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Single-Level Checkpointing

Minimize expected execution overhead H(W) = =7> — 1
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Figure: periodic computing pattern

What is the optimal checkpointing interval?
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Figure: periodic computing pattern
What is the optimal checkpointing interval?

@ Exact solution:
eAR(% —|—D)e>‘(W+C)

H(W) = W — 1, use Lambert function
@ First-order approximation [Young/Daly]:
2C
Wopt = 7

Hopt = V2AC + ©())
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Figure: periodic computing pattern
What is the optimal checkpointing interval?

@ Exact solution:
eAR(% + D)eA(WJrC)

H(W) = W — 1, use Lambert function
@ First-order approximation [Young/Daly]:
2C
Wopt = T

Hopt = V2XC + O())

Scalability problem for large-scale platforms



Multi-Level Checkpointing

E.g., Scalable Checkpoint/Restart (SCR) library, Fault Tolerance
Interface (FTI)

@ Local memory/SSD, Partner copy/XOR, RS-coding, PFS



Multi-Level Checkpointing

E.g., Scalable Checkpoint/Restart (SCR) library, Fault Tolerance

Interface (FTI)

@ Local memory/SSD, Partner copy/XOR, RS-coding, PFS

Two approaches:

@ Independent checkpointing:

‘ ‘ (level 3: PFS)

Time
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(level 1: local)

@ Synchronized checkpointing:

Time

clelG| [l elel Tl [l |c1|cziLT:

ime



Two Levels

Easy because pattern repeats (memoryless property)
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Figure: with N level-1 checkpoints

@ Exact solution: very complicated (which error type occurs
first?), equal-length chunks, see [1]

[1] S. Di, Y. Robert, F. Vivien, F. Cappello. Toward an optimal online checkpoint
solution under a two-level HPC checkpoint model, IEEE TPDS, 2016.



Two Levels

Easy because pattern repeats (memoryless property)
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Figure: with N level-1 checkpoints

@ Exact solution: very complicated (which error type occurs
first?), equal-length chunks, see [1]

o First-order approximation:

Hopt = \/2)\1 G+ \/2)\2 G+ 9(/\)

(obtained for some optimal pattern)

[1] S. Di, Y. Robert, F. Vivien, F. Cappello. Toward an optimal online checkpoint
solution under a two-level HPC checkpoint model, IEEE TPDS, 2016.



Three Levels

Difficult because sub-patterns may differ
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@ Exact solution: unknown
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e Exact solution: unknown
o First-order approximation:

Hopt = V2M1 G + V222G + V223G + O())

(obtained for some optimal pattern)
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e Exact solution: unknown
o First-order approximation:

Hopt = V2M1 G + V222G + V223G + O())

(obtained for some optimal pattern)

@ Choose optimal set of levels:

Level Overhead

1,2,3 \/2C1)\1+\/2C2)\2—|-\/2C3>\3
1,3 \/2C1)\1+\/2C3()\2+)\3)
2,3 \/2C2(A1+)\2)+\/2C3)\3

3 V2G (A1 + A2+ A3)




k Levels

Theorem

The optimal k-level pattern, under the first-order approximation,
has equal-length chunks at all levels:
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Optimal pattern length: W°Pt =

N C
Optimal #chkpts at level £: NJP* = ?ﬂ : Tk Ve=1,... k
74 k

k
Optimal pattern overhead: Hop: = Z V220G + ©(N)
=1




k Levels

Theorem

The optimal k-level pattern, under the first-order approximation,
has equal-length chunks at all levels:

k opt
Y1 NG
1 k A
52 0=1 W‘Lt

N C
Optimal #chkpts at level £: NJP* = ?ﬂ : Tk Ve=1,... k
74 k

Optimal pattern length: W°Pt =

k
Optimal pattern overhead: Hop: = Z V220G + ©(N)
=S

@ Dynamic programming algorithm to choose set of levels

. . . opt NEPt e Coa
@ Rounding for integer solution: n,"" = N =\ Ng T C
041 £+1 74




Simulations

Set Source Level 1 2 3 4
(A) Moody C (s) 0.5 4.5 | 1051 -
etal. [I] [MTBF (s)]5.00e6|5.56e5 | 2.50e6| -
(B) Balaprakash | C (s) 10 20 20 100
et al. [2] |MTBEF (s)|3.60e4 | 7.20e4 | 1.44e5 | 7.20eb
* == Theoretical Lower Bound 0.16 == Theoretical Lower Bound
B Sim. Overhead (Best Rounding) W Sim. Overhead (Best Rounding)
= canesp, Theorecal overnead || 014 £ Canesp, Theortcal Overnead
0.08 B Sim. Overhead (Worst Rounding) B Sim. Overhead (Worst Rounding)
EEE Corresp. Theoretical Overhead EEm Corresp. Theoretical Overhead

Overhead
Overhead

{4} (41} {42} {43} {421} {431} {432} {4321}
Checkpoint Levels

3,1} 3.2}
Checkpoint Levels

(A) (B)
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Conclusion

Explicit formulas for (almost) optimal multi-level checkpointing

k
Hopt = Y V20 Cp + ©(N)
/=1

Limitations:

e First-order approximation (accurate for 10,000s of nodes with
MTBEF in hours; beyond?)

e Independent errors (correlated failure?)



