time lost after a fail-stop error

7. Replication under both fail-stop and silent errors

In this section, we consider an extended framework where the platform is subject to both fail-
stop and silent errors. We aim at assessing the impact of fail-stop errors as an additional error
source. In this regard, this section extends the previous results and presents a uni�ed model and
optimal algorithmic solutions to this challenge. We �rst introduce some additional notations and
de�nitions to be used in this section (Section 7.1). As in the previous analysis for silent errors, we
then derive the expected execution time of a given pattern (Section 7.2). Finally, we compute the
optimal patterns under process duplication and triplication (Section 7.3), followed by the case for
group replication (Section 7.4).

7.1. New notations and de�nitions

Table 2 lists the additional notations (on top of the ones shown in Table 1) to include fail-
stop errors. In the presence of both error sources, a periodic pattern can fail due to either error
source. First, if fail-stop errors strike one replica (for duplication) or two out of three replicas (for
triplication), then we can directly roll back to the last checkpoint, since the remaining replica(s)
would prevent a consensus from being reached for silent error detection. Otherwise, if the pattern
survived fail-stop errors (i.e., both replicas are intact for duplication or at least two replicas are
intact for triplication), then we can compare the remaining replicas as per the standard consensus
protocol for detecting and correcting silent errors.

To distinguish the two error sources, we will now use λs and λf to denote a single process's
error rates for fail-stop errors and silent errors, respectively. Also, we de�ne Λ = λs+λf to be the
total error rate of the process and further assume that both λs and λf are of the same order, i.e.,
λs = O(Λ) and λf = O(Λ). Recall that we used Pn(T, P) to denote the probability that a pattern
fails due to silent errors. Similarly, we de�ne Qn(T, P) to be the probability that the pattern fails
due to fail-stop errors and de�ne Fn(T, P) to be the probability that the pattern fails due to either
error source (i.e., it either fails due to fail-stop errors or survived fail-stop errors but fails due to
silent errors). Lastly, we de�ne Elost

n (T, P) to be the expected time lost whenever the pattern fails
due to fail-stop errors. In that case, let P(X = t) denote the probability that the failure occurs at
time t since the beginning of the pattern. We know that:

P(X ≤ T) = Qn(T, P) .

and di�erentiating the above expression, we can get:

P(X = t) =
dQn(t, P)

dt
.

Therefore, we can compute the expected time lost as follows:

Elost
n (T, P) =

∫ ∞
0

tP(X = t|X ≤ T)dt

=
1

P(X ≤ T)

∫ T

0

tP(X = t)dt

=
1

Qn(T, P)

∫ T

0

t
dQn(t, P)

dt
dt .

14

Since
∫ dQn(t,P)

dt dt = Qn(t, P), integrating by parts, we can get:

Elost
n (T, P) =

1

Qn(T, P)

([
t ·Qn(t, P)

]T
0
−
∫ T

0

Qn(t, P)dt

)

=
1

Qn(T, P)

(
T ·Qn(T, P)−

∫ T

0

Qn(t, P)dt

)

= T − 1

Qn(T, P)

∫ T

0

Qn(t, P)dt . (34)

Note that both failure probabilities Qn(T, P) and Fn(T, P) depend on the replication scenario
(process v.s. group) as well as on the number of replicas n, and so is the expected time lost
Elost
n (T, P). In the following analysis, we will derive these quantities under di�erent replication

conditions.

7.2. Expected execution time

We �rst compute the expected execution time of a periodic pattern under both fail-stop and
silent errors. Again, the derived formula is generic in the sense that it can be applied to both
replication scenarios and regardless of the number of replicas.

Theorem 8. In the presence of both fail-stop and silent errors, the expected time to execute a
periodic pattern of length T using P processes and n replicas can be expressed as

En(T, P) = T + V + C +
Fn(T, P)

1− Fn(T, P)
(T + V +R)

+
Qn(T, P)

1− Fn(T, P)

(
Elost
n (T, P)− T − V

)
. (35)

Proof. To derive the expected execution time, we focus on four quantities (or events) and identify
probabilities associated with each one of them. The following presents a recursive expression for
the expected execution time:

En(T, P) = Qn(T, P) · Elost
n (T, P)

+
(
1−Qn(T, P)

)
· (T + V)

+ Fn(T, P) ·
(
R+ En(T, P)

)
+
(
1− Fn(T, P)

)
· C .

Speci�cally, with probability Qn(T, P), an expected time of Elost
n (T, P) is lost due to the occurrence

of fail-stop errors (�rst line). Otherwise, with probability 1 − Qn(T, P), the entire pattern is
executed and the (remaining) replicas are compared against each other to detect silent errors
(second line). The pattern fails due to either fail-stop or silent errors with probability Fn(T, P),
and in this case, we recover from the last checkpoint and restart the pattern again (third line).
Lastly, the pattern successfully completes with probability 1 − Fn(T, P), and the checkpoint is
taken in this case (last line).

Now, solving the recursion above and rearranging terms, we can obtain the expected execution
time of the pattern as shown in Equation (35).

