
Reservation Strategies for Stochastic Jobs
Guillaume Aupy∗, Ana Gainaru†, Valentin Honoré∗, Padma Raghavan†, Yves Robert‡, Hongyang Sun†

∗Inria & Labri, Univ. of Bordeaux, Talence, France
†Department of EECS, Vanderbilt University, Nashville, TN, USA

‡Laboratoire LIP, ENS Lyon, France & University of Tennessee Knoxville, USA

Abstract—In this paper, we are interested in scheduling
stochastic jobs on a reservation-based platform. Specifically, we
consider jobs whose execution time follows a known probability
distribution. The platform is reservation-based, meaning that the
user has to request fixed-length time slots. The cost then depends
on both (i) the request duration (pay for what you ask); and (ii)
the actual execution time of the job (pay for what you use).

A reservation strategy determines a sequence of increasing-
length reservations, which are paid for until one of them allows
the job to successfully complete. The goal is to minimize the
total expected cost of the strategy. We provide some properties
of the optimal solution, which we characterize up to the length
of the first reservation. We then design several heuristics based
on various approaches, including a brute-force search of the
first reservation length while relying on the characterization of
the optimal strategy, as well as the discretization of the target
continuous probability distribution together with an optimal
dynamic programming algorithm for the discrete distribution.

We evaluate these heuristics using two different platform
models and cost functions: The first one targets a cloud-
oriented platform (e.g., Amazon AWS) using jobs that follow
a large number of usual probability distributions (e.g., Uniform,
Exponential, LogNormal, Weibull, Beta), and the second one is
based on interpolating traces from a real neuroscience application
executed on an HPC platform. An extensive set of simulation
results show the effectiveness of the proposed reservation-based
approaches for scheduling stochastic jobs.

Index Terms—scheduling, stochastic job, reservation-based
platform, sequence of requests, neuroscience applications

I. INTRODUCTION

Scheduling a job onto a computing platform typically in-
volves making a reservation of the required resources, say of
duration t1 seconds, and running the job on the platform until
either the job has successfully completed, or the reservation
time has elapsed, whichever comes first.

While in some instances the exact duration of the job may
be known, in many other cases it is not known a priori (see,
for examples, two neuroscience applications shown in Fig. 1,
whose execution times have been characterized to exhibit
input-dependent yet unpredictable behavior). In the latter case,
the user has to guess a good value for t1. Indeed, if the job
does not complete successfully within these t1 seconds, the
user has to resubmit the job, this time requiring a longer
reservation, say of length t2 > t1. If the job still does not
complete successfully within t2 seconds, the user has to try
again, using a reservation of length t3 > t2, and so on until the
job would succeed eventually. The cost to the user is then the
cost associated with all the reservations that were necessary
to the successful completion of the job.

(a) Functional MRI quality assur-
ance (fMRIQA) [11]

(b) Voxel-based morphometry quality
assurance (VBMQA) [17]

Fig. 1. Traces of over 5000 runs (historgrams in purple) from July 2013 to
October 2016 of two neuroscience applications from the Vanderbilt’s medical
imaging database [15]. We fit the data to LogNormal distributions (dotted
lines in orange) with means and standard deviations shown on top.

A reservation strategy could well depend on the context,
the type of jobs and the platform. As an example, the MASI
Lab [1] at Vanderbilt takes the average execution time from
the last few instances of a neuroscience job to determine the
first reservation time for its next instance. If the reservation is
not enough, a standard practice is to resubmit the job using
between 1.5x and 2x the requested time in the last failed run,
effectively doubling the reservation time. As another example,
on HPC platforms, some users tend to reserve a walltime that
“guarantees” execution success (say up to the 99th execution
quantile). If this is not enough, they can ask for the 99th

execution quantile of the remaining possibilities, etc.
This reservation-based approach is agnostic of the type of

the job (sequential or parallel; single task or workflow) and of
the nature of the required computing resources (processors of
a large supercomputer, virtual machines on a cloud platform,
etc.). The user just needs to make good guesses for the values
of successive reservation durations, hoping to minimize the
associated cumulated cost. Here, we refer to cost as a generic
metric. It could be paid either in terms of budget (e.g., a
monetary amount as a function of what is requested and/or
used in a cloud service), or in terms of time (e.g., the waiting
time of the job in an HPC queue that depends on the requested
runtime as shown in Fig. 2).

The cost is usually proportional to the reservation length,
with a possible initial and fixed value (start-up overhead). One
example is the Reserved Instance model available on Amazon
AWS [3], which is up to 75% cheaper than the flexible On-
Demand model that does not require advanced reservations.
We also investigate scenarios where an additional cost is
paid in proportion to the actual execution time, again with

(a) Jobs that requested 204 procs. (b) Jobs that requested 409 procs.

Fig. 2. Average wait times of the jobs run on the same number of processors
(204 and 409) as a function of the requested runtimes (data from [22]). All
jobs are clustered into 20 groups, each with similar requested runtimes. Each
point (in blue) shows the average wait time of all jobs in a group and the
dotted lines (in orange) represent affine functions that fit the data.

a possible start-up overhead. This latter scenario is relevant
when submitting jobs to large supercomputing platforms,
where each user requests a set of resources for a given number
of hours, but only pays for the hours actually spent; however,
the assigned waiting queue, and hence the job’s waiting time,
both depend upon the number of hours asked for in the request.

Altogether, the cost function1 for a job with a reservation
of length t1 and an actual execution duration of length t can
be expressed as:

αt1 + βmin(t1, t) + γ (1)

where α, β and γ are constant parameters that depend on
the platform and the cost model. Again, if t > t1, another
reservation should be made and paid for.

Although we do not know the exact execution time of
the job to be scheduled, we do not schedule completely in
the dark. Instead, we assume that there are many jobs of
similar type and that their execution times obey the same
(known) probability distribution (e.g., see Fig. 1). Each job
is deterministic, meaning that a second execution of the same
job will last exactly as long as the first one. However, the
exact execution time of a given job is not known until that job
has successfully completed. Our only assumption is that job
execution times are randomly and uniformly sampled from a
target probability distribution.

While the core of the theoretical results of this paper are
valid for general continuous probability distributions, we focus
on the usual distributions for the evaluation. In particular, we
consider Uniform, Beta and Bounded Pareto distributions if
the execution times are upper-bounded, i.e., they belong to
some interval [a, b]; and we consider Exponential, Weibull,
LogNormal and a few others if there is no upper bound for
the execution times (see Section V for details). Note that
the LogNormal distribution has been advocated to model file
sizes [10], and we assume that job durations could naturally
obey this distribution too. Note that we only consider distribu-
tions whose support is included in [0,∞), because execution

1Other cost functions could be envisioned. In particular, the cost for a
reservation could be a more general function than a simple affine one. Several
results of this paper can be extended to convex cost functions. We focus on
affine costs because of their wide applicability under various scenarios.

times must have positive values. This precludes the use of
Normal distribution, for instance.

This paper aims at proposing effective strategies to the
following reservation problem: given a probability distribu-
tion, determine a (possibly infinite) sequence of reservations
S = (t1, t2, . . . , ti, ti+1, . . .) such that the expected cost
to execute a job, whose execution time is randomly and
uniformly sampled from the distribution, is minimized. Of
course, any reservation sequence induces a greedy scheduling
algorithm: for any given job, make (and pay for) a reservation
of length t1, then a reservation of length t2 if the job has
not succeeded (meaning its execution time t was greater than
t1), and so forth until success. The natural objective is to
minimize the average cost of this algorithm over all possible
job durations, hence the quest for a reservation sequence
whose expected cost is minimal.

