
1/72

Resilient Algorithms for Coping with Silent Errors

Hongyang Sun

ENS Lyon

hongyang.sun@ens-lyon.fr

http://perso.ens-lyon.fr/hongyang.sun/

CR02 - 2015/2016

hongyang.sun@ens-lyon.fr
http://perso.ens-lyon.fr/hongyang.sun/

2/72

Outline

1 Introduction

2 Problem statement

3 Computing optimal patterns
Revisiting Young/Daly (base pattern)
Pattern with guaranteed verifications
Interleaving checkpoints and verifications
Pattern with partial verifications
Using multiple types of partial verifications

4 Coping with both fail-stop and silent errors

5 Algorithms for a linear chain of tasks

6 Conclusion

3/72

What is silent error?

Fail-stop error: e.g., hardware crash, node failure
- Instantaneous error detection.

Silent error (a.k.a. silent data corruption, or SDC): e.g., soft
faults in L1 cache, ALU, multiple bit flip due to cosmic
radiation.

- Cannot always be detected by ECC memory.

Silent error detected only when corrupted data is activated,
which could happen long after the occurrence.

Time

Error
Detect

4/72

Quotes

Soft Error: An unintended change in the state of an electronic
device that alters the information that it stores without
destroying its functionality, e.g. a bit flip caused by a
cosmic-ray-induced neutron. (Hengartner et al., 2008)
SDC occurs when incorrect data is delivered by a computing
system to the user without any error being logged (Cristian
Constantinescu, AMD)
Silent errors are the black swan of errors (Marc Snir)

5/72

Should we be afraid? (courtesy Al Geist)

6/72

General-purpose approach

Periodic checkpointing, rollback and recovery:

Time

Corrupt Detect

Error

Corrupt

C C C

Works fine for fail-stop errors.

Detection latency in silent errors ⇒ risk of saving corrupted
checkpoint(s).

Maintaining multiple checkpoints (Lu, Zheng and Chien, 2013)
Requires more stable storage.
Which checkpoint to roll back to?
Critical failure when all live checkpoints are invalid.

Need to know when silent error occurred.

6/72

General-purpose approach

Periodic checkpointing, rollback and recovery:

Time

Corrupt Detect
Error

Corrupt

C C C

Works fine for fail-stop errors.
Detection latency in silent errors ⇒ risk of saving corrupted
checkpoint(s).

Maintaining multiple checkpoints (Lu, Zheng and Chien, 2013)
Requires more stable storage.
Which checkpoint to roll back to?
Critical failure when all live checkpoints are invalid.

Need to know when silent error occurred.

6/72

General-purpose approach

Periodic checkpointing, rollback and recovery:

Time

Corrupt Detect
Error

Corrupt

C C C

Works fine for fail-stop errors.
Detection latency in silent errors ⇒ risk of saving corrupted
checkpoint(s).

Maintaining multiple checkpoints (Lu, Zheng and Chien, 2013)
Requires more stable storage.
Which checkpoint to roll back to?
Critical failure when all live checkpoints are invalid.

Need to know when silent error occurred.

6/72

General-purpose approach

Periodic checkpointing, rollback and recovery:

Time

Corrupt Detect

Error

Corrupt

C C C

Works fine for fail-stop errors.
Detection latency in silent errors ⇒ risk of saving corrupted
checkpoint(s).

Maintaining multiple checkpoints (Lu, Zheng and Chien, 2013)
Requires more stable storage.
Which checkpoint to roll back to?
Critical failure when all live checkpoints are invalid.

Need to know when silent error occurred.

6/72

General-purpose approach

Periodic checkpointing, rollback and recovery:

Time

Corrupt Detect

Error

Corrupt

C C C

Works fine for fail-stop errors.
Detection latency in silent errors ⇒ risk of saving corrupted
checkpoint(s).

Maintaining multiple checkpoints (Lu, Zheng and Chien, 2013)
Requires more stable storage.
Which checkpoint to roll back to?
Critical failure when all live checkpoints are invalid.

Need to know when silent error occurred.

7/72

Coping with silent errors

Couple checkpointing with verification:

Time

Error Detect

V ∗ C V ∗ C V ∗ C

Before each checkpoint, run some verification mechanism or
error detection test (some examples in next slide).
Silent error, if any, is detected by verification ⇒ need to
maintain only one checkpoint, which is always valid ,

8/72

Methods for detecting silent errors

General-purpose methods
Checksum, error correcting code, coherence tests.
Triple modular redundancy and voting.

Application-specific methods
Algorithm-based fault tolerance (ABFT): checksums in dense
matrices. Limited to one error detection and/or correction in
practice (Huang and Abraham, 1984).
Partial differential equations (PDE): use lower-order scheme as
verification mechanism (Benson, Schmit and Schreiber, 2014).
Generalized minimal residual method (GMRES): inner-outer
iterations (Hoemmen and Heroux, 2011).
Preconditioned conjugate gradients (PCG): orthogonalization
check every k iterations, re-orthogonalization if problem
detected (Sao and Vuduc, 2013).

9/72

Methods for detecting silent errors

On-line ABFT scheme for PCG (Chen, 2013)

Iterate PCG
Cost: SpMV, preconditioner
solve, 5 linear kernels
Detect soft errors by checking
orthogonality and residual

Verification every d iterations
Cost: scalar product+SpMV
Checkpoint every c iterations
Cost: three vectors, or two
vectors + SpMV at recovery

Experimental method to
choose c and d

10/72

Methods for detecting silent errors

Data analytics methods
Dynamic monitoring of HPC datasets based on physical laws
(e.g., temperature limit, speed limit.) and space or temporal
proximity (Bautista-Gomez and Cappello, 2014).
Time-series prediction, spatial multivariate interpolation (Di et
al., 2014).

Some verifications are guaranteed to detect all the errors.
Some are not always accurate ⇒ partial verifications.

/ Lower accuracy
, Much lower cost

Approach is agnostic of the nature of verification mechanism.

10/72

Methods for detecting silent errors

Data analytics methods
Dynamic monitoring of HPC datasets based on physical laws
(e.g., temperature limit, speed limit.) and space or temporal
proximity (Bautista-Gomez and Cappello, 2014).
Time-series prediction, spatial multivariate interpolation (Di et
al., 2014).

Some verifications are guaranteed to detect all the errors.
Some are not always accurate ⇒ partial verifications.

/ Lower accuracy
, Much lower cost

Approach is agnostic of the nature of verification mechanism.

10/72

Methods for detecting silent errors

Data analytics methods
Dynamic monitoring of HPC datasets based on physical laws
(e.g., temperature limit, speed limit.) and space or temporal
proximity (Bautista-Gomez and Cappello, 2014).
Time-series prediction, spatial multivariate interpolation (Di et
al., 2014).

Some verifications are guaranteed to detect all the errors.
Some are not always accurate ⇒ partial verifications.

/ Lower accuracy
, Much lower cost

Approach is agnostic of the nature of verification mechanism.

11/72

Outline

1 Introduction

2 Problem statement

3 Computing optimal patterns
Revisiting Young/Daly (base pattern)
Pattern with guaranteed verifications
Interleaving checkpoints and verifications
Pattern with partial verifications
Using multiple types of partial verifications

4 Coping with both fail-stop and silent errors

5 Algorithms for a linear chain of tasks

6 Conclusion

12/72

Models and Objective

Failure model

Silent errors arrive following exponential law Exp(λ)
⇒ memoryless.
Error rate λ = 1

µ with Mean Time Between Failure (MTBF) µ.
Probability of having an error in a computation of length w

P(X ≤ w) = 1− e−λw (by definition)
≈ λw (Taylor expansion ex =

∑∞
n=0

xn

n!)

⇒ same as uniform distribution in first-order approximation.
Errors strike computation only, not checkpointing, recovery,
and verification.
⇒ much simplified analysis, but same asymptotic results in
first-order approximation.

13/72

Models and Objective

Resilience parameters
C : Cost of checkpointing;
R: Cost of recovery;
V ∗: Cost of perfect/guaranteed verification;
V : Cost of partial verification.

Objective
Design a periodic computing pattern that minimizes the
expected execution time (makespan) of the application.

Time
Pattern

· · ·V ∗ C V ∗ C V ∗ C

Last verification of a pattern is always perfect to avoid
saving corrupted checkpoints.

14/72

Models and Objective

Overhead and Waste
Suppose an application with total work Wbase is divided into periodic
patterns of work W . If the expected execution time of a pattern is
E(W), then the total execution time Wfinal of the application is

Wfinal ≈ Wbase

W · E(W)

= (1 + Overhead) ·Wbase

= 1
1−Waste ·Wbase

where
Overhead = E(W)

W − 1

Waste = 1− W
E(W)

denote the execution overhead and execution waste of the pattern,
respectively.