Remarks. The expression of Fn(T, P) is complicated, and will be derived below for the di�erent
scenarios. In a nutshell, the intuitive formula Fn(T, P) = Qn(T, P) + (1−Qn(T, P))Pn(T, P) does
not hold for general n, because we have to account for the number of processes that have been
struck by errors. The formula does hold for the simplest case of n = 2 though.

7.3. Process replication

As previously, we �rst consider process replication in this section, and then generalize the
results to group replication in the next section.

15

7.3.1. Process duplication

The following lemma shows the failure probabilities of a pattern and the expected time lost
for process duplication. The proof can be found in Appendix B.

Lemma 6. Using process duplication, the probabilities that a computing pattern of length T and
with P processes fails due to fail-stop errors and due to either error source are respectively

Qprc
2 (T, P) = 1− e−2λfTP ,

Fprc
2 (T, P) = 1− e−2ΛTP ,

and the expected time lost whenever the pattern fails due to fail-stop errors is approximated as

Elost
2 (T, P) ≈ T

2
.

We can now derive the optimal pattern with the help of Lemma 6, and the following theorem
shows the results. The proof follows closely that of Theorem 2 and is therefore omitted.

Theorem 9. In the presence of both fail-stop and silent errors, a �rst-order approximation to the
optimal pattern under process duplication is characterized by

Popt = min

Q2 ,
((

1− α
α

)2
1

(2Λ− λf)c

) 1
3

 ,

Topt(Popt) =

(
V + C

(2Λ− λf)Popt

) 1
2

,

Sprc2 (Popt) =
S(Popt)

1 + 2
(
(2Λ− λf)(V + C)Popt

) 1
2

.

7.3.2. Process triplication

We now consider process triplication. First, the following lemma gives the failure probabilities
and the expected time lost. The proof can be found in Appendix C.

Lemma 7. Using process triplication, the probabilities that a computing pattern of length T and
with P processes fails due to fail-stop errors and due to either error source are respectively

Qprc
3 (T, P) = 1−

(
3e−2λfT − 2e−3λfT

)P
,

Fprc
3 (T, P) = 1−

(
3e−2ΛT − 2e−3ΛT

)P
,

and the expected time lost whenever the pattern fails due to fail-stop errors is approximated as

Elost
3 (T, P) ≈ 2T

3
.

Remarks. Based on Lemmas 6 and 7, we can see that, compared to process duplication, process
triplication enjoys a smaller overall failure probability (with the same proof of Lemma 5), but at
the same time su�ers from a larger expected time lost when the pattern fails due to fail-stop
errors. Intuitively, since triplication is more resilient, it takes more errors and more time to cause
a rollback in this scenario.

The following theorem shows the optimal pattern for process triplication. The proof follows
closely that of Theorem 3 and is again omitted.

16

Theorem 10. In the presence of both fail-stop and silent errors, a �rst-order approximation to
the optimal pattern under process triplication is characterized by

Popt = min

Q3 ,
((

1− α
α

)3
4

(3Λ2 − λ2
f)c2

) 1
4

 ,

Topt(Popt) =

(
V + C

(6Λ2 − 2λ2
f)Popt

) 1
3

,

Sprc3 (Popt) =
S(Popt)

1 + 3
(

3Λ2−λ2
f

4 (V + C)2Popt

) 1
3

.

7.4. Group replication

Lastly, we consider group replication with both fail-stop and silent errors. Again, by applying
Observation 1, we can transform the failure probabilities from process replication to group repli-
cation for any given pattern. In fact, the same transformation can also be applied to the expected
time lost, which stays the same (i.e., Elost

2 (T, P) = T
2 for duplication and Elost

3 (T, P) = 2T
3 for

triplication) regardless of whether process replication or group replication is used.
Following the analysis of Section 6, we can derive the optimal pattern for group duplication,

which turns out to be the same as that of process duplication as stated in Theorem 9. The
following theorem states without proof the optimal pattern for group triplication.

Theorem 11. In the presence of both fail-stop and silent errors, a �rst-order approximation to
the optimal pattern under group triplication is characterized by

Popt = min

Q3 ,
((

1− α
α

)3
1

(6Λ2 − 2λ2
f)c2

) 1
5

 ,

Topt(Popt) =

(
V + C

(6Λ2 − 2λ2
f)P 2

opt

) 1
3

,

Sgrp3 (Popt) =
S(Popt)

1 + 3
(

3Λ2−λ2
f

4

(
(V + C)Popt

)2) 1
3

.

Finally, we remark that the optimal patterns presented in this section under both fail-stop and
silent errors can further be generalized to the scenario with an arbitrary number of replicas, as
analyzed in Sections 5.3 and 6.3. We omit the analysis for this general case, as our simulation
results indicate under a wide range of practical parameters that the optimal solution does not
bene�t from using more than three replicas.