From a theoretical perspective, it is not clear that there
always exists a reservation sequence with finite expected
cost. However, we show that it is true for any continuous
distribution with finite expectation and variance, which is the
case for all the distributions considered in this work.

The main contributions of this work are the following:
• The characterization of an optimal reservation sequence

up to the value of its first reservation duration t1. While
we do not know how to compute t1 analytically, we
provide an upper bound that allows us to limit the range
of a numerical search for its value;

• The design of several heuristics based on various ap-
proaches: one explores a brute-force search for t1 while
relying on the optimal characterization mentioned above;
one discretizes the target continuous distribution and
uses an optimal dynamic programming algorithm for the
discrete distribution; and some rely on standard measures
(e.g., mean, variance, quantiles) of the distribution.

• An extensive set of simulation results under two differ-
ent platform models and cost functions that show the
effectiveness of the proposed strategies. The first one
targets a cloud-oriented platform using jobs that follow
a large number of usual distributions and the second one
is based on interpolating traces from a real neuroscience
application executed on an HPC platform.

The rest of the paper is organized as follows. Section II
introduces the framework and main notations. Section III
discusses the properties of the optimal solution. We propose
several heuristics in Section IV, and evaluate their performance
under two platform models in Section V. Section VI is
dedicated to related work. Finally, we provide concluding
remarks and hints for future work in Section VII.

II. FRAMEWORK

In this section, we introduce some notations and formally
define the optimization problem.

A. Stochastic jobs

We consider stochastic jobs whose execution times are un-
known but (i) deterministic, so that two successive executions

of the same job will have the same duration; and (ii) randomly
and uniformly sampled from a given probability distribution
law D, whose PDF is f and cumulative distribution function
(CDF) is F . The probability distribution is assumed to be
nonnegative, since we model execution times, and is defined
either on a finite support [a, b], where 0 ≤ a < b, or on an
infinite support [a,∞) where 0 ≤ a. Hence, the execution time
of a job is a random variable X , and P(X ≤ T) = F (T) =∫ T
a
f(t)dt. For notational convenience, we sometimes extend

the domain of f outside the support of D by letting f(t) = 0
for t ∈ [0, a].

B. Cost model

To execute a job, the user makes a series of reservations,
until the job successfully executes within the length of the last
reservation. For a reservation of length t1, and for an actual
duration t of the job, the cost is αt1 + βmin(t1, t) + γ, as
stated in Equation (1), where α > 0, β ≥ 0 and γ ≥ 0. If
t > t1, another reservation should be paid for. Hence, the user
needs to make a (possibly infinite) sequence of reservations
S = (t1, t2, . . . , ti, ti+1, . . .), where:

1) ti < ti+1 for all i ≥ 1. Indeed, because jobs are
deterministic, it is redundant to have a duration in the
sequence that is not strictly larger than the previous one,
hence that duration can be removed from the sequence;

2) all possible execution times of the job are indeed smaller
than or equal to some ti in the sequence. This simply
means that the sequence must tend to infinity if job
execution times are not upper-bounded.

Throughout the paper, we assume that both properties hold
when speaking of a reservation sequence. For notational con-
venience, we define t0 = 0, in order to simplify summations.

Now, for a sequence S = (t1, t2, . . . , ti, ti+1, . . .), and for
a job execution time t, the cost is

C(k, t) =

k−1∑
i=1

(αti + βti + γ) + αtk + βt+ γ (2)

where k is the smallest index in the sequence such that t ≤ tk
(or equivalently, tk−1 < t ≤ tk; recall that t0 = 0).

C. Objective

The goal is to find a scheduling strategy, i.e., a sequence
of increasing reservation durations, that minimizes the cost in
expectation. Formally, the expected cost for a sequence S =
(t1, t2, . . . , ti, ti+1, . . .) can be written as:

E(S) =

∞∑
k=1

∫ tk

tk−1

C(k, t)f(t)dt (3)

Indeed, when tk−1 < t ≤ tk, the cost is C(k, t), weighted
with the corresponding probability. Here are two examples:
• UNIFORM(a, b): for a uniform distribution over the interval
[a, b] where 0 < a < b, we have f(t) = 1

b−a if a ≤ t ≤ b, and

f(t) = 0 otherwise. Given a finite sequence S = (a+b2 , b), the
expected cost is

E(S) =
∫ a+b

2
a

(αa+b
2

+ βt+ γ) 1
b−adt

+
∫ b
a+b
2

(
(αa+b

2
+ β a+b

2
+ γ) + (αb+ βt+ γ)

)
1
b−adt

The first term is for values of t that are in [a, a+b2] and the
second term is for larger values of t in [a+b2 , b]. For the latter
term, we pay a constant cost αa+b2 + β a+b2 + γ for the first
unsuccessful reservation, and then a cost that depends upon
the value of t for the second reservation if β 6= 0.
• EXP(λ): for an exponential distribution with rate λ and sup-
port in [0,∞), we have f(t) = λe−λt for all t ≥ 0. Given an
infinite and unbounded sequence S = (1

λ ,
2
λ , . . . ,

i
λ ,

i+1
λ , . . .),

the expected cost is

E(S)=
∞∑
k=1

∫ k
λ
k−1
λ

(k−1∑
i=1

(α i
λ
+β i

λ
+γ)+α k

λ
+βt+γ

)
λe−λtdt

Again, when t ∈ [k−1λ , kλ], we pay a fixed cost for the k −
1 first reservations, and a possibly variable cost for the k-
th reservation. Looking at the expression of E(S) above, we
easily see that the given sequence S has a finite expected cost
E(S). In fact, there are many sequences with finite expected
cost, such as those defined by ti = ui+ v for i ≥ 1, where u
and v are positive constants.

We are now ready to state the optimization problem:

Definition 1 (STOCHASTIC). Given a probability distribution
(with CDF F) for the execution times of stochastic jobs, and
given a cost function given by Equation (1) (with parameters
α, β and γ), find a reservation sequence S with minimal
expected cost E(S) as given in Equation (3).

We further define RESERVATIONONLY to be the instance
of STOCHASTIC where the cost is a linear function of the
reservation length only, i.e., when β = γ = 0. For RESER-
VATIONONLY, we can further consider α = 1 without loss of
generality. For instance, such costs are incurred when making
reservations of resources to schedule jobs on some cloud
platforms, with hourly or daily rates. Throughout the paper, we
focus on the usual probability distributions, hence we assume
that the density function f and the CDF F of D are smooth
(infinitely differentiable), and that D has finite expectation.

III. CHARACTERIZING THE OPTIMAL SOLUTION

In this section, we establish key properties of an optimal
solution in the general setting.

A. Cost function

We start by establishing a simpler expression for the cost
function of STOCHASTIC.

