Which Verification for Soft Error Detection?

Leonardo Bautista-Gomez!, Anne Benoit?, Aurélien Cavelan?,
Saurabh K. Raina3, Yves Robert?* and Hongyang Sun?

1. Argonne National Laboratory, USA
2. ENS Lyon & INRIA, France
3. Jaypee Institute of Information Technology, India
4. University of Tennessee Knoxville, USA

hongyang.sun@ens-1lyon.fr

JLESC Workshop
July 1, 2015, Barcelona

hongyang.sun@ens-lyon.fr

Computing at Exascale

Exascale platform:

@ 10° or 10° nodes, each equipped with 10% or 103 cores.

@ Shorter Mean Time Between Failures (MTBF) (.

Theorem: 1, = Hind ¢ arbitrary distributions
p
MTBF (individual node) 1 year | 10 years | 120 years
MTBF (platform of 10° nodes) | 30 sec | 5 mn 1h

Computing at Exascale

Exascale platform:
@ 10° or 10° nodes, each equipped with 10% or 103 cores.

@ Shorter Mean Time Between Failures (MTBF) (.

Theorem: 1, = Hind ¢ arbitrary distributions
p
MTBF (individual node) 1 year | 10 years | 120 years
MTBF (platform of 10° nodes) | 30 sec | 5 mn 1h

Need more reliable components!!
Need more resilient techniques!!!

General-purpose approach

Periodic checkpoint, rollback and recovery:

Error
o) o]

% % Time

@ Fail-stop errors: instantaneous error detection, e.g., resource crash.

@ Silent errors (aka silent data corruptions): e.g., soft faults in L1
cache, ALU, double bit flip.

General-purpose approach

Periodic checkpoint, rollback and recovery:

Error; Corrupt é Detect

X]

% 4 % Time

<]

@ Fail-stop errors: instantaneous error detection, e.g., resource crash.

@ Silent errors (aka silent data corruptions): e.g., soft faults in L1
cache, ALU, double bit flip.

Silent error is detected only when corrupted data is activated,
which could happen long after its occurrence.

Detection latency is problematic = risk of saving corrupted checkpoint!

Coping with silent errors

Couple checkpointing with verification:

Error Detect
ve| ¢ ; v ¢

vl C

w

w

Time

@ Before each checkpoint, run some verification mechanism
(checksum, ECC, coherence tests, TMR, etc).

@ Silent error is detected by verification = checkpoint always valid ©®

Coping with silent errors

Couple checkpointing with verification:

vl C

Error Detect
; v ¢

vl C

w

w

Time

@ Before each checkpoint, run some verification mechanism
(checksum, ECC, coherence tests, TMR, etc).

@ Silent error is detected by verification = checkpoint always valid ©®

Optimal period (Young/Daly):

Fail-stop (classical)

Silent errors

Pattern

Optimal

T=W+C
W* =2Cpu

S=W+V+C
W+ = \/(C+ V)u

One step further

Perform several verifications before each checkpoint:

Erro Detect

Time

@ Pro: silent error is detected earlier in the pattern ®)

@ Con: additional overhead in error-free executions &

One step further

Perform several verifications before each checkpoint:

Erro Detect

Time

@ Pro: silent error is detected earlier in the pattern ®)

@ Con: additional overhead in error-free executions &

How many intermediate verifications to use and the positions?

Partial verification

Guaranteed /perfect verifications (V*) can be very expensive!

Partial verifications (V) are available for many HPC applications!

@ Lower accuracy: recall (r) = % <10

@ Much lower cost, i.e., V < V* ©

Partial verification

Guaranteed /perfect verifications (V*) can be very expensive!

Partial verifications (V) are available for many HPC applications!

@ Lower accuracy: recall (r) = % <10

@ Much lower cost, i.e., V < V* ©

Error Detect? Detect!
— ”}fé A BB e

Time

Partial verification

Guaranteed /perfect verifications (V*) can be very expensive!

Partial verifications (V) are available for many HPC applications!

@ Lower accuracy: recall (r) = % <10

@ Much lower cost, i.e., V < V* ©

Error Detect? Detect!
— ”}fé A BB e

Which verification(s) to use? How many? Positions?

Time

Partial verification

Guaranteed /perfect verifications (V*) can be very expensive!

Partial verifications (V) are available for many HPC applications!

@ Lower accuracy: recall (r) = % <10

@ Much lower cost, i.e., V < V* ©

Error Detect? Detect!
— ”}fé A BB e

Which verification(s) to use? How many? Positions?

Time

The terms “verification” and “detector” are used interchangeably.