8. Simulations

We conduct a set of simulations whose goal is twofold: (i) validate the accuracy of the theoreti-
cal study; and (ii) evaluate the e�ciency of both process and group replication under di�erent sce-
narios at extreme scale. The simulator can be freely downloaded from http://graal.ens-lyon.

fr/~yrobert/replication-code.zip. Interested readers can instantiate their preferred scenarios
or repeat the same simulations for reproducibility purpose.

17

8.1. Simulation setup

The simulator has been designed to simulate each process individually, and each process has its
own error trace. A simulation works as follows: we feed the simulator with the model parameters
Q, C, V , R, and α, and individual error rate λ (or λs and λf with both error sources), and we
compute the associated optimal number of processes Popt and the optimal checkpointing period
Topt(Popt) using the corresponding model equations. For each run, the simulator outputs the

e�ciency, de�ned as
S(Popt)
Q , as well as the average number of errors and the average number of

recoveries per million CPU hours of work. Then, for each of the simulated scenarios, we compare
the simulated e�ciency to the theoretical value, obtained using the model equations for S(Popt).
As pointed out in Section 6.1, process and group duplications lead to identical patterns, so we
have merged the two scenarios and compared it against process and group triplications7.

The rest of this section presents the simulation results, most of which focus on coping with
silent errors only, with the exception of Section 8.5, which considers both fail-stop and silent errors.
In the following, we set the cost of recovery to be the same as the checkpoint cost (as discussed in
Section 3), and the cost V + C according the values of c and d as in Equation (2). We consider
di�erent system Mean Time Between Errors (MTBE), ranging from 106 seconds (≈ 11 days) down
to 102 seconds (< 2 minutes) for Q = 106 processes, matching the numbers in [47].

8.2. Impacts of MTBE and checkpoint cost

We �rst presents the impact of MTBE on the e�ciency of both duplication and triplication
for three di�erent checkpoint costs, using the same value α = 10−6 for the sequential fraction of
the application (see next section for the impact of varying α). Figure 1 shows the results with a
checkpoint cost of 30 minutes (i.e. c = 1800, d = 0), Figure 2 shows the results with a checkpoint
cost of 60 seconds (i.e. c = 60, d = 0), and Figure 3 shows the results with c = 0, d = 107, which
corresponds to a checkpoint cost of 20 seconds for duplication with Q

2 processes and 30 seconds

for triplication with Q
3 processes. In addition to the e�ciency, we provide the average number of

errors and recoveries per million hours of work, the optimal checkpointing period Topt(Popt) and
the optimal number of processes Popt.

E�ciency. First, we observe from the �rst plot of Figures 1, 2 and 3 that the di�erence be-
tween the theoretical e�ciency and the simulated e�ciency is quite small (< 5% absolute dif-
ference), which shows the accuracy of the �rst-order approximation. Then, with very few errors
(MTBE = 106), we observe that duplication is always better than triplication. This is as ex-
pected, since the maximum e�ciency for duplication is 0.5 (assuming α = 0 and no error), while
the maximum e�ciency for triplication is 0.33. However, as the MTBE decreases, triplication
becomes more attractive and eventually outperforms duplication. With a checkpoint cost of 30
minutes (Figure 1), the MTBE required is around 28 hours for process triplication to win and
20 hours for group triplication to win. With smaller checkpoint costs, such as 60 seconds (Fig-
ure 2) and 30 seconds (Figure 3), checkpoints can be more frequent and the MTBE required for
triplication to win is pushed down to a couple of hours and a couple of minutes, respectively.

Number of errors and recoveries. The second plot of the three �gures presents the number of
errors and the corresponding number of recoveries per million hours of work. First, we note that
the number of errors is always higher than the number of recoveries. This is because multiple errors
can occur during a period (before the checkpoint, which is the point of detection), causing a single
recovery, and in the case of triplication, some errors are masked by majority voting and hence no
recovery is needed. In particular, withMTBE = 102, almost half of the errors that occurred with
duplication were actually hidden behind another error. Even more errors were hidden with group
triplication, since one more error (in a di�erent replica) is required to cause a recovery. Finally,
(almost) all errors were hidden with process triplication, which is able to handle many errors, as
long as they strike in di�erent processes.

7We have also simulated process and group replications using more than 3 replicas, but the results under a wide
range of practical parameters do not favor those replication scenarios. Therefore, their results are not presented.

18

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5
E

ffi
ci

en
cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0

50

100

150

200

250

N
um

be
ro

fR
ec

ov
er

ie
s

pe
r

10
6

ho
ur

s
of

w
or

k

Number of Errors
Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

101

102

103

104

105

106

107

108

109

1010

O
pt

im
al

P
at

te
rn

Le
ng

th

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

Figure 1: Impact of the system MTBE on the e�ciency with c = 1800, d = 0, and α = 10−6.

Optimal checkpointing period. The third plot of the three �gures shows the optimal length
of the pattern, or the checkpointing period. In order to cope with the increasing number of errors
and recoveries, the optimal period becomes smaller with decreased MTBE. Note that the length
of the period for group triplication is comparable to that for duplication, around one day when
MTBE = 106 down to a couple of minutes when MTBE = 102 under di�erent checkpoint costs.
However, the length of the period for process triplication is always higher by around two orders
of magnitude, from 10 to 100 days when MTBE = 106 down to a few hours when MTBE = 102.