15/72

Models and Objective

Proposition
For large applications, minimizing total execution time is equivalent to
minimizing overhead or waste of a computing pattern.

E.x. W = 100,E(W) = 125⇒ Overhead = 25%,Waste = 20%.

In fact, when platform MTBF µ is large, both overhead and waste are in
the same order O(

√
λ).

16/72

Outline

1 Introduction

2 Problem statement

3 Computing optimal patterns
Revisiting Young/Daly (base pattern)
Pattern with guaranteed verifications
Interleaving checkpoints and verifications
Pattern with partial verifications
Using multiple types of partial verifications

4 Coping with both fail-stop and silent errors

5 Algorithms for a linear chain of tasks

6 Conclusion

17/72

Outline

1 Introduction

2 Problem statement

3 Computing optimal patterns
Revisiting Young/Daly (base pattern)
Pattern with guaranteed verifications
Interleaving checkpoints and verifications
Pattern with partial verifications
Using multiple types of partial verifications

4 Coping with both fail-stop and silent errors

5 Algorithms for a linear chain of tasks

6 Conclusion

18/72

Revisiting Young/Daly (Base Pattern Pc)

TimeW

V ∗ C V ∗ C

Proposition
The expected time to execute a base pattern Pc of work length W is

E(W) = W + V ∗ + C + λW (W + V ∗ + R) + O(λ2W 3)

Proof. First, express the expected execution time recursively:

E(W) = W + V ∗ + (1− e−λW) · (R + E(W)) + e−λW · C

Then, solve the recursion and take first-order approximation.

Approximation is accurate if platform MTBF is large in front of
the resilience parameters.

19/72

Revisiting Young/Daly (Base Pattern Pc)

Proposition
The optimal work length W ∗ of the base pattern Pc is

W ∗ =
√

V ∗ + C
λ

and the optimal expected overhead is

Overhead∗ = 2
√
λ(V ∗ + C) + O(λ)

Proof. Derive the overhead from the expected execution time:

Overhead = E(W)
W − 1

= V ∗ + C
W + λW + λ(V ∗ + R) + O(λ2W 2)

Balance W to minimize Overhead.

20/72

Revisiting Young/Daly (Base Pattern Pc)

Recall from the waste analysis:

Fail-stop errors Silent errors
Pattern T = W + C S = W + V ∗ + C
Wasteff

C
T

V ∗+C
S

Wastefail λ(D + R + W
2) λ(R + W + V ∗)

Optimal Topt =
√

2C
λ Sopt =

√
V ∗+C

λ

Wasteopt
√

2λC 2
√
λ(V ∗ + C)

21/72

Outline

1 Introduction

2 Problem statement

3 Computing optimal patterns
Revisiting Young/Daly (base pattern)
Pattern with guaranteed verifications
Interleaving checkpoints and verifications
Pattern with partial verifications
Using multiple types of partial verifications

4 Coping with both fail-stop and silent errors

5 Algorithms for a linear chain of tasks

6 Conclusion

22/72

Pattern with Guaranteed Verifications (Pv∗c)

Perform several verifications before each checkpoint:

Time

Error Detect

V ∗ C V ∗ V ∗ V ∗ C V ∗ V ∗ V ∗ C

, silent error is detected earlier in the pattern.
/ additional overhead in fault-free executions.

What is the optimal checkpointing period?
How many verifications to use?

Where are their positions?

22/72

Pattern with Guaranteed Verifications (Pv∗c)

Perform several verifications before each checkpoint:

Time

Error Detect

V ∗ C V ∗ V ∗ V ∗ C V ∗ V ∗ V ∗ C

, silent error is detected earlier in the pattern.
/ additional overhead in fault-free executions.

What is the optimal checkpointing period?
How many verifications to use?

Where are their positions?

23/72

Pattern with Guaranteed Verifications (Pv∗c)

Time
W

w1 w2 wn

· · ·
· · ·

V ∗ C V ∗ V ∗ V ∗ V ∗ C

Proposition
Suppose a pattern Pv∗c has length W and n segments. The i-th segment
has work wi = αi W . The expected time to execute the pattern is

E(W) = W + nV ∗ + C + λW (f ·W + g · V ∗ + R) + O(λ2W 3)

where

f =
n∑

i=1
αi

(i∑
j=1

αj

)

g =
n∑

i=1
i · αi

24/72

Pattern with Guaranteed Verifications (Pv∗c)

Proof. Recursive expression for expected execution time:

E(W) =
n∑

i=1

(
e−λ

∑i−1
j=1

wj · (1− e−λwi) ·
(i∑

j=1
wj + i · V ∗ + R + E(W)

))
+e−λW (W + nV ∗ + C)

For instance, when n = 3, i.e., W = w1 + w2 + w3

E(W) = (1− e−λw1)
(
w1 + V ∗ + R + E(W)

)
+e−λw1

(
1− e−λw2

) (
w1 + w2 + 2V ∗ + R + E(W)

)
+e−λ(w1+w2) (1− e−λw3

)
(w1 + w2 + w3 + 3V ∗ + R + E(W))

+e−λW (W + 3V ∗ + C
)

Approximate after solving the recursion.

25/72

Pattern with Guaranteed Verifications (Pv∗c)

Proposition
The optimal work length W ∗, the optimal number n∗ of segments, and
the optimal positions of the verifications in pattern Pv∗c satisfy

n∗ =
√

C
V ∗

W ∗ =
√

n∗V ∗ + C
1
2
(
1 + 1

n∗

)
λ

α∗i = 1
n∗ for all i = 1, 2, . . . , n∗

and the optimal expected overhead is

Overhead∗ =
√

2λC +
√

2λV ∗ + O(λ)

Practically, the number of segments must be a positive integer, i.e.,
max(1, bn∗c) or dn∗e.

26/72

Pattern with Guaranteed Verifications (Pv∗c)
Proof. Derive the overhead from the expected execution time:

Overhead = nV ∗ + C
W + λf ·W + λ (g · V ∗ + R) + O(λ2W 2)

¬ Optimize W

W ∗ =
√

nV ∗ + C
λf ⇒ Overhead ≈ 2

√
λf (nV ∗ + C)

­ Convex function f =
∑n

i=1 αi

(∑i
j=1 αj

)
minimized when αi = 1

n

f ∗ = 1
2

(
1 + 1

n

)
⇒ Overhead ≈

√
2λ
(

nV ∗ + V ∗ + C + C
n

)
® Optimize n

n∗ =
√

C
V ∗ ⇒ Overhead ≈

√
2λ
(√

V ∗ +
√

C
)2

27/72

Some Observations

Observation 1
The expected time to execute a pattern of length W is

E(W) = W + off︸ ︷︷ ︸
base time

+ λW︸︷︷︸
expected errors

(
fre ·W + O(V ∗) + R

)
︸ ︷︷ ︸

E(Tre): expected re-execution time

+O(λ)

with two important parameters

off: overhead in a fault-free execution, i.e.,
∑

resilience ops.

fre: fraction of re-executed work in case of error.

28/72

Some Observations

Derive the overhead from the expected execution time:

Overhead = E(W)
W − 1

= off
W + λfreW + O(λ)

Observation 2
The optimal work length and the optimal overhead of a pattern are

W ∗ =
√

off
λfre

Overhead∗ = 2
√
λ · freoff + O(λ)

Asymptotically, minimizing overhead is equivalent to minimizing
the product freoff!

29/72

Some Observations

Base pattern Pc

E(W) = W + V ∗ + C︸ ︷︷ ︸
off

+λW (W︸︷︷︸
fre=1

+V ∗ + R) + O(λ)

W ∗ =
√

V ∗ + C
λ

and Overhead∗ ≈ 2
√
λ(V ∗ + C)

Pattern Pv∗c

E(W) = W + nV ∗ + C︸ ︷︷ ︸
off

+λW
(1

2

(
1 + 1

n

)
︸ ︷︷ ︸

fre

W + n + 1
2 V ∗ + R

)
+ O(λ)

W ∗ =
√

nV ∗ + C
1
2
(
1 + 1

n
)
λ

and Overhead∗ ≈ 2

√
λ

1
2 (nV ∗ + C)

(
1 + 1

n

)

30/72

Outline

1 Introduction

2 Problem statement

3 Computing optimal patterns
Revisiting Young/Daly (base pattern)
Pattern with guaranteed verifications
Interleaving checkpoints and verifications
Pattern with partial verifications
Using multiple types of partial verifications

4 Coping with both fail-stop and silent errors

5 Algorithms for a linear chain of tasks

6 Conclusion

31/72

Interleaving Checkpoints and Verifications

Time
V ∗ C V ∗ V ∗ C V ∗ V ∗ V ∗ C

May store invalid checkpoints!