Problem Statement

Outline

@ Problem Statement

Problem Statement

Model and Objective

Divisible-load application

@ Checkpoints and verifications can be inserted at arbitrary locations.
Silent errors

@ Poisson process: arrival rate A = 1/u, where 1 is platform MTBF.

@ Strike only computations; checkpointing, recovery, and verifications
are protected.

Resilience parameters
@ Cost of checkpointing C, cost of recovery R.

@ k types of partial detectors and a perfect detector
(DW, D@, .. Dk, D).

o DW: cost V() and recall r) < 1.
e D*: cost V* and recall r* = 1.

Problem Statement

Model and Objective

Divisible-load application

@ Checkpoints and verifications can be inserted at arbitrary locations.
Silent errors

@ Poisson process: arrival rate A = 1/u, where 1 is platform MTBF.

@ Strike only computations; checkpointing, recovery, and verifications
are protected.

Resilience parameters
@ Cost of checkpointing C, cost of recovery R.

@ k types of partial detectors and a perfect detector
(DM, D@ . Dk D).

o DW: cost V() and recall r) < 1.
e D*: cost V* and recall r* = 1.

Design an optimal periodic computing pattern that minimizes
execution time (or makespan) of the application.

Problem Statement

Pattern

Formally, a pattern PATTERN(W, n, at, D) is defined by
@ W: pattern work length (or period);
@ n: number of work segments;
® a=[wa1,qn,...,ap]: work fraction of each segment (a; = w;/ W
and 37 o = 1);
@ D=[Dy,D,,...,Dp_1,D*]: detectors used at the end of each
segment (D; = DY) for some type j).

Time

wy wo w3

w

Problem Statement

Pattern

Formally, a pattern PATTERN(W, n, at, D) is defined by
@ W: pattern work length (or period);
@ n: number of work segments;
® a=[wa1,qn,...,ap]: work fraction of each segment (a; = w;/ W
and 37 o = 1);
@ D=[Dy,D,,...,Dp_1,D*]: detectors used at the end of each
segment (D; = DY) for some type j).

Time

w1 w2 w3

w

- Last detector is perfect to avoid saving corrupted checkpoints.
- The same detector type DY) could be used at the end of several

segments.

Theoretical Analysis

Outline

© Theoretical Analysis

Theoretical Analysis

Summary of results

In a nutshell:
@ We prove that finding the optimal pattern is NP-hard.

@ We design an FPTAS (Fully Polynomial-Time Approximation
Scheme) that gives a makespan within (1 + €) times the optimal
with running time polynomial in the input size and 1/e.

@ We show a simple Greedy algorithm works well in practice.

Theoretical Analysis

Summary of results

In a nutshell:
@ We prove that finding the optimal pattern is NP-hard.

@ We design an FPTAS (Fully Polynomial-Time Approximation
Scheme) that gives a makespan within (1 + €) times the optimal
with running time polynomial in the input size and 1/e.

@ We show a simple Greedy algorithm works well in practice.

Algorithm to determine a pattern PATTERN(W, n, at, D):

@ Use FPTAS or Greedy (or even brute force for small instances) to
find (optimal) number n of segments and set D of detectors.

@ Arrange the n — 1 partial detectors in any order.

* _ _ 1, _ l-gig :
@ Compute W* = ,/)\f and of U5 " (TFg 0itg) for1 <i<n,

n—1
1
where of = g Vi+V*+ Cand fe = = (1+U>
n
i=1 n—1

with gi =1 —r; and U,,:l—I—Z

i=1

1—g;
1+gi

Theoretical Analysis

Expected execution time of a pattern

The expected time to execute a pattern PATTERN(W, n, a, D) is

n—1
E(W) = W*Z Vit V*+ CH+AW(R+ WaAa +d"a) + o())
S

where A is a symmetric matrix defined by Aj; = % (1 + Hk ; gk) for
-)V forl <i<n.

i <j and d is a vector defined by d; = >__; (Hk

@ First-order approximation (as in Young/Daly's classic formula).

Theoretical Analysis

Expected execution time of a pattern

The expected time to execute a pattern PATTERN(W, n, a, D) is

n—1
E(W) = W*Z Vit V*+ CH+AW(R+ WaAa +d"a) + o())
S

where A is a symmetric matrix defined by Aj; = % (1 + Hk ; gk) for
-)V forl <i<n.

i <j and d is a vector defined by d; = >__; (Hk

@ First-order approximation (as in Young/Daly's classic formula).

@ Matrix A is essential to analysis. For instance, when n = 4 we have:

2 1+ l+gg2 1+ 81883
A:E 1+g1 2 1+g2 1+g2g3
2 | 1+g18 1+ 2 1+g3

1+g18083 1+ggs 1+gs 2

Theoretical Analysis

Minimizing makespan

For an application with total work Wyase, the makespan is
E(W
VVfinaI ~ % X Wbase
= Wbase + H(W) X Wbasea
where H(W) = &V‘\//V) — 1 is the execution overhead.