Optimal number of processes. The last plot of the three �gures shows the optimal number of
processes to use. With α = 10−6, the application has ample parallelism, so the optimal number
of processes is always Q

2 = 5 · 105 for duplication and Q
3 ≈ 3.3 · 105 for triplication, except

when MTBE = 102 and c = 1800, in which case the combination of large error rate and high
checkpoint cost has driven the pattern to decrease the optimal number of processes (around 3 ·105

for duplication and around 2 · 105 for group triplication), in order to reduce the failure probability
and to avoid the expensive recovery operations.

8.3. Impact of sequential fraction (Amdahl's Law)

Figure 4 presents two additional sets of simulation results for α = 10−7 and α = 10−5. With a
small sequential fraction of α = 10−7 (top plots), the e�ciency is improved (≈ 85% of the maximum
e�ciency for duplication and ≈ 95% for triplication at MTBE = 106), and both duplication and
triplication use all the processes available. On the contrary, with a relatively higher sequential
fraction of α = 10−5 (bottom plots), the e�ciency drops (< 20% of the maximum e�ciency for
duplication and < 30% for triplication at MTBE = 106). In this case, using more processes does
not improve the e�ciency and only contributes to increasing the number of errors. Therefore,
these results suggest that with duplication or even triplication, there comes a point where it is no
longer bene�cial to use all available processes. In this example, when MTBE = 102, duplication

19

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5
E

ffi
ci

en
cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0

50

100

150

200

250

N
um

be
ro

fR
ec

ov
er

ie
s

pe
r

10
6

ho
ur

s
of

w
or

k

Number of Errors
Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

101

102

103

104

105

106

107

108

109

1010

O
pt

im
al

P
at

te
rn

Le
ng

th

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

Figure 2: Impact of the system MTBE on the e�ciency with c = 60, d = 0, and α = 10−6.

and group triplication would use fewer than 2 · 105 processes (one �fth of the available resources).
Process triplication, on the other hand, still utilizes all the resources and outperforms the other
two schemes in terms of the e�ciency across the whole range of system MTBE.

8.4. Impact of number of processes

Figure 5 shows the impact of the number of processes on the simulated e�ciency of di�erent
replication scenarios. In addition, we also show (using dots) the theoretical e�ciency obtained with
the optimal number of processes from Theorems 2, 3 and 6. By varying the number of processes,
we �nd that the simulated optimum (that yields the best e�ciency) matches our theoretical
optimal number of processes closely. We can also see that process triplication scales very well
with increasing number of processes. As opposed to group triplication, which has to recover from
a checkpoint if just two errors strike in two di�erent replica groups, process triplication bene�ts
from independent error detection and correction for all processes: from a resilience point of view,
each process acts as a bu�er to handle one more error; in other words, the probability that two
errors strike two replicas of the same process decreases, thereby improving the e�ciency.

8.5. Impact of fail-stop errors

Figure 6 focuses on the impact of fail-stop errors on the e�ciency. Here, the combined system
MTBE (silent + fail-stop errors) is �xed to be 103, and we vary the percentage of errors that
are fail-stop from 0% (silent errors only) to 100% (fail-stop errors only). The number of errors
shown by the right plot is the total number of errors (silent + fail-stop). Note that the optimal
checkpointing period and the optimal number of processes remain (almost) unchanged and are not
shown. The �rst observation we can make is that fail-stop errors do not have a noticeable impact
on the e�ciency of triplication, as long as the total error rate stays constant. However, we observe
a slight increase in the e�ciency of duplication when there are more fail-stop errors. Indeed, the

20

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5
E

ffi
ci

en
cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0

50

100

150

200

250

N
um

be
ro

fR
ec

ov
er

ie
s

pe
r

10
6

ho
ur

s
of

w
or

k

Number of Errors
Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

101

102

103

104

105

106

107

108

109

1010

O
pt

im
al

P
at

te
rn

Le
ng

th

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

Figure 3: Impact of the system MTBE on the e�ciency with c = 0, d = 107, and α = 10−6.

application must roll back as soon as a fail-stop error strikes, which means that less time is lost
compared to silent errors (see Lemma 6). This is con�rmed by the right plot, which shows that
the number of recoveries is slightly higher for duplication when there are more fail-stop errors.
Overall, the combined replication and checkpointing schemes are robust enough to handle both
fail-stop and silent errors, and a mixture of the two error sources in the execution does not have
a signi�cant impact on the performance.

8.6. Summary

In summary, the simulation results have shown that duplication is more e�cient than tripli-
cation for high system MTBE (e.g., > 105 seconds). If process triplication is available, then it is
always more e�cient for small system MTBE (e.g., < 103 seconds): its e�ciency remains stable
despite the increasing number of errors. If process triplication is not available, we have shown that
group triplication is slightly more e�cient than duplication for small MTBE, but only marginal
gain can be expected. Furthermore, the impact of the sequential fraction α (in Amdahl's Law) is
twofold: it limits the e�ciency (e.g., < 30% of the maximum with α = 10−5 for both duplication
and triplication), and it is a major factor in limiting the optimal resource usage (e.g., one tenth
of the platform with α = 10−5 and Q = 106 at MTBE = 102). Finally, we have observed that
adding fail-stop errors does not have a signi�cant impact on these results.