Theorem 1. Given a sequence S = (t1, t2, . . . , ti, ti+1, . . .),
the cost function given by Equation (3) (with parameters α, β
and γ) can be rewritten as (with t0 = 0):

E(S) = β · E[X]+

∞∑
i=0

(αti+1+βti+γ)P(X ≥ ti) (4)

Proof. We first expand Equation (3) as follows:

E(S)=

∞∑
k=1

(∫ tk

tk−1

(k∑
i=1

(αti+γ)+

k−1∑
i=1

βti+βt
)
f(t)dt

)
(5)

We compute the three terms on the right-hand side separately.
By defining t0 = 0, the first term can be expressed as:∑∞

k=1

(∫ tk
tk−1

(∑k
i=1 (αti + γ)

)
f(t)dt

)
=
∑∞
k=1

∑k
i=1 (αti + γ)

∫ tk
tk−1

f(t)dt

=
∑∞
k=1

∑k
i=1 (αti + γ)P(X ∈ [tk−1, tk])

=
∑∞
i=1

∑∞
k=i (αti + γ)P(X ∈ [tk−1, tk])

=
∑∞
i=1 (αti + γ)P(X ≥ ti−1)

Similarly, we obtain the second term:∑∞
k=1

(∫ tk
tk−1

(∑k−1
i=1 βti

)
f(t)dt

)
=
∑∞
i=1 βtiP(X ≥ ti)

and the third term:∑∞
k=1

(∫ tk
tk−1

βtf(t)dt
)
= β · E[X]

Plugging these three terms back into Equation (5), we get
the desired expression for the cost function as given by
Equation (4).

B. Upper bound on to1 and finite expected cost

In this section, we extract an upper bound for the first
request to1 of an optimal sequence So to STOCHASTIC, which
allows us to show that the expected cost E(So) is upper
bounded too, and hence finite. This result holds in a general
setting, namely, for any distribution D such that E(X2) <∞.

Obviously, if the distribution’s support is upper bounded,
such as for UNIFORM(a, b), a solution is to choose that upper
bound for to1 (e.g., to1 ≤ b for UNIFORM(a, b)). Hence, we
focus on distributions with infinite support [a,∞) and aim at
restricting the search for an optimal to1 to a bounded interval
[a,A1] for some A1. We derive the following result.

Theorem 2. For any distribution D with infinite support
[a,∞) such that E[X2] < ∞, the value to1 of an optimal
sequence So = (to1, t

o
2, . . . , t

o
i , t

o
i+1, . . .) satisfies to1 ≤ A1,

and E(So) ≤ A2, where

A1 = E[X]+1+
α+β

2α
(E[X2]−a2)+

α+β+γ

α
(E[X]−a) (6)

A2 = β · E(X) + αA1 + γ (7)

Proof. We consider the sequence S = (t1, t2, . . . , ti, ti+1, . . .)
with ti = a+ i for i ≥ 1 (and t0 = 0), and compute

E(S)− β · E[X] =
∑∞
i=0(αti+1 + βti + γ)P(X ≥ ti)

=
∑∞
i=0(α(a+ i+ 1) + β(a+ i) + γ)P(X ≥ a+ i)

= α(a+ 1) + γ +
∑∞
i=1(α+ β)(a+ i)P(X ≥ a+ i)

+ (α+ γ)
∑∞
i=1 P(X ≥ a+ i)

= α(a+ 1) + γ + (α+ β)
∑∞
i=1

∫ a+i

a+i−1
(a+ i)P(X ≥ a+ i)dt

+ (α+ γ)
∑∞
i=1

∫ a+i

a+i−1
P(X ≥ a+ i)dt

Note that for all t ∈ [a+i−1, a+i], we have both a+i ≤ t+1
and P(X ≥ a+ i) ≤ P(X ≥ t), thus

(a+ i)P(X ≥ a+ i) ≤ (t+ 1)P(X ≥ t)

Hence, we can write:

E(S)− β · E[X]

≤ α(a+ 1) + γ + (α+ β)
∑∞
i=1

∫ a+i

a+i−1
(t+ 1)P(X ≥ t)dt

+ (α+ γ)
∑∞
i=1

∫ a+i

a+i−1
P(X ≥ t)dt

= α(a+ 1) + γ + (α+ β)
∫∞
a

(t+ 1)P(X ≥ t)dt
+ (α+ γ)

∫∞
a

P(X ≥ t)dt
≤ α(a+ 1) + γ + (α+ β)

∫∞
a
t · P(X ≥ t)dt

+ (2α+ β + γ)
∫∞
a

P(X ≥ t)dt

For the last inequality, we have split
∫∞
a

(t + 1)P(X ≥ t)dt
into

∫∞
a
tP(X ≥ t)dt and

∫∞
a

P(X ≥ t)dt.
Extending the support of D to [0,∞) by letting f(t) = 0

for 0 ≤ t ≤ a, and hence P(X ≥ t) = 1 for 0 ≤ t ≤ a, we
have the following property for any integer p ≥ 1:∫∞

0
tp−1 · P(X ≥ t)dt =

∫∞
t=0

tp−1
∫∞
x=t

f(x)dxdt

=
∫∞
x=0

f(x)
∫ x
t=0

tp−1dtdx =
∫∞

0
xp

p
f(x)dx = E[Xp]

p

Hence, using p = 1, we have:∫∞
a

P(X≥ t)dt=
∫∞

0
P(X≥ t)dt−

∫ a
0
P(X≥ t)dt = E[X]−a

and using p = 2, we get∫∞
a
t · P(X ≥ t)dt =

∫∞
0
t · P(X ≥ t)dt−

∫ a
0
t · P(X ≥ t)dt

= E[X2]−a2
2

Altogether, we derive that

E(S) ≤ β · E[X] + αA1 + γ (8)

where A1 is given by Equation (6). From Equation (4), the
expected cost of any sequence S satisfies E(S) ≥ β · E[X] +
αt1 + γ (cost of expected execution time and cost of first
request). Hence, necessarily in an optimal sequence, the first
reservation to1 satisfies to to1 ≤ A1. Thus, Equation (6) gives
the desired bound on to1.

C. Properties of optimal sequences

We now derive a recurrence relation between the successive
requests in the optimal sequence for STOCHASTIC.

Theorem 3. Let So = (toi)i≥1 denote an optimal sequence
for STOCHASTIC. For all i ≥ 1, if F (toi) 6= 1, we have the
following property:

αtoi+1 + βtoi + γ = α
1− F (toi−1)

f(toi)
+ β

1− F (toi)

f(toi)
(9)

Proof. We fix an index j ≥ 1 such that F (toj) 6= 1 and
consider the expected cost when we replace toj by an arbitrary
value t ∈ [toj−1, t

o
j+1]. This amounts to using the sequence

Soj (t) = (to1, t
o
2, · · · , toj−1, t, toj+1, · · ·) whose expected cost,

according to Equation (4), is the following:

E(Soj (t)) = β · E[X] +
∑

i6=j−1,j

(αtoi+1 + βtoi + γ)P(X ≥ toi)

+ (αt+ βtoj−1 + γ)P(X ≥ toj−1)

+ (αtoj+1 + βt+ γ)P(X ≥ t)

which we can rewrite as:

E(Soj (t)) = Cj+αt(1−F (toj−1))+(αtoj+1+βt+γ)(1−F (t))

where Cj is some constant independent of t. By definition,
the minimum of E(Soj (t)) on [toj−1, t

o
j+1] is achieved at t = toj

(and potentially at other values). Because E(Soj (t)) is smooth,
we have that its derivative at toj , which is not an extremity of

the interval [toj−1, t
o
i+1], must be equal to zero, i.e.,

∂E(Soj (t))
∂t =

0. This gives:

α(1−F (toj−1))+β(1−F (toj))− (αtoj+1+βt
o
j+γ)f(t

o
j) = 0 (10)

To get the final result, it remains to show that f(toj) 6= 0.
Otherwise, we would get from Equation (10) that α(1 −
F (toj−1))+β(1−F (toj)) = 0, which implies that F (toj−1) = 1
because α > 0 (and β(1 − F (toj)) ≥ 0). But then, F (toj) ≥
F (toj−1) = 1, which contradicts the initial assumption. Hence,
f(toj) 6= 0, and rewriting Equation (10) directly leads to
Equation (9).