For instance, if Whase = 100, Wjinal = 120, we have H(W) = 20%.

Theoretical Analysis

Minimizing makespan

For an application with total work Wyase, the makespan is
E(W
VVfinaI ~ % X Wbase
= Wbase + H(W) X Wbasea
where H(W) = &V‘\//V) — 1 is the execution overhead.

For instance, if Whase = 100, Wjinal = 120, we have H(W) = 20%.

Minimizing makespan is equivalent to minimizing overhead!

H(W) = 2%+ MW + AR +d7a) + o()),

n—1
fault-free overhead: off = Z Vi+ V*+ C,
i=1

re-execution fraction: fo=a'Aa.

Theoretical Analysis

Optimal pattern length to minimize overhead

Proposition

The execution overhead of a pattern PATTERN(W, n, &, D) is minimized
when its length is

of
w* = .
Afre

The optimal overhead is

H(W*) = 2y/Aogfre + o(VA).

Theoretical Analysis

Optimal pattern length to minimize overhead

Proposition

The execution overhead of a pattern PATTERN(W, n, &, D) is minimized
when its length is

of
w* = .
Afre

The optimal overhead is

H(W*) = 2y/Aogfre + o(VA).

@ When the platform MTBF p = 1/) is large, o(v/)) is negligible.
@ Minimizing overhead is reduced to minimizing the product off!

o Tradeoff between fault-free overhead and fault-induced
re-execution.

Theoretical Analysis

Optimal positions of verifications to minimize f.

The re-execution fraction f,. of a pattern PATTERN(W, n, o, D) is
minimized when o = o*, where

1 % 1 — gk—18k
U (14 ge—1)(1+ g«)

af = for1 < k < n,

where go = g, =0 and U, =1+ 27;11 :::g

In this case, the optimal value of f, is

L1 1
fre:2(1+U)

Theoretical Analysis

Optimal positions of verifications to minimize f.

The re-execution fraction f,. of a pattern PATTERN(W, n, o, D) is
minimized when o = o*, where

1 1—gk_18k
— X
U (14 ge—1)(1+ g«)

af = for1 < k < n,

where go = g, =0 and U, =1+ 27;11 :::g

In this case, the optimal value of f, is
L 1 1
fre = E (1 + Un) o

@ Most technically involved result (lengthy proof of 3 pages!).

@ Given a set of partial verifications, the minimal value of #. does not
depend upon their ordering within the pattern.

Theoretical Analysis

Two special cases

@ When all verifications use the same partial detector (g), we get

a*:{(”-@(%—g)'ﬂ fork=1and k=n
k

1—
w f0r2§k§n—1

[pTel [l [F_[- [[5Tc

1 l1-gl-—g 1

Time

@ When all verifications use the perfect detector, we get equal-length

segments, i.e, af =1 forall 1< k <n.

[pTel []_[F] [#]- []_[oT<
T T T T

Time

Theoretical Analysis

Optimal number and set of detectors

It remains to determine optimal n and D of a pattern
PATTERN(W, n, o, D).

Theoretical Analysis

Optimal number and set of detectors

It remains to determine optimal n and D of a pattern
PATTERN(W, n, o, D).

Equivalent to the following optimization problem:

K
L V*+C 1)
Minimize fre0f = 5 (1 +) <1 + E 1 mjb0)>
=

1+ Eﬁ:l m;al)
subject to meNyg Vj=1,2,...,k

. 1— g) (V49)
accuracy: a¥) = T ZU) relative cost: bU) = V- C
. a)
accuracy-to-cost ratio: (;S(J) = —

bW)

Theoretical Analysis

Optimal number and set of detectors

It remains to determine optimal n and D of a pattern
PATTERN(W, n, o, D).

Equivalent to the following optimization problem:

k
v+ C 1)
Minimize fre0f = 2+ (1 + P -) <1 + Z mjb(l)>
1 + ijl mja(l) j=1

subject to meNyg Vj=1,2,...,k

. 1— g) (V49)
accuracy: a¥) = T ZU) relative cost: bU) = V- C
i G _ 3
accuracy-to-cost ratio: oY) = 0

NP-hard even when all detectors share the same accuracy-to-cost ratio
(reduction from unbounded subset sum), but admits an FPTAS.

Theoretical Analysis

Greedy algorithm

Practically, a Greedy algorithm:
@ Employs only the detector with highest accuracy-to-cost ratio

max __ a
o = 2.