9. Conclusion

Silent errors represent a major threat to the HPC community. In the absence of application-
speci�c detectors, replication is the only solution. Unfortunately, it comes with high cost: by
de�nition, the e�ciency is upper-bounded by 0.5 for duplication, and by 0.333 for triplication.
Are these upper bounds likely to be achieved? If yes, it means that duplication should always

21

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5
E

ffi
ci

en
cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

Figure 4: Impact of the sequential fraction (in Amdahl's Law) on the e�ciency and optimal number of processes
with α = 10−7 (top) and α = 10−5 (bottom).

be preferred to triplication. If not, it means that in some scenarios, the striking of errors is so
frequent that duplication, and in particular group duplication, is not the right choice.

The major contribution of this paper is to provide an in-depth analysis of process and group
duplication, and of process and group triplication. Given a level n of replication, and a set
of application/platform parameters (speedup pro�le, total number or processes, process MTBE,
checkpoint cost, etc.), we derive closed-form formulas for the optimal checkpointing period, the
optimal resource usage, and the overall e�ciency of the approach, when the platform is subject to
both silent and fail-stop errors. This allows us to choose the best value of n. A set of simulations
demonstrates the accuracy of the model and analysis. Our simulator code has been made publicly
available, so that interested readers can instantiate their preferred scenario. Altogether, this paper
has laid the foundations for a better understanding of using replication and checkpointing to cope
with fail-stop and silent errors for HPC at scale.

An interesting topic to explore in future work is partial replication: if the application comes
as a work�ow whose tasks are atomic components, one could assign di�erent replication levels
(duplication, triplication or more) to di�erent tasks, depending upon their criticality in terms
of longest paths, number of successors, etc. Although partial replication has been empirically
studied by some previous work [26, 48, 49], designing an optimal strategy that combines partial
redundancy and checkpointing and analyzing its e�cacy remain to be done.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments and suggestions,
which helped improve the quality of this paper. This research was supported in part by the
National Science Foundation grant CCF 1719674 and Vanderbilt Institutional Fund.

22

5 · 10
4

10 · 10
4

15 · 10
4

20 · 10
4

25 · 10
4

30 · 10
4

35 · 10
4

40 · 10
4

45 · 10
4

Number of processes

0.00

0.02

0.04

0.06

0.08

0.10
E

ffi
ci

en
cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Opt.
Proc Trip. Opt.
Group Trip. Opt.

5 · 10
4

10 · 10
4

15 · 10
4

20 · 10
4

25 · 10
4

30 · 10
4

35 · 10
4

40 · 10
4

45 · 10
4

Number of processes

0.00

0.02

0.04

0.06

0.08

0.10

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Opt.
Proc Trip. Opt.
Group Trip. Opt.

Figure 5: Impact of the number of processes on the e�ciency with MTBE = 104 (left), MTBE = 103 (right), and
c = 1800, d = 0, α = 10−5.

0% 20% 40% 60% 80% 100%
Percentage of fail-stop errors

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

0% 20% 40% 60% 80% 100%
Percentage of fail-stop errors

0

5

10

15

20

N
um

be
ro

fR
ec

ov
er

ie
s

pe
r

10
6

ho
ur

s
of

w
or

k
Number of Errors
Proc Trip.
Group Trip.
Duplication

Figure 6: Impact of fail-stop errors as a percentage of the total number of errors with combined MTBE = 103,
c = 60, d = 0, and α = 10−6.

References

[1] A. Avizienis, J. Laprie, B. Randell, and C. E. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Sec. Comput., 1(1):11�33, 2004.

[2] L. Bautista-Gomez, A. Benoit, A. Cavelan, S. K. Raina, Y. Robert, and H. Sun. Which
veri�cation for soft error detection? In HiPC. IEEE, 2015.

[3] L. Bautista Gomez and F. Cappello. Detecting silent data corruption through data dynamic
monitoring for scienti�c applications. In PPoPP. ACM, 2014.

[4] L. Bautista Gomez and F. Cappello. Detecting and correcting data corruption in stencil
applications through multivariate interpolation. In FTS. IEEE, 2015.

[5] L. Bautista Gomez and F. Cappello. Exploiting spatial smoothness in HPC applications to
detect silent data corruption. In HPCC. IEEE, 2015.

[6] A. Benoit, A. Cavelan, F. Cappello, P. Raghavan, Y. Robert, and H. Sun. Identifying the
right replication level to detect and correct silent errors at scale. In Fault Tolerance for HPC
at eXtreme Scale (FTXS) Workshop. ACM, 2017.

[7] A. Benoit, A. Cavelan, V. L. Fèvre, Y. Robert, and H. Sun. Towards optimal multi-level
checkpointing. IEEE Transactions on Computers, 66(7):1212�1226, 2017.

