Mathematical Exercises on Daly and Extensions

Aurélien Cavelan® Hongyang Sun!
LENS Lyon & INRIA, France.
aurelien.cavelan@ens-lyon.fr

hongyang.sun@ens-1lyon.fr

June 30, 2016
34 JLESC Summer School, Lyon, France.

aurelien.cavelan@ens-lyon.fr
hongyang.sun@ens-lyon.fr

Exponential Failures

Let X ~ Exp()), a random variable for failure inter-arrival time.

p=E(X)= 5

o is the MTBF and A is the error-rate.
» There is an error exactly at time t with probability:

P(X =t) =X e M (pdf)

> There is at least one error before time t with probability:

PX<t)=1-e? (df)

First-Order Approximation and Taylor Series

The Taylor series of a real or complex-valued function f(x),
that is infinitely differentiable at a real or complex number a is

> £(n)(a (2 "3
f(x):zfn!()(x—a)”:f(a)—l-fl(!)—i—fz(!)—I—...

n=0

The Taylor series for the exponential function f(x) = e* ata=0is

Therefore, at first-order e*V' =1 4+ AW + o(\).
(First-order holds when W is small enough)

o(A): all terms in order of O(X¥), x > 1 (think of: strictly smaller)
O(A): all terms in order of O(X¥), x > 1 (think of: smaller or equal)

Methodology

Overhead and Waste

W: work of periodic pattern

Wiotal: total work of application

E(W): expected execution time of a pattern
E(Wiotal): expected total execution time of application

WO al
E(Wotal) & tTt' "E(W) = (14 OVERHEAD) - Wiotal
1
T T Wasms e

where (W)

O A = — -1
VERHEAD W
w

Al = 11— ———
WASTE E(W)

Ex. W =100,E(W) = 125 = OVERHEAD = 25%, WASTE = 20%.
When platform MTBF p is large, overhead and waste have same order.

Methodology

Steps:

» Compute expected execution time of a pattern E(W)

> Derive OVERHEAD or WASTE from E(W)

» Find optimal checkpointing period W (and other parameters)

Parameters

>

>

>

C:
R:

D:
V:

)\f
S

Checkpoint
Recovery
Downtime (for fail-stop errors)
Verification (for silent errors)
. Fail-stop error rate

: Silent error rate

Fail-stop Errors

» Compute E(W), assuming C, R are error-free
E(W) = (1—e M W)E"t + D+ R+E(W))+e MV (W+C)

w N 7/\ftd
where El°st = [tP(X = t|X < W)dt = %

Integrating by parts: Elost = ¥ o v,

Fail-stop Errors

» Compute E(W), assuming C, R are error-free
E(W) = (1—e M W)E"t + D+ R+E(W))+e MV (W+C)

w f
tAfe= > tdt

where Elst=[>tP(X = t|X < W)dt = I

P(X<W)
: .l 1 woow
Integrating by parts: E°* = % — S~ g

= E(W) =W+ C+MW(Y% + D+ R) + O((\)?W?)
» Derive OVERHEAD H(W)
E(W) c Mw

+AF(D+R)+0((MF)?wW?)

» Optimization W* = i—? H* = V2XM C + o(\/F)

Fail-stop Errors

» Compute E(W), assuming C, R are error-free
E(W) = (1—e M W)E"t + D+ R+E(W))+e MV (W+C)

w f
fo tafe=A tdt

where Elst=[>tP(X = t|X < W)dt =

P(X<W)
; . Tl 1 W Ww
Integrating by parts: E'°St = ¥ ow N 2

= E(W) =W+ C+MW(Y% + D+ R) + O((\)?W?)
» Derive OVERHEAD H(W)
E(W) c Mw

+AF(D+R)+0((MF)?wW?)

» Optimization W* = i—? H* = V2XC + o(\/v)

- Young's first-order approximation; Daly considered second order
- First-order stays the same when C, R are prone to errors

Silent Errors

Similar to fail-stop except:
D LN

_]Elost - W

-D=0

- V: verification

Silent Errors

Similar to fail-stop except:
D LN

_]Elost - W

-D=0

- V: verification

» Compute E(W), assuming C, R, V are error-free
EW)=W+V+(1—-e ") R+EW))+e¥WC

=E(W)= W+ V+C+XW(W+ V+R)+ O((X)>W3)
» Derive OVERHEAD H(W)

H(W) = E(WW)— - V%Cw WA (V4R)+O((A)2 W2)

> Optimization W* = /Y€, H* = 2,/A5(V + C) + o(V)9)