Note that the condition F (toi) 6= 1 in Theorem 3 applies
to distributions with finite support, such as UNIFORM(a, b),
where F (b) = 1. For the usual distributions with infinite sup-
port, such as EXP(λ), we have F (t) < 1 for all t ∈ [0,∞) and
an optimal sequence must be infinite. In essence, Theorem 3
suggests that an optimal sequence is characterized solely by
its first value to1:

Proposition 1. For a smooth distribution with infinite support,
solving STOCHASTIC reduces to finding to1 that minimizes

∞∑
i=0

(αti+1+βti+γ)P(X ≥ ti)

where to0 = 0, and for all i ≥ 2,

toi =
1− F (toi−2)

f(toi−1)
+
β

α

(
1− F (toi−1)

f(toi−1)
− toi−1

)
− γ

α
(11)

For a smooth distribution with finite support, the recurrence
in Equation (11) still holds but the optimal sequence stops as
soon as it reaches toi with F (toi) = 1.

Proposition 1 provides an optimal algorithm for general
smooth distributions, up to the determination of to1. How-
ever, computing the optimal to1, remains a difficult problem,
except for simple distributions such as UNIFORM(a, b) (see
Section III-D).

D. Uniform distributions

In this section, we discuss the optimal strategy for a uniform
distribution UNIFORM(a, b), where 0 < a < b. Intuitively,
one could try and make a first reservation of duration, say,
t1 = a+b

2 , and then a second reservation of duration t2 = b.
However, we show that the best approach is to make a single
reservation of duration t1 = b, for any value of the parameters
α, β and γ:

Theorem 4. For a uniform distribution UNIFORM(a, b), the
optimal sequence for STOCHASTIC is So = (b).

Proof. We study here only the sequences of length smaller
than or equal to 2, i.e., S = (t1, b), where t1 ≤ b. The full
proof is available in the companion report [4].

Note that necessarily, in a sequence of length 2, t2 = b
otherwise t2 < b and E((t1, t2)) = ∞ because the interval
[t2, b] has non-zero measure.

Using Equation (4) we obtain:

E((t1, b)) = βE(X) + (αt1 + γ)P(X ≥ 0)
+ (αb+ βt1 + γ)P(X ≥ t1)

= βE(X) + (αt1 + γ) + b−t1
b−a (αb+ βt1 + γ)

= βE(X) + α b
2−t1a
b−a + b−t1

b−a (βt1 + γ) + γ

We can verify easily that this is minimized when t1 = b (and
that E((t1, b)) = E((t1)). Hence So = (b) is optimal amongst
the sequences of length smaller than or equal to 2.

E. Exponential distributions

In this section, we provide partial results for the RESER-
VATIONONLY problem (β = γ = 0 and α = 1) with an
exponential distribution EXP(λ). From Theorem 2 (and the
example in Section II-C), we know that there exist sequences
of finite expected cost. We further characterize the optimal
solution as follows:

Proposition 2. Let S1 = (s1, s2, . . . , si, si+1, . . .) denote the
optimal sequence for RESERVATIONONLY with an EXP(1)
distribution. Then, s2 = es1 , and for i ≥ 3,

si = esi−1−si−2 =
esi−1

Πi−1
j=2sj

(12)

The expected cost of S1 is E(S1) = s1 + 1 +
∑∞
i=1 e

−si .
Furthermore, the optimal sequence for RESERVATIONONLY

with EXP(λ) distribution is the infinite sequence Sλ =
(t1, t2, . . . , ti, ti+1, . . .) such that ti = si

λ for i ≥ 1. Its
expected cost is E(Sλ) = 1

λE(S1).

Proof. Consider an EXP(λ) distribution. From Equation (4),
the expected cost of the optimal sequence Sλ is E(S) =∑∞
i=0 ti+1e

−λti where t0 = 0, t1 is unknown, and the value
of ti for i ≥ 2 is given by Equation (11) as ti = eλ(ti−1−ti−2)

λ
for i ≥ 2. Introducing si = λti for all i ≥ 0, we derive that

E(Sλ) =
1

λ

∞∑
i=0

si+1e
−si

with si = esi−1−si−2 for all i ≥ 2. We have si+1e
−si =

e−si−1 for i ≥ 1, which gives the desired value for E(Sλ).
Now, we prove Equation (12) by induction. It holds for

i = 3, because s3 = es2−s1 = es2

es1 = es2

s2
. Assume that it

holds for any j ≤ i. Then si+1 = esi−si−1 = esi

esi−1 , and by
induction esi−1 = sis2 . . . si−1, hence the result.

Again, the optimal sequence is fully characterized by the
value of t1 or s1. Here, s1 is independent of λ. In other
words, the solution for EXP(1) is generic, and the solution
for EXP(λ) for an arbitrary λ can be directly derived from it.
Unfortunately, we do not know how to compute s1 analytically.
However, a brute-force search provides the value s1 ≈ 0.742,
which means that the first reservation for EXP(λ) should be
approximately three quarters of the mean value 1

λ of the
distribution, for any λ > 0.

IV. HEURISTICS FOR ARBITRARY DISTRIBUTIONS

The results of the preceding section provide a strategy to
compute the optimal sequence up to the determination of to1,
since Theorem 3 and Proposition 1 allow us to compute the
subsequent toi ’s. However, while we have derived an upper
bound on to1, we do not know how to compute its exact value
for an arbitrary distribution. In this section, we introduce sev-
eral heuristics for the STOCHASTIC problem under arbitrary
probability distributions.

A. Brute-force procedure

We first present a procedure called BRUTE-FORCE that
simply tries different values for the first reservation length
t1 in a sequence S, and then computes the subsequent values
according to Equation (11). Specifically, we try M different
values of t1 on the interval [a, b], where a is the lower bound
of the distribution and b is the upper bound if the distribution
is finite. Otherwise, we set b = A1, which is an upper bound
on the optimal to1 as given in Equation (6). As an example,
when α = 1, β = γ = 0, we have A1 ≤ 1 + 2E(X) + E(X2)

2 .
For each m = 1, . . . ,M , we generate a sequence that starts
with t1 = a + m · b−aM . Given a sequence S, its expected
cost is evaluated via a Monte-Carlo process, as described in
Section V-A: we randomly draw N execution times from the
distribution, and compute the expected cost incurred by the
sequence over the N samples. We finally return the minimum
expected cost found over all the M values of t1. Note that
some values of t1 may not lead to any result, because the
sequence computed based on it and using Equation (11) may
not be strictly increasing. In this case, we simply ignore the
sequence. The complexity of this heuristic is O(MN).