23

[8] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Assessing general-purpose algorithms to cope
with fail-stop and silent errors. In PMBS. ACM, 2014.

[9] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Optimal resilience patterns to cope with
fail-stop and silent errors. In IPDPS. IEEE, 2016.

[10] A. R. Benson, S. Schmit, and R. Schreiber. Silent error detection in numerical time-stepping
schemes. Int. J. High Performance Computing Applications, 2014.

[11] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. Lightweight silent data
corruption detection based on runtime data analysis for HPC applications. In HPDC. ACM,
2015.

[12] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based fault tolerance applied
to high performance computing. J. Parallel Distrib. Comput., 69(4):410�416, 2009.

[13] G. Bronevetsky and B. de Supinski. Soft error vulnerability of iterative linear algebra methods.
In ICS. ACM, 2008.

[14] F. Cappello, E. M. Constantinescu, P. D. Hovland, T. Peterka, C. Phillips, M. Snir, and S. M.
Wil. Improving the trust in results of numerical simulations and scienti�c data analytics.
White paper MCS-TM-352, ANL, 2015.

[15] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward Exascale Re-
silience. Int. J. High Performance Computing Applications, 23(4):374�388, 2009.

[16] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward Exascale Re-
silience: 2014 update. Supercomputing frontiers and innovations, 1(1), 2014.

[17] H. Casanova, M. Bougeret, Y. Robert, F. Vivien, and D. Zaidouni. Using group replication
for resilience on exascale systems. Int. Journal of High Performance Computing Applications,
28(2):210�224, 2014.

[18] H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni. On the impact of process replication
on executions of large-scale parallel applications with coordinated checkpointing. Future
Generation Comp. Syst., 51:7�19, 2015.

[19] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-
performance, reliable secondary storage. ACM Comput. Surv., 26(2):145�185, June 1994.

[20] E. Ciocca, I. Koren, Z. Koren, C. M. Krishna, and D. S. Katz. Application-level fault tolerance
in the orbital thermal imaging spectrometer. In PRDC. IEEE, 2004.

[21] S. P. Crago, D. I. Kang, M. Kang, R. Kost, K. Singh, J. Suh, and J. P. Walters. Programming
models and development software for a space-based many-core processor. In 4th Int. Conf.
onon Space Mission Challenges for Information Technology, pages 95�102. IEEE, 2011.

[22] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.
Future Generation Comp. Syst., 22(3):303�312, 2006.

[23] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello. Optimization of multi-level
checkpoint model for large scale HPC applications. In IPDPS. IEEE, 2014.

[24] J. Dongarra and al. The international exascale software project roadmap. Int. J. High
Perform. Comput. Appl., 25(1):3�60, 2011.

[25] J. Elliott, M. Hoemmen, and F. Mueller. Evaluating the impact of SDC on the GMRES
iterative solver. In IPDPS. IEEE, 2014.

24

[26] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann. Combining
partial redundancy and checkpointing for HPC. In ICDCS. IEEE, 2012.

[27] E. Elnozahy and J. Plank. Checkpointing for peta-scale systems: A look into the future
of practical rollback-recovery. IEEE Transactions on Dependable and Secure Computing,
1(2):97��108, 2004.

[28] C. Engelmann, H. H. Ong, and S. L. Scorr. The case for modular redundancy in large-scale
high performance computing systems. In PDCN. IASTED, 2009.

[29] C. Engelmann and B. Swen. Redundant execution of HPC applications with MR-MPI. In
PDCN. IASTED, 2011.

[30] K. Ferreira, J. Stearley, J. H. I. Laros, R. Old�eld, K. Pedretti, R. Brightwell, R. Riesen,
P. G. Bridges, and D. Arnold. Evaluating the viability of process replication reliability for
exascale systems. In SC'11. ACM, 2011.

[31] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell. Detection
and correction of silent data corruption for large-scale high-performance computing. In SC.
ACM, 2012.

[32] C. George and S. S. Vadhiyar. ADFT: An adaptive framework for fault tolerance on large
scale systems using application malleability. Procedia Computer Science, 9:166 � 175, 2012.

[33] M. Heroux and M. Hoemmen. Fault-tolerant iterative methods via selective reliability. Re-
search report SAND2011-3915 C, Sandia Nat. Lab., 2011.

[34] T. Hérault and Y. Robert, editors. Fault-Tolerance Techniques for High-Performance Com-
puting, Computer Communications and Networks. Springer Verlag, 2015.

[35] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations.
IEEE Trans. Comput., 33(6):518�528, 1984.

[36] T. Leblanc, R. Anand, E. Gabriel, and J. Subhlok. VolpexMPI: An MPI Library for Execu-
tion of Parallel Applications on Volatile Nodes. In 16th European PVM/MPI Users' Group
Meeting, pages 124�133. Springer-Verlag, 2009.

[37] M. Li and P. P. C. Lee. Toward I/O-e�cient protection against silent data corruptions in
RAID arrays. In 30th Symposium on Mass Storage Systems and Technologies (MSST), pages
1�12, 2014.