BalancedAlgorithm (Benoit, Raina and Robert, 2014)

¬ Equipartition p checkpoints and q guaranteed verifications.
p ≤ q ⇒ need only two checkpoints in memory.
gcd(p, q) = 1 ⇒ no verified checkpoint in the pattern.

­ After each successful verification, mark preceding checkpoint valid.

® After detecting an error, roll back to the last checkpoint.
If marked valid, recover from this checkpoint.
Otherwise, verify this checkpoint

- If valid, recover from this checkpoint and mark it valid.
- If invalid, recover from the preceding checkpoint (valid).

31/72

Interleaving Checkpoints and Verifications

Time
V ∗ C V ∗ V ∗ C V ∗ V ∗ V ∗ C

May store invalid checkpoints!

BalancedAlgorithm (Benoit, Raina and Robert, 2014)

¬ Equipartition p checkpoints and q guaranteed verifications.
p ≤ q ⇒ need only two checkpoints in memory.
gcd(p, q) = 1 ⇒ no verified checkpoint in the pattern.

­ After each successful verification, mark preceding checkpoint valid.

® After detecting an error, roll back to the last checkpoint.
If marked valid, recover from this checkpoint.
Otherwise, verify this checkpoint

- If valid, recover from this checkpoint and mark it valid.
- If invalid, recover from the preceding checkpoint (valid).

32/72

Interleaving Checkpoints and Verifications

Time2w 2w w w 2w 2w
W

V ∗ C V ∗ V ∗ C V ∗ V ∗ V ∗ C

E.x. p = 2, q = 5 ⇒ W = 10w , six chunks of size w or 2w
In this pattern, off = 2C + 5V ∗ and fre = 7

20

(Prob. 2w
W = 1

5) Tre = R + 1
5 W + V ∗

(Prob. 2w
W = 1

5) Tre = R + 2
5 W + 2V ∗

(Prob. w
W = 1

10) Tre = 2R + 3
5 W + C + 4V ∗

(Prob. w
W = 1

10) Tre = R + 1
10 W + 2V ∗

(Prob. 2w
W = 1

5) Tre = R + 3
10 W + 2V ∗

(Prob. 2w
W = 1

5) Tre = R + 1
2 W + 3V ∗

E(Tre) = 7
20 W + O(R,V ∗,C)

W =
√

20(2C + 5V ∗)
7λ and Overhead ≈ 2

√
λ

7(2C + 5V ∗)
20

32/72

Interleaving Checkpoints and Verifications

Time2w 2w w w 2w 2w
W

V ∗ C V ∗ V ∗ C V ∗ V ∗ V ∗ C

E.x. p = 2, q = 5 ⇒ W = 10w , six chunks of size w or 2w
In this pattern, off = 2C + 5V ∗ and fre = 7

20

(Prob. 2w
W = 1

5) Tre = R + 1
5 W + V ∗

(Prob. 2w
W = 1

5) Tre = R + 2
5 W + 2V ∗

(Prob. w
W = 1

10) Tre = 2R + 3
5 W + C + 4V ∗

(Prob. w
W = 1

10) Tre = R + 1
10 W + 2V ∗

(Prob. 2w
W = 1

5) Tre = R + 3
10 W + 2V ∗

(Prob. 2w
W = 1

5) Tre = R + 1
2 W + 3V ∗

E(Tre) = 7
20 W + O(R,V ∗,C)

W =
√

20(2C + 5V ∗)
7λ and Overhead ≈ 2

√
λ

7(2C + 5V ∗)
20

32/72

Interleaving Checkpoints and Verifications

Time2w 2w w w 2w 2w
W

V ∗ C V ∗ V ∗ C V ∗ V ∗ V ∗ C

E.x. p = 2, q = 5 ⇒ W = 10w , six chunks of size w or 2w
In this pattern, off = 2C + 5V ∗ and fre = 7

20

(Prob. 2w
W = 1

5) Tre = R + 1
5 W + V ∗

(Prob. 2w
W = 1

5) Tre = R + 2
5 W + 2V ∗

(Prob. w
W = 1

10) Tre = 2R + 3
5 W + C + 4V ∗

(Prob. w
W = 1

10) Tre = R + 1
10 W + 2V ∗

(Prob. 2w
W = 1

5) Tre = R + 3
10 W + 2V ∗

(Prob. 2w
W = 1

5) Tre = R + 1
2 W + 3V ∗

E(Tre) = 7
20 W + O(R,V ∗,C)

W =
√

20(2C + 5V ∗)
7λ and Overhead ≈ 2

√
λ

7(2C + 5V ∗)
20

33/72

Interleaving Checkpoints and Verifications

Theorem (p = 1)
The minimal value of fre(1, q) is obtained when all verifications are
equi-spaced. In this case, we have f ∗re(1, q) = 1

2 (1 + 1/q).

Theorem (p > 1)

fre(p, q) ≥ 1
2 (1/p + 1/q), bound is matched by BalancedAlgorithm.

Proof. Assess gain due to the p − 1 intermediate checkpoints.

δ = fre(1, q)− fre(p, q) =
p∑

i=1

(
αi

i−1∑
j=1

αj

)

where αi is the fraction of the i-th checkpointing segment.

δ maximized when αi = 1/p for all i ⇒ equi-spaced checkpoints.

Hence, we have δ ≤ 1
2 (1− 1/p).

fre(p, q) = fre(1, q)− δ ≥ 1
2 (1/p + 1/q).

33/72

Interleaving Checkpoints and Verifications

Theorem (p = 1)
The minimal value of fre(1, q) is obtained when all verifications are
equi-spaced. In this case, we have f ∗re(1, q) = 1

2 (1 + 1/q).

Theorem (p > 1)

fre(p, q) ≥ 1
2 (1/p + 1/q), bound is matched by BalancedAlgorithm.

Proof. Assess gain due to the p − 1 intermediate checkpoints.

δ = fre(1, q)− fre(p, q) =
p∑

i=1

(
αi

i−1∑
j=1

αj

)

where αi is the fraction of the i-th checkpointing segment.

δ maximized when αi = 1/p for all i ⇒ equi-spaced checkpoints.

Hence, we have δ ≤ 1
2 (1− 1/p).

fre(p, q) = fre(1, q)− δ ≥ 1
2 (1/p + 1/q).

33/72

Interleaving Checkpoints and Verifications

Theorem (p = 1)
The minimal value of fre(1, q) is obtained when all verifications are
equi-spaced. In this case, we have f ∗re(1, q) = 1

2 (1 + 1/q).

Theorem (p > 1)

fre(p, q) ≥ 1
2 (1/p + 1/q), bound is matched by BalancedAlgorithm.

Proof. Assess gain due to the p − 1 intermediate checkpoints.

δ = fre(1, q)− fre(p, q) =
p∑

i=1

(
αi

i−1∑
j=1

αj

)

where αi is the fraction of the i-th checkpointing segment.

δ maximized when αi = 1/p for all i ⇒ equi-spaced checkpoints.

Hence, we have δ ≤ 1
2 (1− 1/p).

fre(p, q) = fre(1, q)− δ ≥ 1
2 (1/p + 1/q).

34/72

Interleaving Checkpoints and Verifications

Proposition
The optimal work length W ∗ and the optimal numbers p∗ and q∗ of the
interleaving pattern satisfy

W ∗ =
√√√√ p∗C + q∗V ∗

1
2

(
1

p∗ + 1
q∗

)
λ

and q∗
p∗ =

√
C

V ∗

and the optimal expected overhead is

Overhead∗ ≈
√

2λC +
√

2λV ∗

Proof. We have off = pC + qV ∗ and fre = 1
2

(
1
p + 1

q

)
.

Minimize offfre = 1
2 (C + C/γ + γV ∗ + V ∗), where γ = q/p ≥ 1.

Optimal γ∗ =
√

C/V ∗.

When p = 1, same results as the pattern Pv∗c .

E.x. C = 9 and V ∗ = 4 ⇒ q∗ = 3 and p∗ = 2 (avoid rounding).

34/72

Interleaving Checkpoints and Verifications

Proposition
The optimal work length W ∗ and the optimal numbers p∗ and q∗ of the
interleaving pattern satisfy

W ∗ =
√√√√ p∗C + q∗V ∗

1
2

(
1

p∗ + 1
q∗

)
λ

and q∗
p∗ =

√
C

V ∗

and the optimal expected overhead is

Overhead∗ ≈
√

2λC +
√

2λV ∗

Proof. We have off = pC + qV ∗ and fre = 1
2

(
1
p + 1

q

)
.

Minimize offfre = 1
2 (C + C/γ + γV ∗ + V ∗), where γ = q/p ≥ 1.

Optimal γ∗ =
√

C/V ∗.