Fail-stop + Silent

» Compute E(W), assuming C, R, V are error-free
E(W) = (1 — e M W)(E" + D+ R+ E(W))
+e MWWV +(1-e YY) R+E(W))
+e MW ()

lost _ 1 w ~ W
where E'°% = & w2

Fail-stop + Silent

» Compute E(W), assuming C, R, V are error-free
E(W) = (1 — e M W)(E" + D+ R+ E(W))
+e MWWV +(1-e YY) R+E(W))
+e MW ()

lost _ 1 w ~ W
where E'°% = & w2

w
= E(W) = W+V+C+AW(+D+R)
+ASW(W+V+R)+O(A2W3)
» Derive OVERHEAD H(W)

H(W):E(WW)— - VVT/C+(M+)\S)W+O()

> Optimal W* = Vic H* = 2,/(% +A)(V + C) + o(v})

A

Summary

First-order approximation:

Fail-stop errors

Silent errors

Both errors

Pattern
Optimal W*

Optimal H*

W+ C
C
Lf
2
2,/ ¢

2

W+ V+C

V+C
s

2/ (V1 Q)

W+V+C

ViC
No+ 2l

2\/(/\5+A2f)(v+ C)

Summary

First-order approximation:

Fail-stop errors

Silent errors

Both errors

Pattern
Optimal W*

Optimal H*

W+ C
<
»
2
2\
2\/AC

W+ V+C

V+C
s

2/ (V1 Q)

Extensions to hierarchical checkpointing

W+V+C

ViC
No+ 2l

2\/(/\5+A2f)(v+ C)

» Disk checkpoint for fail-stop, in-memory checkpoint for silent

[Benoit et al., IPDPS'16]

» Buddy/double checkpointing algorithm for fail-stop
[Dongarra, Herault, Robert, IPDPS'13]

Observations

Observation 1
For a set X' of independent error sources:

E(W)= W+os + Z NW - (f%- W + Constant) +0(\)
X€X expected ()

errors
of type x

error-free time i .
expected re-execution time

> of: total overhead in a fault-free execution, i.e., > resilience ops.

> fX: fraction of re-executed work in case of an type-x error.

Observations

Observation 1
For a set X' of independent error sources:

E(W)= W +of + Z W (ﬁ; W+ Constant) +0(N)

X€X expected
errors expected re-execution time

of type x

error-free time

> of: total overhead in a fault-free execution, i.e., > resilience ops.
> fX: fraction of re-executed work in case of an type-x error.

Observation 2
The optimal pattern satisfies:

wr =

H* = 2 Jor) (XFx)+O(N)
xeX

Observations

Example: Fail-Stop + Silent

1
E(W) = W+V + C+AW(5 WHD+R)FNW(1 W+V+R)+0(N)

ot f"f fe

re

W — Off _ | Vv+C
ZXEX)‘Xfr)e(/\S"‘%f
A\
H* =2 OfrZ(AXfrg) +0(\) =2 </\s + 2> (V+)+ 0(N)
xeXx

Observations

Exercise: Silent Error with Intermediate Verifications

Observations

Exercise: Silent Error with Intermediate Verifications
n+1

1,1
B(W) = W+ gV + CxW (5 (1+-) W+ 2=V +R) +0()

Off

nV+ C

Asfs

1 1
H* = 2y/ogA*fs + O(N\) = 2\/)\52 (1 + n) (nV 4+ C)+ O(N)

]
"=\v

Observations

Exercise: Silent Error with Intermediate Verifications
n+1

E(W) =W + nV + C+/\5W<%(1+%) W+

Off

V+R)+0()

nV+ C

Asfs

1 1
H* = 2y/ogA*fs + O(N\) = 2\/)\52 (1 + n) (nV 4+ C)+ O(N)

]
"=\v

Extensions

> Using partial /inaccurate verifications to detect silent errors
[Bautista-Gomez, HiPC'15]

> (Almost) optimal multi-level checkpointing for fail-stop errors
[Presented at JLESC on Tuesday]

Dynamic Programming for Chains

<0 <1 2

! B(e2) !

How many intermediate checkpoints? What positions?

1. Find reusable sub-problem (and its optimal solution)

2. Find initialization case

Let Wcl,c2 = Zcz |/VI

i=c1

Objective

Compute optimal E(c)

Dynamic Programming for Chains

=) a -
R i
[E(c)

E(c) = min {E(c1) +E(ci,)+ C}

0<cg <

Initialization: E(0) =0

Dynamic Programming for Chains

=) a -
R i
[E(c)

E(c) = min {E(c1) +E(ci,)+ C}

0<cg <

Initialization: E(0) =0

E(c1,)= (1 - e_’\WCl’Q)(IE'COIS:"C2 + R+ E(c1) + E(a, Cz))

+ e—)\Wcl,Cz WC1,C2

	Recap
	Young
	Task Graphs