[38] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to improve computer
reliability. IBM J. Res. Dev., 6(2):200�209, 1962.

[39] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, modeling, and evalu-
ation of a scalable multi-level checkpointing system. In SC. ACM, 2010.

[40] X. Ni, E. Meneses, N. Jain, and L. V. Kalé. ACR: Automatic Checkpoint/Restart for Soft
and Hard Error Protection. In SC. ACM, 2013.

[41] T. O'Gorman. The e�ect of cosmic rays on the soft error rate of a DRAM at ground level.
IEEE Trans. Electron Devices, 41(4):553�557, 1994.

[42] R. A. Old�eld, S. Arunagiri, P. J. Teller, S. Seelam, M. R. Varela, R. Riesen, and P. C. Roth.
Modeling the impact of checkpoints on next-generation systems. In 24th IEEE Conf. Mass
Storage Systems and Technologies. IEEE, 2007.

[43] M. W. Rashid and M. C. Huang. Supporting highly-decoupled thread-level redundancy for
parallel programs. In 14th Int. Conf. on High-Performance Computer Architecture (HPCA),
pages 393�404. IEEE, 2008.

25

[44] P. Sao and R. Vuduc. Self-stabilizing iterative solvers. In ScalA '13, 2013.

[45] B. Schroeder and G. A. Gibson. Understanding Failures in Petascale Computers. Journal of
Physics: Conference Series, 78(1), 2007.

[46] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault tolerant preconditioned conjugate
gradient for sparse linear system solution. In ICS. ACM, 2012.

[47] M. Snir and al. Addressing failures in exascale computing. Int. J. High Perform. Comput.
Appl., 28(2):129�173, 2014.

[48] J. Stearley, K. B. Ferreira, D. J. Robinson, J. Laros, K. T. Pedretti, D. Arnold, P. G. Bridges,
and R. Riesen. Does partial replication pay o�? In FTXS. IEEE, 2012.

[49] O. Subasi, J. Arias, O. Unsal, J. Labarta, and A. Cristal. Programmer-directed partial
redundancy for resilient HPC. In Computing Frontiers. ACM, 2015.

[50] S. Yi, D. Kondo, B. Kim, G. Park, and Y. Cho. Using replication and checkpointing for
reliable task management in computational grids. In SC. ACM, 2010.

[51] J. W. Young. A �rst order approximation to the optimum checkpoint interval. Comm. of the
ACM, 17(9):530�531, 1974.

[52] J. Yu, D. Jian, Z. Wu, and H. Liu. Thread-level redundancy fault tolerant CMP based on
relaxed input replication. In ICCIT. IEEE, 2011.

[53] Z. Zheng and Z. Lan. Reliability-aware scalability models for high performance computing.
In Cluster Computing. IEEE, 2009.

[54] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. IBM experiments
in soft fails in computer electronics. IBM J. Res. Dev., 40(1):3�18, 1996.

Appendix A. Proof of Theorem 3

Proof. From Theorem 1 and Lemma 2, and applying Taylor series while assuming λ2PT 2 = Θ(λε),
where ε > 0, we can derive the expected execution time of a pattern as follows:

Eprc
3 (T, P) = T + V + C +

1−
(
3e−2λT + 2e−3λT

)P
(3e−2λT − 2e−3λT)

P

(
T + V +R

)
= T + V + C +

((
e3λT

3eλT − 2

)P
− 1

)(
T + V +R

)
≈ T + V + C +

(1 + 3λT + (3λT)2

2

1 + 3λT + 3(λT)2

2

)P
− 1

 (T + V +R)

≈ T + V + C +
((

1 + 3(λT)2
)P − 1

)
(T + V +R)

= T + V + C +

 P∑
j=0

(
P

j

)(
3(λT)2

)j − 1

 (T + V +R)

= T + V + C + 3P (λT)2(T + V +R) + o(λ2PT 3) .

The execution overhead can then be expressed as:

Hprc
3 (T, P) = H(P)

(
1 +

V + C

T
+ 3P (λT)2 + o(λ2PT 2)

)
. (36)

26

The optimal checkpointing period is then obtained by setting

∂Hprc
3 (T, P)

∂T
= −V + C

T 2
+ 6λ2PT = 0 ,

which gives

Topt(P) =

(
V + C

6λ2P

) 1
3

.

Substituting Topt(P) back into Equation (36), we get the following execution overhead (with
lower-order terms ignored):

Hprc
3 (P) = H(P)

(
1 + 3

(
3

4
(λ(V + C))

2
P

) 1
3

)
. (37)

To derive the optimal process count, consider V + C = c and H(P) = α + 1−α
P for α > 0. Then,

Equation (11) can be expanded as

Hprc
3 (P) = α+ 3α

(
3

4
(λc)

2
P

) 1
3

+
1− α
P

+ o(λ
2
3) . (38)

The optimal overhead is achieved by setting

∂Hprc
3 (P)

∂P
= α

(
3

4
(λc)

2 1

P 2

) 1
3

− 1− α
P 2

= 0 ,

which gives rise to P ∗ =
(

4
3

(
1−α
α

)3 (1
λc

)2) 1
4

. Now, the optimal process count is upper-bounded

by Q
3 . Thus, Popt is given by Equation (14), which again holds true when c = 0 or α = 0, and the

optimal expected speedup satis�es Sprc3 (Popt) = 1
Hprc

3 (Popt)
, as shown in Equation (16).