When p = 1, same results as the pattern Pv∗c .

E.x. C = 9 and V ∗ = 4 ⇒ q∗ = 3 and p∗ = 2 (avoid rounding).

35/72

Outline

1 Introduction

2 Problem statement

3 Computing optimal patterns
Revisiting Young/Daly (base pattern)
Pattern with guaranteed verifications
Interleaving checkpoints and verifications
Pattern with partial verifications
Using multiple types of partial verifications

4 Coping with both fail-stop and silent errors

5 Algorithms for a linear chain of tasks

6 Conclusion

36/72

Pattern with Partial Verifications (Pvc)

Guaranteed/perfect verifications can be very expensive! Partial
verifications are available for many HPC applications!

, Much lower cost, i.e., V � V ∗

/ Lower accuracy

recall (r) = #detected errors
#total errors < 1 (false negative)

precision (p) = #true errors
#detected errors < 1 (false positive)

In the following, assume p = 1.

Matched by many fault filters.

p < 1 seems to render verification useless; real impact not well
understood.

36/72

Pattern with Partial Verifications (Pvc)

Guaranteed/perfect verifications can be very expensive! Partial
verifications are available for many HPC applications!

, Much lower cost, i.e., V � V ∗

/ Lower accuracy

recall (r) = #detected errors
#total errors < 1 (false negative)

precision (p) = #true errors
#detected errors < 1 (false positive)

In the following, assume p = 1.

Matched by many fault filters.

p < 1 seems to render verification useless; real impact not well
understood.

37/72

Pattern with Partial Verifications (Pvc)

Time

Error Detect? Detect!

V ∗ C V V V ∗ C V V V ∗ C

A partial verification may miss an error (with probability g = 1− r).

Last verification is perfect to avoid saving invalid checkpoints.

What is the optimal checkpointing period?
How many partial verifications to use?

Where are their positions?

37/72

Pattern with Partial Verifications (Pvc)

Time

Error Detect? Detect!

V ∗ C V V V ∗ C V V V ∗ C

A partial verification may miss an error (with probability g = 1− r).

Last verification is perfect to avoid saving invalid checkpoints.

What is the optimal checkpointing period?
How many partial verifications to use?

Where are their positions?

38/72

Pattern with Partial Verifications (Pvc)

Time
1

α1 α2 α3 αn

· · ·
· · ·

V ∗ C V V V V V ∗ C

(1) Apply the freoff analysis.

Proposition
Suppose a pattern Pvc has n segments (n − 1 partial verifications and
one guaranteed verification), and the i-th segment has αi fraction of
work. Then the pattern is characterized by

off = (n − 1)V + V ∗ + C
fre = αT Aα

where α = [α1, α2, . . . , αn]T and A is a symmetric matrix defined by
Ai,j = 1

2
(
1 + g |i−j|).

39/72

Pattern with Partial Verifications (Pvc)

Proof. Derive the expected re-execution fraction.

fre =
n∑

i=1
αi

(i∑
j=1

αj +
n∑

j=i+1
g j−iαj

)

E.x., when n = 3, i.e., α1 + α2 + α3 = 1.

fre =
α1
(
α1 + gα2 + g2α3

)
+α2 (α1 + α2 + gα3)
+α3(α1 + α2 + α3)

=

α1
α2
α3

T 1 g g2

1 1 g
1 1 1

α1
α2
α3

 = αT Mα

But M is not symmetric. Replace it by

A = M + MT

2 = 1
2

 2 1 + g 1 + g2

1 + g 2 1 + g
1 + g2 1 + g 2



39/72

Pattern with Partial Verifications (Pvc)

Proof. Derive the expected re-execution fraction.

fre =
n∑

i=1
αi

(i∑
j=1

αj +
n∑

j=i+1
g j−iαj

)

E.x., when n = 3, i.e., α1 + α2 + α3 = 1.

fre =
α1
(
α1 + gα2 + g2α3

)
+α2 (α1 + α2 + gα3)
+α3(α1 + α2 + α3)

=

α1
α2
α3

T 1 g g2

1 1 g
1 1 1

α1
α2
α3

 = αT Mα

But M is not symmetric. Replace it by

A = M + MT

2 = 1
2

 2 1 + g 1 + g2

1 + g 2 1 + g
1 + g2 1 + g 2



39/72

Pattern with Partial Verifications (Pvc)

Proof. Derive the expected re-execution fraction.

fre =
n∑

i=1
αi

(i∑
j=1

αj +
n∑

j=i+1
g j−iαj

)

E.x., when n = 3, i.e., α1 + α2 + α3 = 1.

fre =
α1
(
α1 + gα2 + g2α3

)
+α2 (α1 + α2 + gα3)
+α3(α1 + α2 + α3)

=

α1
α2
α3

T 1 g g2

1 1 g
1 1 1

α1
α2
α3

 = αT Mα

But M is not symmetric. Replace it by

A = M + MT

2 = 1
2

 2 1 + g 1 + g2

1 + g 2 1 + g
1 + g2 1 + g 2



40/72

Pattern with Partial Verifications (Pvc)

(2) Minimize fre.

Proposition
The re-execution fraction fre of a pattern Pvc with n segments is
minimized when α = α∗, where

α∗i =
{

1
(n−2)(1−g)+2 for i = 1, n

1−g
(n−2)(1−g)+2 for i = 2, 3, . . . , n − 1

and the optimal value of fre is

f ∗re = 1
2

(
1 + 1 + g

(n − 2)(1− g) + 2

)

Time1 1− g 1− g 1

· · ·
· · ·

V ∗ C V V V V V ∗ C

If all verifications are perfect (g = 0), we retrieve equal-length segments,
i.e., α∗i = 1

n for all 1 ≤ i ≤ n and f ∗re = 1
2
(
1 + 1

n
)
.

40/72

Pattern with Partial Verifications (Pvc)

(2) Minimize fre.

Proposition
The re-execution fraction fre of a pattern Pvc with n segments is
minimized when α = α∗, where

α∗i =
{

1
(n−2)(1−g)+2 for i = 1, n

1−g
(n−2)(1−g)+2 for i = 2, 3, . . . , n − 1

and the optimal value of fre is

f ∗re = 1
2

(
1 + 1 + g

(n − 2)(1− g) + 2

)

Time1 1− g 1− g 1

· · ·
· · ·

V ∗ C V V V V V ∗ C

If all verifications are perfect (g = 0), we retrieve equal-length segments,
i.e., α∗i = 1

n for all 1 ≤ i ≤ n and f ∗re = 1
2
(
1 + 1

n
)
.

41/72

Pattern with Partial Verifications (Pvc)

Proof. Quadratic optimization (define c = [1, 1, . . . , 1]T):

minimize fre = αT Aα
subject to cT α = 1

If matrix A is symmetric positive definite (SPD), unique global minimum

f opt
re = 1

cT A−1c

αopt = A−1c
cT A−1c

We will prove:

A is SPD.

Aα∗ = f ∗rec.

⇒ α∗ = f ∗reA−1c
⇒ 1 = cT α∗ = f ∗re(cT A−1c)

⇒ f ∗re = 1
cT A−1c = f opt

re

⇒ α∗ = A−1c
cT A−1c = αopt

41/72

Pattern with Partial Verifications (Pvc)

Proof. Quadratic optimization (define c = [1, 1, . . . , 1]T):

minimize fre = αT Aα
subject to cT α = 1

If matrix A is symmetric positive definite (SPD), unique global minimum

f opt
re = 1

cT A−1c

αopt = A−1c
cT A−1c

We will prove:

A is SPD.

Aα∗ = f ∗rec.

⇒ α∗ = f ∗reA−1c
⇒ 1 = cT α∗ = f ∗re(cT A−1c)

⇒ f ∗re = 1
cT A−1c = f opt

re

⇒ α∗ = A−1c
cT A−1c = αopt

42/72

Pattern with Partial Verifications (Pvc)

Proposition
A(n) is symmetric positive definite (SPD), for all n ≥ 1.

Proof. Show all leading principle minors are positive, by induction.

Base case: A(1) = [1] and det
(
A(1)) = 1.

Inductive step: Suppose det
(
A(k)) > 0 for all k = 1, 2, · · · , n − 1.

Using co-factor method,(
A(n)

)−1

1,1
=

det
(
A(n−1))

det
(
A(n)

)
In fact, the inverse of A(n) is known! (Dow, 2003)(

A(n)
)−1

1,1
= 2(n(1− g) + 4g)

(1− g2)(n(1− g) + 1 + 3g) > 0

We can even compute the determinant of A(n):

det
(

A(n)
)

= (1− g)n−1(1 + g)n−2((n − 3)(1− g) + 4)
2n

42/72

Pattern with Partial Verifications (Pvc)

Proposition
A(n) is symmetric positive definite (SPD), for all n ≥ 1.