We point out that the actual optimal value for the first
request to1 would possibly lie in between two successive values
of t1 that we try. However, because we deal with smooth
probability distributions, we expect to return a t1 and an
associated expected cost that are close to the optimal when
M and N are sufficiently large. In the performance evaluation,
we set M = 5000 and N = 1000.

B. Discretization-based dynamic programming

We now present a heuristic that approximates the optimal
solution for STOCHASTIC by first discretizing the continuous
distribution and then computing an optimal sequence for the
discrete problem via dynamic programming.

1) Truncating and discretizing continuous distributions:
If a continuous distribution has finite support [a, b], where
0 ≤ a < b, then we can directly discretize it. Otherwise,
for a distribution with infinite support [a,∞), where 0 ≤ a,
we need to first truncate it in order to operate on a bounded
interval. In the latter case, we define b = Q(1 − ε), where
Q(x) = inf{t|F (t) ≥ x} is the quantile function. That is, we
discard the final ε ∈ (0, 1) quantile of the distribution, which
for usual distributions ensures that b is finite. In either case, the
discretization will then be performed on the interval [a, b]. Let
n denote the number of discrete values we will sample from
the continuous distribution. The result will be a set of n pairs

(vi, fi)i=1...n, where the vi’s represent the possible execution
times of the jobs, and the fi’s represent the corresponding
probabilities. We envision two schemes for the discretization:
• EQUAL-PROBABILITY: This scheme ensures that all the

discrete execution times have the same probability. Thus,
for all i = 1, 2, . . . , n, we can compute vi = Q

(
i · F (b)

n

)
and fi = F (b)

n .
• EQUAL-TIME: This scheme makes the discrete execution

times equally spaced in the interval [a, b]. Thus, for all i =
1, 2, . . . , n, the execution times and their probabilities are
computed as vi = a+ i · b−an and fi = F (vi)−F (vi−1).

Note that when the continuous distribution has infinite
support, the probabilities for the n discrete execution times
do not sum up to 1, i.e.,

∑n
i=1 fi = F (b) = 1− ε. A smaller

value of ε and a larger number n will provide a better sampling
of the continuous distribution in either discretization scheme.
In the performance evaluation, we set ε = 10−7 and n = 1000.

2) Dynamic programming for discrete distributions: We
now present a dynamic programming algorithm to compute
the optimal sequence for any discrete probability distribution.
It will be used with the discretization schemes to approximate
the optimal solution for an arbitrary continuous distribution.

Theorem 5 (Discrete distribution). If X ∼ (vi, fi)i=1...n, then
STOCHASTIC can be solved optimally in polynomial time.

Proof. Let E∗i denote the optimal expected cost given that
X ≥ vi. In this case, to compute the optimal expected cost, the
probability distribution of X needs to be first updated as f ′k =

fk∑n
j=i fj

,∀k = i, . . . , n, which guarantees that
∑n
k=i f

′
k = 1.

We can then express E∗i based on the following dynamic
programming formulation:

E∗i = min
i≤j≤n

(
αvj+γ+

j∑
k=i

f ′k · βvk +
(n∑
k=j+1

f ′k

)(
βvj+E∗j+1

))
In particular, to compute E∗i , we make a first reservation
of all possible discrete values (vj)j=i...n and select the one
that incurs the minimum total expected cost. For each vj
considered, if the job’s actual execution time is greater than
vj (with probability

∑n
k=j+1 f

′
k), the total cost also includes

the optimal cost E∗j+1 for making subsequent reservations.
The dynamic program is initialized with E∗n = αvn +

βvn + γ, and the optimal total expected cost is given by
E∗1. The complexity is O(n2), since each E∗i depends on
n− i other expected costs, with associated probability updates
and summations that can be computed in O(n − i) time.
The optimal sequence of reservations can be obtained by
backtracking the decisions made at each step.

Note that the sequence obtained by dynamic programming
always ends with the largest value vn = b. When applying it
back to a continuous distribution with infinite support, more
values will be needed, because the sequence must tend to
infinity as explained in Section II-B. In this case, additional
values can be appended to the sequence by using other
heuristics, such as the ones presented next in Section IV-C.

C. Other heuristics

We finally present some simple heuristics that are inspired
by common resource allocation strategies in the literature.
These heuristics do not explore the structure of the optimal
solution nor the probability distribution, but rely on simple
incremental methods to generate reservation sequences.

In the following, we will use µ = E(X) to denote the
mean of a given distribution, σ2 = E(X2)− µ2 to denote its
variance, and m = Q(1

2) to denote its median, where Q(x) =
inf{t|F (t) ≥ x} represents the quantile function. The different
heuristics are defined as follows:
• MEAN-BY-MEAN: start with the mean (i.e., t1 = µ) and

then make each subsequent reservation request by computing
the conditional expectation of the distribution in the remaining

interval, i.e., ti = E(X|X > ti−1) =

∫∞
ti−1

tf(t)dt

1−F (ti−1)
for all i ≥ 2.

• MEAN-STDEV: start with the mean and then increment
the reservation length by one standard deviation (σ) for each
subsequent request, i.e., ti = µ+ (i− 1)σ for all i ≥ 2.
• MEAN-DOUBLING: start with the mean and then double

the reservation length for each subsequent request, i.e., ti =
2i−1µ for all i ≥ 2.
• MEDIAN-BY-MEDIAN: each request is the median of the

distribution in the remaining interval, i.e., ti = Q(1− 1
2i) for

all i ≥ 2.
Note that deriving the sequence for MEAN-BY-MEAN is

straightforward for some distributions (e.g., exponential, uni-
form), but more involved for others. Recursive formulas are
provided in [4] to compute the sequence using this heuristic
for the considered distributions, along with key parameters
(e.g., mean, variance, quantile) to facilitate the sequence
computations for the other heuristics.

V. PERFORMANCE EVALUATION

In this section, we evaluate the different heuristics pre-
sented in Section IV, and compare their performance. The
code and setup of the experiments presented in this section
are publicly available on https://gitlab.inria.fr/vhonore/ipdps
2019 stochastic-scheduling.

A. Evaluation methodology

For each heuristic that generates a reservation sequence
S = (t1, t2, . . . , ti, ti+1, . . .) under a particular probability
distribution D, we approximate its expected cost via a Monte-
Carlo process2: we randomly sample N possible execution
times from the distribution, and then average over the cost of
all the N samples, i.e.,

Ẽ(S) =
1

N

N∑
i=1

C(k, t)|t←D (13)

where C(k, t) is the cost for a specific execution time t drawn
from the distribution, computed using Equation (2). For the
presented evaluation results, we set N = 1000.

2The possibly infinite sequence prevents us from analytically evaluating its
expected cost.