L=
+
L | =
7 N
o | =
L | =
N———

Optimal #detectors: m* = —

Optimal overhead: H* = 2AC+ V) ! +4/1— 1
//(‘ ¢max (Z)max

@ Rounds up the optimal rational solution [m*].

Theoretical Analysis

Greedy algorithm

Practically, a Greedy algorithm:

@ Employs only the detector with highest accuracy-to-cost ratio
¢max __a
=2

1 1/1 1
Optimal #detectors: m* = -3 + 3 (—)

Optimal overhead: H* = ¢+ V) = +4/1- 1
" ¢max d)max

@ Rounds up the optimal rational solution [m*].

The Greedy algorithm has an approximation ratio /3/2 < 1.23.

Performance Evaluations

Outline

© Performance Evaluations

Performance Evaluations

Simulation configuration

Exascale Platform:

@ 105 computing nodes with individual MTBF of 100 years
= platform MTBF p = 8.7 hours.

@ Checkpoints size of 300GB with throughput of 0.5GB/s
= C = 600s.

Simulation configuration

Exascale Platform:

Performance Evaluations

@ 105 computing nodes with individual MTBF of 100 years
= platform MTBF p = 8.7 hours.

@ Checkpoints size of 300GB with throughput of 0.5GB/s

= C = 600s.

Realistic detectors (designed at ANL):

cost recall ACR
Time series prediction DO | V(D =3s [(D =05 | ¢ =133
Spatial interpolation D® V@ =30s | rf@ =095 | ¢ =36
Combination of the two D® | V@ =6s | r® =08 | ¢® =133
Perfect detector D* V*=600s | r'=1 o* =2

Performance Evaluations

Evaluation results

Using individual detector (Greedy algorithm)

[A0 =050 = = A2 0,95 — /%) —00]

Best partial detectors offer ~9% improvement in overhead.
Saving ~55 minutes for every 10 hours of computation!

Evaluation results

Performance Evaluations

Mixing two detectors: depending on application or dataset, a detector’s
recall may vary, but its cost stays the same.

Realistic data

again!
r1) = [0.5,0.9]
r(2) =[0.75,0.95]

Optimal solution

m overhead H diff. from opt.
Scenario 1: r®Y =051, r® =0.82, oM ~ 137, ¢ ~ 139
(1, 15) 29.828% 0%
(0, 16) 29.829% 0.001%

Greedy with D®

r(®) =10.8,0.99]

Scenario 2: rM) =

058, r® =0.9, ¢ = 163, ¢ =~ 164

o) = [133,327]

¢ = [24,36]

#3 = [133,196]

Optimal solution | (1, 14) 29.659% 0%
Greedy with D® | (0, 15) 29.661% 0.002%
Scenario 3: rY = 0.64, r® =0.97, oV ~ 188, ¢ ~ 188
Optimal solution | (1, 13) 29.523% 0%
Greedy with DY) | (27,0) 29.524% 0.001%
Greedy with D® | (0, 14) 29.525% 0.002%

The Greedy algorithm works very well in this practical scenario!

Conclusion

Outline

@ Conclusion

Conclusion

Conclusion

A first comprehensive analysis of computing patterns with partial
verifications to detect silent errors

@ Theoretically: assess the complexity of the problem and propose
efficient approximation schemes.

@ Practically: present a Greedy algorithm and demonstrate its good
performance with realistic detectors.

https://hal.inria.fr/hal-01164445v1

Conclusion

Conclusion

A first comprehensive analysis of computing patterns with partial
verifications to detect silent errors

@ Theoretically: assess the complexity of the problem and propose
efficient approximation schemes.

@ Practically: present a Greedy algorithm and demonstrate its good
performance with realistic detectors.

Future directions
@ Partial detectors with false positives/alarms

#£true errors

recision(p) = ————
P (p) #detected errors

@ Errors in checkpointing, recovery, and verifications.

@ Coexistence of fail-stop and silent errors.

https://hal.inria.fr/hal-01164445v1

Conclusion

Conclusion

A first comprehensive analysis of computing patterns with partial
verifications to detect silent errors

@ Theoretically: assess the complexity of the problem and propose
efficient approximation schemes.

@ Practically: present a Greedy algorithm and demonstrate its good
performance with realistic detectors.

Future directions

@ Partial detectors with false positives/alarms

#£true errors

recision(p) = ————
P (p) #detected errors

@ Errors in checkpointing, recovery, and verifications.

@ Coexistence of fail-stop and silent errors.

Research report available at https://hal.inria.fr/hal-01164445v1

https://hal.inria.fr/hal-01164445v1

	Problem Statement
	Theoretical Analysis
	Performance Evaluations
	Conclusion