Proof. Show all leading principle minors are positive, by induction.
Base case: A(1) = [1] and det

(
A(1)) = 1.

Inductive step: Suppose det
(
A(k)) > 0 for all k = 1, 2, · · · , n − 1.

Using co-factor method,(
A(n)

)−1

1,1
=

det
(
A(n−1))

det
(
A(n)

)
In fact, the inverse of A(n) is known! (Dow, 2003)(

A(n)
)−1

1,1
= 2(n(1− g) + 4g)

(1− g2)(n(1− g) + 1 + 3g) > 0

We can even compute the determinant of A(n):

det
(

A(n)
)

= (1− g)n−1(1 + g)n−2((n − 3)(1− g) + 4)
2n

42/72

Pattern with Partial Verifications (Pvc)

Proposition
A(n) is symmetric positive definite (SPD), for all n ≥ 1.

Proof. Show all leading principle minors are positive, by induction.
Base case: A(1) = [1] and det

(
A(1)) = 1.

Inductive step: Suppose det
(
A(k)) > 0 for all k = 1, 2, · · · , n − 1.

Using co-factor method,(
A(n)

)−1

1,1
=

det
(
A(n−1))

det
(
A(n)

)
In fact, the inverse of A(n) is known! (Dow, 2003)(

A(n)
)−1

1,1
= 2(n(1− g) + 4g)

(1− g2)(n(1− g) + 1 + 3g) > 0

We can even compute the determinant of A(n):

det
(

A(n)
)

= (1− g)n−1(1 + g)n−2((n − 3)(1− g) + 4)
2n

43/72

Pattern with Partial Verifications (Pvc)

Proposition
Aα∗ = f ∗rec

Proof. Write A = 1
2 (J + B), where J is all-one matrix and Bi,j = g |i−j|.

Write α∗ = β∗

(n−2)(1−g)+2 , where β∗i =
{

1 for i = 1, n
1− g for 1 < i < n

⇐ 1
2 (J + B)α∗ = 1

2

(
1 + 1 + g

(n − 2)(1− g) + 2

)
c

⇐ Bα∗ = 1 + g
(n − 2)(1− g) + 2c, since Jα∗ = c

⇐ Bβ∗ = (1 + g)c

We can show (Bβ∗)i = 1 + g for all 1 ≤ i ≤ n.

44/72

Pattern with Partial Verifications (Pvc)

(3) Minimize freoff = 1
2

(
1 + 1+g

(n−2)(1−g)+2

)(
(n − 1)V + V ∗ + C

)
Proposition

The optimal number of segments in the pattern Pvc is

n∗ =
{

1− 1
a +

√
1
a
(1

b −
1
a
)

if a
b > 2

1 if a
b ≤ 2

and the optimal expected overhead is

Overhead∗ ≈
√

2λ(V ∗ + C)
(√

1− 1
φ

+

√
1
φ

)

where a = 1−g
1+g represents accuracy, b = V

V ∗+C denotes relative cost, and
φ = a

b is the accuracy-to-cost ratio of the partial verification.

Use partial verification only when its accuracy-to-cost ratio φ > 2.

45/72

Pattern with Partial Verifications (Pvc)
Assessing the benefit of partial verifications on realistic platform

105 computing nodes with individual MTBF of 100 years
⇒ platform MTBF µ = 31536s ≈ 8.7 hours.

Checkpoint size of 300GB with throughput of 0.5GB/s
⇒ C = 600s = 10 mins, and V ∗ in same order.

Partial verifications (from Argonne National Laboratory, USA)
⇒ V typically tens of seconds, and r ∈ [0.5, 0.95].

e.g., C = 600, V ∗ = 300, V = 30 and r = 0.8.

Pattern Pvc Pattern Pv∗c Pattern Pc
W ∗ 7335s ≈ 2.04 hours 7103s ≈ 1.97 hours 5328s ≈ 1.48 hours
n∗ 6 2 1

α∗ αi =
{

0.20, i = 1, 6
0.15, i = 2..5

[0.5, 0.5] [1]

O.H. 28.6% 33.3% 33.8%

45/72

Pattern with Partial Verifications (Pvc)
Assessing the benefit of partial verifications on realistic platform

105 computing nodes with individual MTBF of 100 years
⇒ platform MTBF µ = 31536s ≈ 8.7 hours.

Checkpoint size of 300GB with throughput of 0.5GB/s
⇒ C = 600s = 10 mins, and V ∗ in same order.

Partial verifications (from Argonne National Laboratory, USA)
⇒ V typically tens of seconds, and r ∈ [0.5, 0.95].

e.g., C = 600, V ∗ = 300, V = 30 and r = 0.8.

Pattern Pvc Pattern Pv∗c Pattern Pc
W ∗ 7335s ≈ 2.04 hours 7103s ≈ 1.97 hours 5328s ≈ 1.48 hours
n∗ 6 2 1

α∗ αi =
{

0.20, i = 1, 6
0.15, i = 2..5

[0.5, 0.5] [1]

O.H. 28.6% 33.3% 33.8%

46/72

Outline

1 Introduction

2 Problem statement

3 Computing optimal patterns
Revisiting Young/Daly (base pattern)
Pattern with guaranteed verifications
Interleaving checkpoints and verifications
Pattern with partial verifications
Using multiple types of partial verifications

4 Coping with both fail-stop and silent errors

5 Algorithms for a linear chain of tasks

6 Conclusion

47/72

Using Multiple Types of Partial Verifications

Suppose there are k types of partial verifications available:(
V (1), r (1)), (V (2), r (2)), . . . ,

(
V (k), r (k))

Which verification is the optimal one to use?

Proposition
The execution overhead is minimized when using the partial verification
with the maximum accuracy-to-cost ratio, i.e.,

φmax = max
i
φ(i) = max

i

(
1− g (i)

1 + g (i) /
V (i)

V ∗ + C

)
.

Proof. For a given partial verification type, say type i with φ(i) > 2.

Overhead∗ ≈
√

2λ(V ∗ + C)
(√

1− 1
φ(i) +

√
1
φ(i)

)
The function f =

√
1− x +

√
x is increasing in [0, 1/2].

47/72

Using Multiple Types of Partial Verifications

Suppose there are k types of partial verifications available:(
V (1), r (1)), (V (2), r (2)), . . . ,

(
V (k), r (k))

Which verification is the optimal one to use?

Proposition
The execution overhead is minimized when using the partial verification
with the maximum accuracy-to-cost ratio, i.e.,

φmax = max
i
φ(i) = max

i

(
1− g (i)

1 + g (i) /
V (i)

V ∗ + C

)
.

Proof. For a given partial verification type, say type i with φ(i) > 2.

Overhead∗ ≈
√

2λ(V ∗ + C)
(√

1− 1
φ(i) +

√
1
φ(i)

)
The function f =

√
1− x +

√
x is increasing in [0, 1/2].

48/72

Using Multiple Types of Partial Verifications

20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

cost V

re
ca

ll
r

20 25 30 35 40 45 50
14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

cost V

ac
cu

ra
cy

−
to

−
co

st
 r

at
io

 a
/b

20 25 30 35 40 45 50
0.287

0.288

0.289

0.29

0.291

0.292

0.293

0.294

0.295

0.296

cost V

ov
er

he
ad

 H

Result is based on optimal
rational solution (n∗).

Overhead of integer solution
may contain rounding error.

Different partial verifications
could share same φ, but lead to
different n∗ and Overhead∗.

What is the optimal integer solution?
Using multiple types simultaneously may help!

48/72

Using Multiple Types of Partial Verifications

20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

cost V

re
ca

ll
r

20 25 30 35 40 45 50
14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

cost V

ac
cu

ra
cy

−
to

−
co

st
 r

at
io

 a
/b

20 25 30 35 40 45 50
0.287

0.288

0.289

0.29

0.291

0.292

0.293

0.294

0.295

0.296

cost V

ov
er

he
ad

 H

Result is based on optimal
rational solution (n∗).

Overhead of integer solution
may contain rounding error.

Different partial verifications
could share same φ, but lead to
different n∗ and Overhead∗.

What is the optimal integer solution?
Using multiple types simultaneously may help!

49/72

Using Multiple Types of Partial Verifications

Time
1

α1 α2 α3 αn

· · ·
· · ·

V ∗ C V1 V2 V3 Vn−1 V ∗ C

The i-th partial verification has type j, i.e., Vi = V (j) for some 1 ≤ j ≤ k.

(1) Go back to the freoff analysis.