Table I. Probability distributions and parameter instantiations

Distribution PDF f(t) Instantiation Support
Distributions with infinite support

Exponential (λ) λe−λt λ = 1.0 t ∈ [0,∞)

Weibull(λ, κ) κ
λ

(
t
λ

)κ−1
e−(

t
λ)
κ λ = 1.0

κ = 0.5
t ∈ [0,∞)

Gamma(α, β) βα

Γ(α)
tα−1e−βt

α = 2.0
β = 2.0

t ∈ [0,∞)

LogNormal
(
ν, κ2

)
1

tκ
√

2π
e
− (ln t−ν)2

2κ2
ν = 3.0
κ = 0.5

t ∈ (0,∞)

TruncatedNormal(ν, κ2, a) 1
κ

√
2
π
· e
− 1

2

(
t−ν
κ

)2
1−erf

(
a−ν
κ
√

2

) ν = 8.0
κ2 = 2.0
a = 0.0

t ∈ [a,∞)

Pareto(ν, α) ανα

tα+1

ν = 1.5
α = 3.0

t ∈ [ν,∞)

Distributions with finite support

Uniform(a, b) 1
b−a

a = 10.0
b = 20.0

t ∈ [a, b]

Beta(α, β) tα−1·(1−t)β−1

B(α,β)

α = 2.0
β = 2.0

t ∈ [0, 1]

BoundedPareto(L,H, α) αLαt−α−1

1−
(
L
H

)α L = 1.0
H = 20.0
α = 2.1

t ∈ [L,H]

To get uniform results, we normalize the expected cost of
each heuristic by the expected cost of an omniscient scheduler,
which knows the job execution time t a priori, and thus would
make a single request of length t1 = t. Averaging over all
possible values of t from the distribution D, the omniscient
scheduler has an expected cost:

Eo =

∫ ∞
0

(αt+ βt+ γ)f(t)dt = (α+ β)E[X] + γ

Hence, the normalized ratio will always be greater than or
equal to 1, and a smaller ratio means a better result.

We perform the evaluation of the heuristics under two
different reservation-based scenarios.
• RESERVATIONONLY (Section V-B): This scenario is

based on the Reserved Instance pricing scheme avail-
able in AWS [3], where the user pays exactly what is
requested. Hence, we set α = 1, β = γ = 0. We consider
nine probability distributions in this case, six of which
have infinite support and the remaining three have finite
support. Table I lists these distributions with instantiations
of their parameters used in the evaluation.

• NEUROHPC (Section V-C): This scenario is based on
executing large jobs on HPC platforms, where the cost,
as represented by the total turnaround time of a job, is
the sum of its waiting time in the queue and its actual
execution time. We set β = 1 for the execution time
and instantiate the waiting time function (α, γ) by curve-
fitting the data from Fig. 2b. The probability distribution
is derived from the execution traces of the neuroscience
application shown in Fig. 1b.

B. Results for RESERVATIONONLY scenario

Table II presents, for each heuristic, the normalized expected
cost, i.e., Ẽ(S)/Eo, under different probability distributions.
The BRUTE-FORCE heuristic tries M = 5000 values of t1, and
both discretization heuristics set the truncation parameter to be
ε = 10−7 and use n = 1000 samples. First, the normalized
costs allow us to compare the performance of these heuristics

https://gitlab.inria.fr/vhonore/ipdps_2019_stochastic-scheduling
https://gitlab.inria.fr/vhonore/ipdps_2019_stochastic-scheduling

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t1

2.0

2.5

3.0

3.5

4.0

4.5

5.0
N

or
m

al
iz

ed
E

xp
ec

te
d

C
os

t Exponential

0.0 0.2 0.4 0.6 0.8 1.0
t1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t Beta

Fig. 3. Monte-Carlo simulations of the normalized costs of the BRUTE-
FORCE heuristic with different values of t1 in the RESERVATIONONLY
scenario under exponential and beta distributions.

with that of the omniscient scheduler to access the relative
benefits of using Reserved Instance (RI) vs. On-Demand (OD).
Indeed, if the per-hour rate for RI is cRI and the corresponding
rate for OD is cOD, it is beneficial to use RI and compute
a reservation sequence S, if cRI · Ẽ(S) ≤ cOD · Eo, that is
Ẽ(S)/Eo ≤ cOD/cRI. In the case of Amazon AWS [3], the
rates for the two types of services can differ by a factor of 4,
i.e., cOD/cRI = 4. We can see in the table that the normalized
costs of all heuristics satisfy Ẽ(S)/Eo < 4 for all distributions.
Overall, the results show the benefit of using reservations over
the on-demand approach. We also observe that, compared with
other heuristics, BRUTE-FORCE has better performance (see
values in the brackets in the table), and this is because it
computes a reservation sequence by exploring the properties
of the optimal solution (Section III-C).

We now study the BRUTE-FORCE heuristic in more detail.
Fig.3 shows the Monte-Carlo simulations of its normalized
costs using different values of t1 in the search interval under
two distributions, namely, exponential and beta (the plots for
other distributions can be found in the full version of the
paper [4]). First, we can see that some values of t1 can
lead to invalid sequences (that are not increasing). These
are indicated by the “gaps” in the figure. Moreover, even
if a sequence is valid, randomly guessing a t1 can result in
very poor performance compared to the one returned by our
heuristic. This shows the importance of finding the “right”
initial reservation request. We point out that more efficient
algorithms may exist to search for the best t1, but our BRUTE-
FORCE procedure takes just a few seconds to run on an Intel
i7 core with M = 5000 and N = 1000, thus providing a
practical solution that is close to the optimal, as demonstrated
by the figures.

C. Results for NEUROHPC scenario

We now present the evaluation results for the NEUROHPC
scenario while running a real application under the HPC
cost model. The probability distribution is generated from the
execution traces of a neuroscience application (VBMQA [17],
see Fig. 1b). It follows a LogNormal law with parameters
(ν = 7.1128, κ = 0.2039) obtained by fitting the execution
time data to the distribution curve, and this gives a mean
of µ = 1253.37s ≈ 0.348 hour and a standard deviation of
σ = 258.261s ≈ 0.072 hour. The average waiting time func-
tion is obtained by analyzing the logs from 20 groups of jobs

0.5 1.0 1.5 2.0 2.5 3.0

Mean (hours)

0

1

2

3

4

5

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Standard Deviation (hours)

0

1

2

3

4

5

BRUTE-FORCE

MEAN-BY-MEAN

MEAN-STDEV

MEAN-DOUB.
MED-BY-MED

EQUAL-TIME

EQUAL-PROB.

Fig. 4. Normalized expected costs of the different heuristics in the NEU-
ROHPC scenario with different values for the mean (in hours) and standard de-
viation (in hours) of the LogNormal distribution (ν = 7.1128, κ = 0.2039)
with α = 0.95, β = 1.0, γ = 1.05.

run on 409 processors of Intrepid [22] with different requested
runtimes (see Fig. 2b). We get an affine waiting time function
with parameters (α = 0.95, γ = 3771.84s ≈ 1.05 hour)
obtained also by curve fitting. The execution time parameter
is set to β = 1.

Figure 4 plots the normalized expected costs of differ-
ent heuristics in this scenario. To evaluate the robustness
of the results, we also vary the distribution parameters so
that its mean and standard deviation are increased by up
to a factor of 10 from their original values3, i.e., up to
µ ≈ 3.48 hours and σ ≈ 0.72 hour. We can see from the figure
that, regardless of the parameter variations, BRUTE-FORCE
and the two discretization-based heuristics (EQUAL-TIME and
EQUAL-PROBABILITY) have very close performance, which
is significantly better than the performance of the other
heuristics. The results are consistent with those observed
in Section V-B for the RESERVATIONONLY scenario, and
altogether they demonstrate the effectiveness and robustness
of the proposed BRUTE-FORCE and discretization schemes
for the STOCHASTIC problem.