Appendix B. Proof of Lemma 6

Proof. Following the proof of Lemma 1, the failure probability Qprc
2 (T, P) due to fail-stop errors

can be readily derived in a similar way. To derive the overall failure probability Fprc
2 (T, P), let

Qprc
1 (T, 1) = 1 − e−λfT and Pprc

1 (T, 1) = 1 − e−λsT denote the probabilities that a single process
is hit by fail-stop errors and silent errors, respectively. We �rst focus on the failure probability of
any single duplicated process, which is derived as follows:

Fprc
2 (T, 1) =

(
2

2

)
Qprc

1 (T, 1)2 +

(
2

1

)
(1−Qprc

1 (T, 1))Qprc
1 (T, 1)

+

(
2

0

)
(1−Qprc

1 (T, 1))2

[(
2

2

)
Pprc

1 (T, 1)2 +

(
2

1

)
(1− Pprc

1 (T, 1))Pprc
1 (T, 1)

]
.

In particular, the �rst line represents the probability that the process fails due to fail-stop errors,
and the second line represents the probability that the process survived fail-stop errors but sub-
sequently fails due to silent errors. Recall that in this case, a single fail-stop error means that
there is a failure, since we will not be able to verify whether the process has been struck by a
silent error. Substituting Qprc

1 (T, 1) and Pprc
1 (T, 1) into the equation above and simplifying gives

us Fprc
2 (T, 1) = 1− e−2ΛT . With P independent processes, the probability that the whole pattern

fails due to either error source is therefore:

Fprc
2 (T, P) = 1− P(�No process fails�)

= 1− (1− Fprc
2 (T, 1))

P

= 1− e−2ΛPT .

27

Now, to compute the expected time lost due to fail-stop errors, we �rst approximateQprc
2 (T, P) =

1− e−2λfTP ≈ 2λfTP . Substituting it into Equation (34), we get:

Elost
2 (T, P) ≈ T − 1

2λfTP

∫ T

0

2λf tPdt

= T − 1

T

∫ T

0

tdt

=
T

2
.

This completes the proof of Lemma 6.

Appendix C. Proof of Lemma 7

Proof. Again, the failure probability Qprc
3 (T, P) due to fail-stop errors can be derived by following

the proof of Lemma 2. To derive the overall failure probability Fprc
3 (T, P), we again consider the

failure probability of any single triplicated process as follows:

Fprc
3 (T, 1) =

(
3

3

)
Qprc

1 (T, 1)3 +

(
3

2

)
(1−Qprc

1 (T, 1))Qprc
1 (T, 1)2

+

(
3

1

)
(1−Qprc

1 (T, 1))
2 Qprc

1 (T, 1) ·
[(

2

2

)
Pprc

1 (T, 1)2 +

(
2

1

)
Pprc

1 (T, 1)(1− Pprc
1 (T, 1))

]
+

(
3

0

)
(1−Qprc

1 (T, 1))3 ·
[(

3

3

)
Pprc

1 (T, 1)3 +

(
3

2

)
(1− Pprc

1 (T, 1))Pprc
1 (T, 1)2

]
.

In the above expression, the �rst line represents the probability that the process fails due to fail-
stop errors (at most one replica is surviving, and hence we cannot detect silent errors). The next
two lines represent the probabilities of two di�erent scenarios where the process survived fail-stop
errors (by leaving at least two replicas alive), but subsequently fails due to silent errors. Evaluating
it gives us Fprc

3 (T, 1) = 1 − 3e−2ΛT + 2e−3ΛT . Thus, the probability that the whole pattern fails
due to either error source is given by

Fprc
3 (T, P) = 1− P(�No process fails�)

= 1− (1− Fprc
3 (T, 1))

P

= 1− (3e−2ΛT − 2e−3ΛT)P .

Finally, to compute the expected time lost, we can approximate Q3(T, P) up to second-order
terms as follows:

Q3(T, P) = 1−
(
3e−2λfT − 2e−3λfT

)P
≈ 1−

(
3
(

1− 2λfT +
(2λfT)2

2

)
− 2
(

1− 3λfT +
(3λfT)2

2

))P
= 1− (1− 3(λfT)2)P

= 1−
P∑
j=0

(
P

j

)
(−3)j(λfT)2j

≈ 3P (λfT)2 .

28

Substituting it into Equation (34), we get:

Elost
3 (T, P) ≈ T − 1

3P (λfT)2

∫ T

0

3P (λf t)
2dt

= T − 1

T 2

∫ T

0

t2dt

=
2T

3
.

This completes the proof of Lemma 7.

29