Proposition
Suppose a pattern Pvc that uses multiple types of partial verifications has
n segments. Then the pattern is characterized by

off =
n−1∑
i=1

Vi + V ∗ + C

fre = αT Aα

where A is a symmetric matrix defined by Aij = 1
2

(
1 +

∏j−1
k=i gk

)
for

i ≤ j .

50/72

Using Multiple Types of Partial Verifications

Proof. Derive the expected re-execution fraction.

fre =
n∑

i=1
αi

(i∑
j=1

αj +
n∑

j=i+1

(j−1∏
k=i

gk

)
αj

)

The rest goes the same as before.

E.x., when n = 4,

A = 1
2


2 1 + g1 1 + g1g2 1 + g1g2g3

1 + g1 2 1 + g2 1 + g2g3
1 + g1g2 1 + g2 2 1 + g3

1 + g1g2g3 1 + g2g3 1 + g3 2



51/72

Using Multiple Types of Partial Verifications

(2) Minimize fre.

Theorem

The re-execution fraction fre of a pattern Pvc with n segments is
minimized when α = α∗, where

α∗i = 1
Un
× 1− gi−1gi

(1 + gi−1)(1 + gi)
for all i = 1, . . . , n

where g0 = gn = 0 and
Un = 1 +

n−1∑
i=1

1− gi
1 + gi

In this case, the optimal value of fre is

f ∗re = 1
2

(
1 + 1

Un

)
If all partial verifications are same (gi = g), we retrieve previous results.

52/72

Using Multiple Types of Partial Verifications
The proof is similar as before, but the analysis is more involved.

A is SPD.

Aα∗ = f ∗rec.
det
(

A(n)
)

= Un + 1
2

n−1∏
k=1

(1− g2
k)

Corollary
For a given set of partial verifications in pattern Pvc , the minimum
re-execution fraction f ∗re is independent of their ordering.

f ∗re = 1
2

(
1 + 1

1 +
∑n−1

i=1
1−gi
1+gi

)
off =

n−1∑
i=1

Vi + V ∗ + C

= 1
2

(
1 + 1

1 +
∑k

j=1 mj a(j)

)
= (V ∗ + C)

(
1 +

k∑
j=1

mj b(j)

)

where a(j) = 1−g (j)

1+g (j) and b(j) = V (j)

V ∗+C are the accuracy and relative cost of
verification type j , and

∑k
j=1 mj = n − 1.

52/72

Using Multiple Types of Partial Verifications
The proof is similar as before, but the analysis is more involved.

A is SPD.

Aα∗ = f ∗rec.
det
(

A(n)
)

= Un + 1
2

n−1∏
k=1

(1− g2
k)

Corollary
For a given set of partial verifications in pattern Pvc , the minimum
re-execution fraction f ∗re is independent of their ordering.

f ∗re = 1
2

(
1 + 1

1 +
∑n−1

i=1
1−gi
1+gi

)
off =

n−1∑
i=1

Vi + V ∗ + C

= 1
2

(
1 + 1

1 +
∑k

j=1 mj a(j)

)
= (V ∗ + C)

(
1 +

k∑
j=1

mj b(j)

)

where a(j) = 1−g (j)

1+g (j) and b(j) = V (j)

V ∗+C are the accuracy and relative cost of
verification type j , and

∑k
j=1 mj = n − 1.

52/72

Using Multiple Types of Partial Verifications
The proof is similar as before, but the analysis is more involved.

A is SPD.

Aα∗ = f ∗rec.
det
(

A(n)
)

= Un + 1
2

n−1∏
k=1

(1− g2
k)

Corollary
For a given set of partial verifications in pattern Pvc , the minimum
re-execution fraction f ∗re is independent of their ordering.

f ∗re = 1
2

(
1 + 1

1 +
∑n−1

i=1
1−gi
1+gi

)
off =

n−1∑
i=1

Vi + V ∗ + C

= 1
2

(
1 + 1

1 +
∑k

j=1 mj a(j)

)
= (V ∗ + C)

(
1 +

k∑
j=1

mj b(j)

)

where a(j) = 1−g (j)

1+g (j) and b(j) = V (j)

V ∗+C are the accuracy and relative cost of
verification type j , and

∑k
j=1 mj = n − 1.

53/72

Using Multiple Types of Partial Verifications

(3) Minimize freoff = V ∗+C
2

(
1 + 1

1+
∑k

j=1
mj a(j)

)(
1 +

∑k
j=1 mj b(j)

)
Multi-type Partial Verification (MPV) Problem
Given k types of partial verifications and a bound K , is there a solution
m = [m1,m2, · · · ,mk] that satisfies(

1 + 1
1 +

∑k
j=1 mj a(j)

)(
1 +

k∑
j=1

mj b(j)

)
≤ K?

Proposition
The MPV problem is NP-complete, even when all the verification types
share the same accuracy-to-cost ratio, i.e., a(j)

b(j) = φ for all 1 ≤ j ≤ k.

54/72

Using Multiple Types of Partial Verifications
Proof. Reduction from Unbounded Subset Sum (USS) problem.

Unbounded Subset Sum (USS) Problem
Given a set S = {s1, s2, . . . , sk} of k positive integers and a positive integer I, is
there an integer solution m = [m1,m2, . . . ,mj] ∈ Nk

0 such that
∑k

j=1 mjsj = I?

Let a virtual verification V (0) = (a, b) with accuracy-to-cost ratio a
b = φ have

integer solution I = − 1
a +
√

1
a

(1
b −

1
a

)
and bound

(√
1
φ

+
√

1− 1
φ

)2
= K .

Construct k partial verifications from V (0) by setting a(j) = sja and b(j) = sjb.
Using any partial verification alone has no integer solution.
(⇒) Suppose an integer solution exists for the USS problem:(

1 + 1
1 +

∑k
j=1 mja(j)

)(
1 +

k∑
j=1

mjb(j)

)

=

(
1 + 1

1 + a
∑k

j=1 mjsj

)(
1 + b

k∑
j=1

mjsj

)
=
(

1 + 1
1 + aI

)
(1 + bI) = K

Need to prove (⇐) and need to choose φ small enough s.t. every a(j) < 1.

54/72

Using Multiple Types of Partial Verifications
Proof. Reduction from Unbounded Subset Sum (USS) problem.

Unbounded Subset Sum (USS) Problem
Given a set S = {s1, s2, . . . , sk} of k positive integers and a positive integer I, is
there an integer solution m = [m1,m2, . . . ,mj] ∈ Nk

0 such that
∑k

j=1 mjsj = I?

Let a virtual verification V (0) = (a, b) with accuracy-to-cost ratio a
b = φ have

integer solution I = − 1
a +
√

1
a

(1
b −

1
a

)
and bound

(√
1
φ

+
√

1− 1
φ

)2
= K .

Construct k partial verifications from V (0) by setting a(j) = sja and b(j) = sjb.
Using any partial verification alone has no integer solution.

(⇒) Suppose an integer solution exists for the USS problem:(
1 + 1

1 +
∑k

j=1 mja(j)

)(
1 +

k∑
j=1

mjb(j)

)

=

(
1 + 1

1 + a
∑k

j=1 mjsj

)(
1 + b

k∑
j=1

mjsj

)
=
(

1 + 1
1 + aI

)
(1 + bI) = K

Need to prove (⇐) and need to choose φ small enough s.t. every a(j) < 1.

54/72

Using Multiple Types of Partial Verifications
Proof. Reduction from Unbounded Subset Sum (USS) problem.

Unbounded Subset Sum (USS) Problem
Given a set S = {s1, s2, . . . , sk} of k positive integers and a positive integer I, is
there an integer solution m = [m1,m2, . . . ,mj] ∈ Nk

0 such that
∑k

j=1 mjsj = I?

Let a virtual verification V (0) = (a, b) with accuracy-to-cost ratio a
b = φ have

integer solution I = − 1
a +
√

1
a

(1
b −

1
a

)
and bound

(√
1
φ

+
√

1− 1
φ

)2
= K .

Construct k partial verifications from V (0) by setting a(j) = sja and b(j) = sjb.
Using any partial verification alone has no integer solution.
(⇒) Suppose an integer solution exists for the USS problem:(

1 + 1
1 +

∑k
j=1 mja(j)

)(
1 +

k∑
j=1

mjb(j)

)

=

(
1 + 1

1 + a
∑k

j=1 mjsj

)(
1 + b

k∑
j=1

mjsj

)
=
(

1 + 1
1 + aI

)
(1 + bI) = K

Need to prove (⇐) and need to choose φ small enough s.t. every a(j) < 1.

54/72

Using Multiple Types of Partial Verifications
Proof. Reduction from Unbounded Subset Sum (USS) problem.

Unbounded Subset Sum (USS) Problem
Given a set S = {s1, s2, . . . , sk} of k positive integers and a positive integer I, is
there an integer solution m = [m1,m2, . . . ,mj] ∈ Nk

0 such that
∑k

j=1 mjsj = I?