VI. RELATED WORK

In this section, we review some related work on HPC/cloud
resource scheduling and cost models, as well as on stochastic
scheduling of jobs with uncertain execution times.

a) HPC resource scheduling: Most schedulers for HPC
systems use an iterative repetitive algorithm triggered by
state changes, such as new job submission, job starting or
ending, or timeout. They use different policies to determine
which job should execute when and on what resources. Jobs
are usually placed in one or multiple queues with different
priorities before being scheduled onto the available resources.
For example, the Slurm scheduler [28] uses two queues, one
for high-priority jobs and the other for low-priority jobs. A
job is placed in a queue based on its resource requirement,

3Given a desired mean µ and a standard deviation σ, the LogNormal
distribution can be instantiated with parameters κ =

√
ln((σ

µ
)2 + 1) and

ν = ln
(
µ− κ2

2

)
.

Table II. Normalized expected costs of different heuristics in the RESERVATIONONLY scenario under different distributions. The values in the brackets show
the expected costs normalized by those of the BRUTE-FORCE heuristic (best online heuristic).

Distribution BRUTE-FORCE MEAN-BY-MEAN MEAN-STDEV MEAN-DOUB. MED-BY-MED EQUAL-TIME EQUAL-PROB.

Exponential 2.15 2.36 (1.10) 2.39 (1.11) 2.42 (1.13) 2.83 (1.32) 2.31 (1.07) 2.36 (1.10)
Weibull 2.12 2.76 (1.30) 3.58 (1.69) 3.03 (1.43) 3.05 (1.44) 2.40 (1.13) 2.22 (1.05)
Gamma 2.02 2.26 (1.12) 2.18 (1.08) 2.24 (1.11) 2.51 (1.24) 2.20 (1.09) 2.13 (1.05)

Lognormal 1.85 2.19 (1.19) 2.09 (1.13) 1.95 (1.06) 2.30 (1.24) 1.87 (1.01) 1.93 (1.04)
TruncatedNormal 1.36 1.98 (1.46) 1.83 (1.35) 1.98 (1.46) 2.16 (1.60) 1.38 (1.02) 1.36 (1.00)

Pareto 1.62 1.82 (1.12) 2.18 (1.34) 1.75 (1.08) 2.26 (1.39) 1.71 (1.05) 1.66 (1.03)
Uniform 1.33 2.21 (1.66) 1.90 (1.43) 1.67 (1.26) 2.21 (1.66) 1.33 (1.00) 1.33 (1.00)

Beta 1.75 2.02 (1.15) 2.11 (1.20) 1.98 (1.13) 2.45 (1.40) 1.79 (1.02) 1.80 (1.02)
BoundedPareto 1.80 1.84 (1.02) 2.09 (1.16) 1.83 (1.01) 2.81 (1.56) 2.00 (1.11) 1.91 (1.06)

generally with long-running jobs that require a large amount
of resources having higher priorities. Jobs that are kept in the
waiting queue for a long period of time could also be upgraded
and moved up in the queue. Slurm schedules the jobs from the
top of the high-priority queue and moves down. Even though
larger jobs (in term of time and space) have higher priorities,
generally the lack of resource availability in the system leads
to longer wait times. On the other hand, smaller jobs, despite
having lower priorities, are usually scheduled quickly thanks
to the backfilling algorithms that place them in the unused
time slots between successive large jobs.

Some studies (e.g., [18], [21], [27]) have analyzed the
impact of scheduling strategies on the performance of appli-
cations in large HPC centers. Some of these studies show
that the penalty for jobs with longer requested walltimes
and/or larger numbers of nodes is higher than that for jobs
with shorter elapsed times and smaller numbers of nodes.
This is observed, for example, in [27] for the K computer
from Riken Advanced Institute for Computational Science.
The study shows that, for applications requesting similar
computing resources, the wait time generally increases with
larger requested processing times and can cause delays of
hours for large scientific applications, although it is also
dependent on other workloads submitted to the system. Some
HPC centers divide the resources into seasons for users to
utilize the reserved resources. Users tend to submit more
jobs toward the end of a season causing contention at the
scheduler level which results in even longer waiting times.
The study in [21] presents a trend of the evolution of the
workload of HPC systems and the corresponding scheduling
policies as we move from monolithic MPI applications to
high-throughput and data-intensive jobs. The paper shows that
the cost paid in terms of the wait time of applications in
the queue has generally increased over the years with less
uniform workloads. The study in [18] shows that systems that
give each job a partition of the resources for exclusive use
and allocate such partitions in the order of job arrivals could
suffer from severe fragmentation, leading to low utilization.
The authors propose an aggressive backfilling algorithm for
dealing with such fragmentation. However, users are still
expected to provide accurate runtime estimates. The study
shows that over-estimation may lead to a long wait time and
possibly excessive CPU quota loss, while under-estimations
can lead to job terminations before completion. Some recent

schedulers [19] consider the distribution of execution time of
the submitted jobs to take their scheduling decision in order
to increase their overall utility.

b) Stochastic job scheduling: Many works deal with
stochastic job scheduling (e.g., [6], [9], [23]–[25]). Various
models [5] have been proposed to model the performance
of executing stochastic jobs on computing platforms. For
instance, in [16], stochastic jobs are modeled as a DAG of
tasks whose execution times and communication times are
stochastically independent. In this paper, we model jobs by
an execution time following a probability distribution. The
authors in [23] propose a model based on resource load in
grid systems. Several refinements can be envisioned, such that
improving scheduler performances by including distribution
features in order to optimize final performance. Also, dealing
with heterogeneous nodes increases problem complexity [24].
We refer the reader to the book by Pinedo [20] which contains
a comprehensive survey of stochastic scheduling problems,
and to the book chapter [12] for a detailed comparison of
stochastic task-resource systems.

c) Pricing and reservation schemes for cloud computing:
Cloud computing platforms have emerged as another option
for executing HPC applications. Job scheduling in the cloud
has an even bigger challenge [14], since it needs to deal with
highly heterogeneous resources with a wide range of processor
configurations, interconnects, virtualization environments, etc.

Different pricing and reservation schemes are also available
for users who submit jobs to a cloud service. Several works
have been conducted to study these schemes in the cloud, and
from a computer science perspective, many of these studies
focus on the pricing strategies and service management of
platform providers [2], [7], [8], [26]. Some works consider
modeling the delays for users [2] and how providers manage
the idle resources [8]. The work in [26] studies the pricing
practices of Amazon AWS [3] when the price is dynamically
adapted to real-time demand and idle resources. In [7], authors
provide an analytical model of pricing for reservation-based
scheme (used by Amazon AWS) and utilization-based scheme
(used by Google GCP [13]). They show that the effective price
mainly depends on the variation of platform usage and the
competition for customers. Some tools are also provided for
users to perform cost evaluation in order to select which type
of platform to use. They show that users with high-volatility
demand should consider using AWS offers while one should

use GCP in the other case. The experimental results in this
paper suggest that, compared with on-demand or utilization-
based services, reservation strategies can provide cost-effective
options for executing stochastic jobs when there is significant
difference in the offered price.

VII. CONCLUSION

In this paper, we have studied the problem of scheduling
stochastic jobs on a reservation-based platform. We have
shown the existence of an optimal reservation sequence when
the job execution time follows a set of classical distributions,
and we have characterized the optimal solution up to the
duration of the first reservation. We do not know how to
compute this duration analytically, but we have provided an
upper bound and a brute-force procedure to generate a solution
that is close to the optimal. We have also introduced several
heuristics, one based upon discretizing the continuous distribu-
tion, and some relying on standard measures, such as the mean,
variance and quantiles of the distribution. We have demon-
strated the effectiveness of these heuristics via comprehensive
simulations conducted using both classical distributions and
execution traces of a real neuroscience application.