Let a virtual verification V (0) = (a, b) with accuracy-to-cost ratio a
b = φ have

integer solution I = − 1
a +
√

1
a

(1
b −

1
a

)
and bound

(√
1
φ

+
√

1− 1
φ

)2
= K .

Construct k partial verifications from V (0) by setting a(j) = sja and b(j) = sjb.
Using any partial verification alone has no integer solution.
(⇒) Suppose an integer solution exists for the USS problem:(

1 + 1
1 +

∑k
j=1 mja(j)

)(
1 +

k∑
j=1

mjb(j)

)

=

(
1 + 1

1 + a
∑k

j=1 mjsj

)(
1 + b

k∑
j=1

mjsj

)
=
(

1 + 1
1 + aI

)
(1 + bI) = K

Need to prove (⇐) and need to choose φ small enough s.t. every a(j) < 1.

55/72

Using Multiple Types of Partial Verifications

(3) Designing approximation algorithms.

FPTAS (Fully Polynomial-Time Approximation Scheme): overhead
within (1 + ε) times the optimal with running time polynomial in
the input size and 1/ε.

Greedy algorithm:
- Employ the type of partial verification with the highest

accuracy-to-cost ratio.
- Compute the optimal solution using this type of verification

only

Optimal number: m∗ = −1
a +

√
1
a

(
1
b −

1
a

)
- Round up the optimal rational solution dm∗e.

The Greedy algorithm has an approximation ratio
√

3/2 < 1.23.

55/72

Using Multiple Types of Partial Verifications

(3) Designing approximation algorithms.

FPTAS (Fully Polynomial-Time Approximation Scheme): overhead
within (1 + ε) times the optimal with running time polynomial in
the input size and 1/ε.

Greedy algorithm:
- Employ the type of partial verification with the highest

accuracy-to-cost ratio.
- Compute the optimal solution using this type of verification

only

Optimal number: m∗ = −1
a +

√
1
a

(
1
b −

1
a

)
- Round up the optimal rational solution dm∗e.

The Greedy algorithm has an approximation ratio
√

3/2 < 1.23.

56/72

Using Multiple Types of Partial Verifications

Performance evaluation on realistic platform

105 computing nodes with individual MTBF of 100 years
⇒ platform MTBF µ ≈ 8.7 hours.

Checkpoints size of 300GB with throughput of 0.5GB/s
⇒ C = 600s.

Partial verifications (from Argonne National Laboratory, USA)

cost recall ACR
Time series prediction V (1) = 3s r (1) = [0.5, 0.9] φ(1) = [133, 327]
Spatial interpolation V (2) = 30s r (2) = [0.75, 0.95] φ(2) = [24, 36]
Combination of the two V (3) = 6s r (3) = [0.8, 0.99] φ(3) = [133, 196]
Perfect verification V ∗ = 600s r∗ = 1 φ∗ = 2

Depending on the application or dataset, a verification’s recall may vary,
but its cost stays the same.

57/72

Using Multiple Types of Partial Verifications

Using one type of verification (r (1) = 0.5, r (2) = 0.95, r (3) = 0.8)

Best partial detectors offer ∼9% improvement in overhead.
Saving ∼55 minutes for every 10 hours of computation!

58/72

Using Multiple Types of Partial Verifications

Using multiple types of verifications

m overhead H diff. from opt.

Scenario 1: r (1) = 0.51, r (3) = 0.82, φ(1) ≈ 137, φ(3) ≈ 139
Optimal solution (1, 15) 29.828% 0%
Greedy with V (3) (0, 16) 29.829% 0.001%

Scenario 2: r (1) = 0.58, r (3) = 0.9, φ(1) ≈ 163, φ(3) ≈ 164
Optimal solution (1, 14) 29.659% 0%
Greedy with V (3) (0, 15) 29.661% 0.002%

Scenario 3: r (1) = 0.64, r (3) = 0.97, φ(1) ≈ 188, φ(3) ≈ 188
Optimal solution (1, 13) 29.523% 0%
Greedy with V (1) (27, 0) 29.524% 0.001%
Greedy with V (3) (0, 14) 29.525% 0.002%

The Greedy algorithm works very well in this practical scenario!

59/72

Outline

1 Introduction

2 Problem statement

3 Computing optimal patterns
Revisiting Young/Daly (base pattern)
Pattern with guaranteed verifications
Interleaving checkpoints and verifications
Pattern with partial verifications
Using multiple types of partial verifications

4 Coping with both fail-stop and silent errors

5 Algorithms for a linear chain of tasks

6 Conclusion

60/72

Coping with Both Fail-stop and Silent Errors
Fail-stop errors and silent errors coexist in large-scale platforms.
A resilience pattern needs to cope with both error sources simultaneously.

Two-level checkpointing with verifications
Fail-stop errors (λf) are handled by disk checkpoints (CD).
Silent errors (λs) are handled by in-memory checkpoints (CM) and
verifications (guaranteed V ∗ or partial V).

Time
W

V ∗ CM CD V V V ∗ CM V ∗ CM V V ∗ CM CD

Framework enforces following properties:
A guaranteed verification before each memory checkpoint.
⇒ Checkpoints are always valid.
A memory checkpoint before each disk checkpoint.
⇒ Always recover from latest checkpoints.

60/72

Coping with Both Fail-stop and Silent Errors
Fail-stop errors and silent errors coexist in large-scale platforms.
A resilience pattern needs to cope with both error sources simultaneously.

Two-level checkpointing with verifications
Fail-stop errors (λf) are handled by disk checkpoints (CD).
Silent errors (λs) are handled by in-memory checkpoints (CM) and
verifications (guaranteed V ∗ or partial V).

Time
W

V ∗ CM CD V V V ∗ CM V ∗ CM V V ∗ CM CD

Framework enforces following properties:
A guaranteed verification before each memory checkpoint.
⇒ Checkpoints are always valid.
A memory checkpoint before each disk checkpoint.
⇒ Always recover from latest checkpoints.

60/72

Coping with Both Fail-stop and Silent Errors
Fail-stop errors and silent errors coexist in large-scale platforms.
A resilience pattern needs to cope with both error sources simultaneously.

Two-level checkpointing with verifications
Fail-stop errors (λf) are handled by disk checkpoints (CD).
Silent errors (λs) are handled by in-memory checkpoints (CM) and
verifications (guaranteed V ∗ or partial V).

Time
W

V ∗ CM CD V V V ∗ CM V ∗ CM V V ∗ CM CD

Framework enforces following properties:
A guaranteed verification before each memory checkpoint.
⇒ Checkpoints are always valid.
A memory checkpoint before each disk checkpoint.
⇒ Always recover from latest checkpoints.

61/72

Revisiting Young/Daly (Two-level Base Pattern PD)

TimeW

V ∗ CM CD V ∗ CM CD

Proposition
The expected time to execute a base pattern PD of work length W is

E(W) = W + V ∗ + CM + CD + λsW (W + V ∗ + RM)

λf W
(

W
2 + RM + RD

)
+ O(λ2W 3)

Proof. Two error sources are independent.

E(W) = pf
(

W
2 + RD + RM + E(W)

)
+ (1− pf)

(
W + V ∗ + ps(RM + E(W))

+ (1− ps)(CM + CD)
)
,

where pf = 1− eλf W and ps = 1− eλs W .

62/72

Revisiting Young/Daly (Two-level Base Pattern PD)

Proposition
The optimal work length W ∗ of the base pattern PD is

W ∗ =
√

V ∗ + CM + CD

λs + λf
2

and the optimal expected overhead is

Overhead∗ = 2

√(
λs + λf

2

)
(V ∗ + CM + CD) + O(λ)

Proof. Derive the overhead from the expected execution time:

Overhead = E(W)
W − 1 = V ∗ + CM + CD

W +
(
λs + λf

2

)
W + O(λ)

Similar analysis can be applied to more complex patterns.

63/72

Various Two-level Patterns

Pattern PD

Pattern PDM

Pattern PDV ∗ or
PDV

Pattern PDMV ∗

or PDMV

TimeW

V ∗ CM CD V ∗ CM CD

Timew1 w2 wn
W

· · ·
· · ·

V ∗ CM CD V ∗ CM V ∗ CM V ∗ CM V ∗ CM CD

Timew1,1 w1,2 w1,m
W

· · ·
· · ·

V ∗ CM CD V V V V ∗ CM CD

Timew1,1 w1,m1 wn,1 wn,mn
w1 wn

W

· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

V ∗ CM CD V V V ∗ CM V ∗ CM V V V ∗ CM CD

64/72

Summary of Results
Parameters of an optimal pattern

W ∗: optimal pattern period.

n∗: optimal number of memory checkpoints in a pattern.

m∗: optimal number of verifications between two memory
checkpoints.

Pattern W ∗ n∗ m∗ Overhead∗

PD

√
V ∗+CM +CD

λs +λf
2

– – 2
√(

λs + λf
2

)
(V ∗ + CM + CD)

PDV ∗

√
m∗V ∗+CM +CD
1
2 (1+ 1

m∗)λs +λf
2

–
√

λs
λs +λf

· CM +CD
V ∗

√
2(λs + λf)CM + CD +

√
2λsV ∗

PDV √
(m∗−1)V +V ∗+CM +CD
1
2

(
1+ 2−r

(m∗−2)r+2

)
λs +λf

2
–

2− 2
r +

√
λs

λs +λf

√
2(λs + λf)

(
V ∗ − 2−r

r V + CM + CD
)

×
√

2−r
r

(
V ∗+CM +CD

V − 2−r
r

)
+
√

2λs
2−r

r V

PDM

√
n∗(V ∗+CM)+CD

λs
n∗ +λf

2

√
2λs
λf
· CD

V ∗+CM
– 2

√
λs(V ∗ + CM) +

√
2λf CD

PDMV ∗

√
n∗m∗V ∗+n∗CM +CD

1
2 (1+ 1

m∗)λs
n∗ +λf

2

√
λs
λf
· CD

CM

√
CM
V ∗

√
2λf CD +

√
2λsCM +

√
2λsV ∗

PDMV √
n∗(m∗−1)V +n∗(V ∗+CM)+CD

1
2

(
1+ 2−r

(m∗−2)r+2

)
λs
n∗ +λf

2

√
λs
λf
· CD

V ∗− 2−r
r V +CM

2− 2
r

√
2λf CD +

√
2λs

(
V ∗ − 2−r

r V + CM
)

+
√

2−r
r

(
V ∗+CM

V − 2−r
r

)
+
√

2λs
2−r

r V

65/72

Performance Evaluation

Parameters of four real platforms (Moody et al., 2010).
V ∗ = CM , V = CM/100 and r = 0.8.

platform #nodes λf λs CD CM
Hera 256 9.46e-7 3.38e-6 300s 15.4s
Atlas 512 5.19e-7 7.78e-6 439s 9.1s

Coastal 1024 4.02e-7 2.01e-6 1051s 4.5s
Coastal SSD 1024 4.02e-7 2.01e-6 2500s 180.0s

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

E
xp

ec
te

d
O

ve
rh

ea
d

0

0.05

0.1

0.15

0.2
Platform Hera

Predicted
Simulated

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

E
xp

ec
te

d
O

ve
rh

ea
d

0

0.05

0.1

0.15

0.2
Platform Atlas

Predicted
Simulated

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

E
xp

ec
te

d
O

ve
rh

ea
d

0

0.05

0.1

0.15

0.2
Platform Coastal

Predicted
Simulated

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

E
xp

ec
te

d
O

ve
rh

ea
d

0

0.05

0.1

0.15

0.2
Platform Coastal SSD

Predicted
Simulated

66/72

Outline

1 Introduction

2 Problem statement

3 Computing optimal patterns
Revisiting Young/Daly (base pattern)
Pattern with guaranteed verifications
Interleaving checkpoints and verifications
Pattern with partial verifications
Using multiple types of partial verifications

4 Coping with both fail-stop and silent errors

5 Algorithms for a linear chain of tasks

6 Conclusion

67/72

Linear Chain

0 1 2 n

Model

A linear chain of n tasks {T1,T2, . . . ,Tn}, and each task Ti is
characterized by a work wi

Two sources of errors
- Fail-stop errors (λf)
- Silent errors (λs)

Resilience operations (only at the end of a task)
- Disk checkpointing (CD)
- In-memory checkpointing (CM)
- Verification (V ∗ or V)

Which tasks to checkpoint (memory or disk) and which tasks to verify
(guaranteed or partial) to minimize the expected makespan?

68/72

Dynamic Programming
Using only guaranteed verifications

Placing disk checkpoints

Edisk (d2) = min
0≤d1<d2

{Edisk (d1) + Emem(d1, d2) + CD}

Placing memory checkpoints

Emem(d1,m2) = min
d1≤m1<m2

{Emem(d1,m1) + Everif (d1,m1,m2) + CM}

Placing guaranteed verifications

Everif (d1,m1, v2) = min
m1≤v1<v2

{Everif (d1,m1, v1) + E (d1,m1, v1, v2)}

Computing expected execution time between two verifications

E (d1,m1, v1, v2) =
pf (T lost + RD + Emem(d1,m1) + Everif (d1,m1, v1) + E (d1,m1, v1, v2)

)
+
(
1− pf) (Wv1,v2 + V ∗ + ps(RM + Everif (d1,m1, v1) + E (d1,m1, v1, v2)

))

69/72

Dynamic Programming
Using only guaranteed verifications

Expected time lost due to a fail-stop error when executing Wv1,v2

T lost =
∫ ∞

0
xP(X = x |X < Wv1,v2)dx

= 1
P(X < Wv1,v2)

∫ Wv1,v2

0
xP(X = x)dx

= 1
λf
− Wv1,v2

eλf Wv1,v2 − 1
(Integration by parts)

Optimal expected makespan is given by Edisk (n).
Complexity is O(n4), dominated by table for Everif (d1,m1, v2).

Using partial verifications

Additional level for placing partial verifications.
Due to imperfect recall, analysis is more involved.
Complexity is O(n6).

69/72

Dynamic Programming
Using only guaranteed verifications

Expected time lost due to a fail-stop error when executing Wv1,v2

T lost =
∫ ∞

0
xP(X = x |X < Wv1,v2)dx

= 1
P(X < Wv1,v2)

∫ Wv1,v2

0
xP(X = x)dx

= 1
λf
− Wv1,v2

eλf Wv1,v2 − 1
(Integration by parts)

Optimal expected makespan is given by Edisk (n).
Complexity is O(n4), dominated by table for Everif (d1,m1, v2).

Using partial verifications

Additional level for placing partial verifications.
Due to imperfect recall, analysis is more involved.
Complexity is O(n6).

70/72

Outline

1 Introduction

2 Problem statement

3 Computing optimal patterns
Revisiting Young/Daly (base pattern)
Pattern with guaranteed verifications
Interleaving checkpoints and verifications
Pattern with partial verifications
Using multiple types of partial verifications

4 Coping with both fail-stop and silent errors

5 Algorithms for a linear chain of tasks

6 Conclusion

71/72

Conclusion

Summary

Comprehensive analysis of computing patterns to cope with silent
errors.

Two-level checkpointing scheme to deal with co-existence of
fail-stop and silent errors.

Resilient algorithms for linear chain of tasks.

Performance evaluation based on parameters from real platforms.

Future directions

What is the impact of partial verifications with imperfect precision
(false positive)?

precision(p) = #true errors
#detected errors < 1.

How to cope with silent errors in computational workflows modeled
as directed acyclic graphs (DAGs)?

71/72

Conclusion

Summary

Comprehensive analysis of computing patterns to cope with silent
errors.

Two-level checkpointing scheme to deal with co-existence of
fail-stop and silent errors.

Resilient algorithms for linear chain of tasks.

Performance evaluation based on parameters from real platforms.

Future directions

What is the impact of partial verifications with imperfect precision
(false positive)?

precision(p) = #true errors
#detected errors < 1.

How to cope with silent errors in computational workflows modeled
as directed acyclic graphs (DAGs)?

72/72

Acknowledgement

Joint work with
Anne Benoit, Aurélien Cavelan, Yves Robert (ENS Lyon, France)
Leonardo Bautista-Gomez (Argonne National Laboratory, USA)
Saurabh K. Raina (Jaypee Institute of Information Technology, India)

Presented materials are based on
Efficient checkpoint/verification patterns for silent error detection. ICL
Research report RR-1403, 2014
Assessing general-purpose algorithms to cope with fail-stop and silent
errors. INRIA report RR-8599, 2014.
Assessing the impact of partial verifications against silent data
corruptions. INRIA report RR-8711, 2015
Which verification for soft error detection? INRIA report RR-8741, 2015
Optimal resilience patterns to cope with fail-stop and silent errors. INRIA
report RR-8786, 2015
Two-level checkpointing and partial verifications for linear task graphs.
INRIA report RR-8794, 2015

	Introduction
	Problem statement
	Computing optimal patterns
	Revisiting Young/Daly (base pattern)
	Pattern with guaranteed verifications
	Interleaving checkpoints and verifications
	Pattern with partial verifications
	Using multiple types of partial verifications

	Coping with both fail-stop and silent errors
	Algorithms for a linear chain of tasks
	Conclusion