Future work will include allowing requests with variable
amount of resources, hence offering a combination of a reser-
vation time and a number of processors. Another interesting
direction is to include checkpoint snapshots at the end of
some reservations. We expect the solutions such as the one
introduced in this work not to work because of the difficulty of
choosing which reservations to checkpoint. Indeed we do not
expect the strategy “checkpoint all reservations” to be optimal.
Hence the checkpointing approach calls for a complicated
trade-off between doing useful work through the reservations
and sacrificing some time/budget in order to avoid restarting
the job whenever its execution time exceeds the length of the
current reservation. The cost will then depend both on the
length of the reservation and on a conditional probability based
on previous checkpointing decisions.

Acknowledgments: We thank Bennett Landman and his
MASI Lab at Vanderbilt for sharing the medical imaging
database used to extract the execution time distributions.
This research was supported in part by the National Science
Foundation grant CCF1719674, Vanderbilt Institutional Fund,
and Inria-Vanderbilt associated team Keystone. Part of this
work was done while Valentin Honoré was visiting Vanderbilt
University.

REFERENCES

[1] Medical-image Analysis and Statistical Interpretation (MASI) Lab.
https://my.vanderbilt.edu/masi/.

[2] M. Afanasyev and H. Mendelson. Service provider competition: Delay
cost structure, segmentation, and cost advantage. Manufacturing &
Service Operations Management, 12(2):213–235, 2010.

[3] Amazon. AWS pricing information. https://aws.amazon.com/ec2/
pricing/. Accessed: 2018-10-11.

[4] G. Aupy, A. Gainaru, V. Honoré, P. Raghavan, Y. Robert, and H. Sun.
Reservation Strategies for Stochastic Jobs. Research Report RR-9211,
INRIA, 2018.

[5] L.-C. Canon, A. K. W. Chang, Y. Robert, and F. Vivien. Scheduling
independent stochastic tasks under deadline and budget constraints.
Research Report 9178, INRIA, June 2018.

[6] L.-C. Canon and E. Jeannot. Evaluation and optimization of the
robustness of dag schedules in heterogeneous environments. IEEE
Transactions on Parallel and Distributed Systems, 21(4):532–546, 2010.

[7] S. Chen, H. Lee, and K. Moinzadeh. Pricing schemes in cloud
computing: Utilization-based versus reservation-based. Production and
Operations Management, 2017.

[8] L. Dierks and S. Seuken. Cloud pricing: the spot market strikes back.
In The Workshop on Economics of Cloud Computing, 2016.

[9] F. Dong, J. Luo, A. Song, and J. Jin. Resource load based stochastic
DAGs scheduling mechanism for Grid environment. In 2010 IEEE
12th International Conference on High Performance Computing and
Communications (HPCC), pages 197–204, Sept 2010.

[10] D. Feitelson. Workload modeling for computer systems performance
evaluation. Version 1.0.3, pages 1–607, 2014.

[11] L. Friedman and G. H. Glover. Report on a multicenter fMRI quality
assurance protocol. Journal of Magnetic Resonance Imaging, 23(6):827–
839, 2006.

[12] B. Gaujal and J.-M. Vincent. Comparisons of stochastic task-resource
systems. In Introduction to Scheduling, page Chapter 10. Springer, 2009.

[13] Google. GCP pricing information. https://cloud.google.com/pricing/.
Accessed: 2018-10-16.

[14] A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B. Lee,
V. March, D. Milojicic, and C. H. Suen. Evaluating and improving
the performance and scheduling of HPC applications in cloud. IEEE
Transactions on Cloud Computing, 4(3):307–321, July 2016.

[15] R. L. Harrigan, B. C. Yvernault, B. D. Boyd, S. M. Damon, K. D.
Gibney, B. N. Conrad, N. S. Phillips, B. P. Rogers, Y. Gao, and
B. A. Landman. Vanderbilt university institute of imaging science
center for computational imaging XNAT: A multimodal data archive
and processing environment. NeuroImage, 124:1097–1101, 2016.

[16] K. Li, X. Tang, B. Veeravalli, and K. Li. Scheduling precedence
constrained stochastic tasks on heterogeneous cluster systems. IEEE
Transactions on Computers, 64(1):191–204, 2015.

[17] A. Mechelli, C. J. Price, K. J. Friston, and J. Ashburner. Voxel-based
morphometry of the human brain: methods and applications. Current
Medical Imaging Reviews, 1:105–113, 2005.

[18] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, work-
loads, and user runtime estimates in scheduling the IBM SP2 with
backfilling. IEEE Transactions on Parallel and Distributed Systems,
12(6):529–543, June 2001.

[19] J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger.
3sigma: distribution-based cluster scheduling for runtime uncertainty. In
Proceedings of the Thirteenth EuroSys Conference, page 2. ACM, 2018.

[20] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer,
3rd edition, 2008.

[21] G. P. Rodrigo Álvarez, P.-O. Östberg, E. Elmroth, K. Antypas, R. Gerber,
and L. Ramakrishnan. HPC system lifetime story: Workload character-
ization and evolutionary analyses on NERSC systems. In Proceedings
of the 24th International Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’15, pages 57–60, New York, NY, USA,
2015. ACM.

[22] W. Tang, Z. Lan, N. Desai, D. Buettner, and Y. Yu. Reducing fragmen-
tation on torus-connected supercomputers. In Parallel & Distributed
Processing Symposium (IPDPS), 2011 IEEE International, pages 828–
839. IEEE, 2011.

[23] X. Tang, K. Li, G. Liao, K. Fang, and F. Wu. A stochastic scheduling
algorithm for precedence constrained tasks on grid. Future Gener.
Comput. Syst., 27(8):1083–1091, Oct. 2011.

[24] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE TPDS,
13(3):260–274, March 2002.

[25] G. Weiss. Turnpike optimality of smith’s rule in parallel machines
stochastic scheduling. Math. Oper. Res., 17(2):255–270, May 1992.

[26] H. Xu and B. Li. Dynamic cloud pricing for revenue maximization.
IEEE Transactions on Cloud Computing, 1(2):158–171, July 2013.

[27] K. Yamamoto and al. The K computer operations: Experiences and
statistics. Procedia Computer Science, 29:576 – 585, 2014.

[28] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: Simple linux utility
for resource management. In Workshop on Job Scheduling Strategies
for Parallel Processing, pages 44–60. Springer, 2003.

https://my.vanderbilt.edu/masi/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://cloud.google.com/pricing/

	Introduction
	Framework
	Stochastic jobs
	Cost model
	Objective

	Characterizing the optimal solution
	Cost function
	Upper bound on to1 and finite expected cost
	Properties of optimal sequences
	Uniform distributions
	Exponential distributions

	Heuristics for Arbitrary Distributions
	Brute-force procedure
	Discretization-based dynamic programming
	Truncating and discretizing continuous distributions
	Dynamic programming for discrete distributions

	Other heuristics

	Performance Evaluation
	Evaluation methodology
	Results for ReservationOnly scenario
	Results for NeuroHPC scenario

	Related Work
	Conclusion
	References

