Assessing the Impact of Partial Verifications
Against Silent Data Corruptions

Aurélien Cavelan!, Saurabh K. Raina2, Yves Robert!:3 and
Hongyang Sun!

1. Ecole Normale Superieure de Lyon & INRIA, France
2. Jaypee Institute of Information Technology, India

3. University of Tennessee Knoxville, USA

hongyang.sun@ens-1lyon.fr

ICPP — September 3, 2015


hongyang.sun@ens-lyon.fr

HPC at Scale

Scale is a major opportunity:
@ Exascale platform: 10° or 108 nodes, each with 102 or 103 cores.
Scale is also a major threat:

@ Shorter Mean Time Between Failures (MTBF) p.

Theorem: 1, = Hind

for arbitrary distributions

MTBF (individual node) 1 year | 10 years | 120 years
MTBF (platform of 10° nodes) | 30 sec | 5 mn 1h




HPC at Scale

Scale is a major opportunity:
@ Exascale platform: 10° or 108 nodes, each with 102 or 103 cores.
Scale is also a major threat:

@ Shorter Mean Time Between Failures (MTBF) p.

Theorem: 1, = Hind

for arbitrary distributions

MTBF (individual node) 1 year | 10 years | 120 years
MTBF (platform of 10° nodes) | 30 sec | 5 mn 1h

Need more reliable components!!
Need more resilient techniques!!!



General-purpose approach

Periodic checkpoint, rollback and recovery:

Error
o ) o [

W W Time

@ Fail-stop errors: e.g., hardware crash, node failure

- Instantaneous error detection.



General-purpose approach

Periodic checkpoint, rollback and recovery:

Error
o ) o [

W W Time

@ Fail-stop errors: e.g., hardware crash, node failure
- Instantaneous error detection.

@ Silent errors (aka silent data corruptions): e.g., soft faults in L1
cache, ALU, multiple bit flip due to cosmic radiation.

- Detected only when corrupted data leads to unexpected
results, which could happen long after its occurrence.
- Become a serious concern in Exascale systems.



General-purpose approach

Periodic checkpoint, rollback and recovery:

Errorj Corrupt é Detect

X ]

W 4 W Time

<]

7

@ Fail-stop errors: e.g., hardware crash, node failure
- Instantaneous error detection.

@ Silent errors (aka silent data corruptions): e.g., soft faults in L1
cache, ALU, multiple bit flip due to cosmic radiation.

- Detected only when corrupted data leads to unexpected
results, which could happen long after its occurrence.
- Become a serious concern in Exascale systems.

Detection latency = risk of saving corrupted checkpoint!



Coping with silent errors

Couple checkpointing with verification:

Error Detect
ve| c ; ve| c

w

w

Time

@ Before each checkpoint, run some verification mechanism
(checksum, ECC, coherence tests, TMR, etc).

@ Silent error is detected by verification = checkpoint always valid ©



Coping with silent errors

Couple checkpointing with verification:

Error Detect
; vl c

w

w Time

@ Before each checkpoint, run some verification mechanism
(checksum, ECC, coherence tests, TMR, etc).

@ Silent error is detected by verification = checkpoint always valid ©

What is the optimal checkpointing period (Young/Daly)?

Fail-stop (classical)

Silent errors

Pattern

Optimal

T=W+C
W* =/2Cpu

T=W+ V"t C
w* = /(C+ V*)u




One step further: intermediate verifications

Perform several intermediate verifications before each checkpoint:

Error Detect

Time

@ Pro: silent error is detected earlier in the execution ©

@ Con: additional overhead in error-free executions &



One step further: intermediate verifications

Perform several intermediate verifications before each checkpoint:

Error Detect

Time

@ Pro: silent error is detected earlier in the execution ©

@ Con: additional overhead in error-free executions &

What is the optimal tradeoff?



One more step further: partial verification

Guaranteed /perfect verifications (V*) can be very expensive!

Partial verifications (V) are available for many HPC applications!

@ Lower accuracy: recall (r) = % <10

@ Much lower cost, ie., V < V* ©



One more step further: partial verification

Guaranteed /perfect verifications (V*) can be very expensive!

Partial verifications (V) are available for many HPC applications!

@ Lower accuracy: recall (r) = % <10

@ Much lower cost, ie., V < V* ©

Error Detect? Detect!
vl C V} V v+ ¢ Vi y —Tc
e 00 [e]

Time




One more step further: partial verification

Guaranteed /perfect verifications (V*) can be very expensive!

Partial verifications (V) are available for many HPC applications!

@ Lower accuracy: recall (r) = % <10

® Much lower cost, ie., V< V* ©
Error Detect? Detect!
IFIT M; r‘; V| C M M ,7'?‘

What is the optimal checkpointing period?
How many partial verifications to use and their positions?

Time



Problem Statement

Outline

@ Problem Statement



Problem Statement

Model and Objective

Failure Model

@ Silent errors strike randomly and are uniformly distributed with
arrival rate A = 1/, where p is platform MTBF.

- Expect AT errors in computation of time T.

@ Failures only affect computations; checkpointing, recovery, and
verifications are protected.

Resilience parameters

@ Cost of checkpointing C, cost of recovery R.

@ Partial verification: cost V and recall r < 1.

@ Guaranteed verification: cost V* and recall r* = 1.
Objective

@ Design an optimal periodic computing pattern that minimizes
execution time (or makespan) of the application.



Problem Statement

Pattern

Formally, a periodic computing pattern is defined by
@ W: work length of the pattern (or period);

@ n: number of segments in the pattern (or m = n — 1. number of
partial verifications);
@ a = |1, qn,...,ap]: work fraction of each segment (or relative

positions of partial verifications)

-oj={hand YT ;=1

I A R R

Time

Last verification is perfect to avoid saving corrupted checkpoints.



Theoretical Analysis

Outline

© Theoretical Analysis



Theoretical Analysis

Expected execution time of a pattern

The expected time to execute a pattern with fixed W, n, o is

E(W)=W+(n—1)V+V*+C+ QAW [ aAa-W | +0o())

o #errors e

where A is a symmetric matrix defined by A;; = % (14 (1 — r)l"=Jl).

Remarks:

@ Two key parameters

- ofr: overhead in a fault-free execution.
- fe: fraction of re-executed work in case of fault.

@ Same result if assuming exponential error distribution with
first-order approximation (as in Young/Daly's classic formula).



Theoretical Analysis

Minimizing makespan

@ Matrix A is essential to analysis. For instance, when n = 4 we have:

2 I+(1—-r) 14+(1=r)?2 14(1-r)

A l|1+(0-1) 2 1+(1—r) 1+4+(1-r)?

T2 14+ (1-r)? 1+(1-1) 2 1+(1—r)
1+(1—=r)3® 14+(1-r)2 1+4+(1-r) 2



Theoretical Analysis

Minimizing makespan

@ Matrix A is essential to analysis. For instance, when n = 4 we have:

2 I+(1—-r) 14+(1=r)?2 14(1-r)
_ll1+(1-r) 2 1+(1—r) 1+4+(1-r)?
T2 141 -r)?2 14+(1-r) 2 1+ (1—r)

1+(1—=r)3® 14+(1-r)2 1+4+(1-r) 2

@ For an application with total work Tp.ee, the makespan Ty, is

E(W
Tfinal ~ % : Tbase - (]- + H( W)) . 7—base

where H(W) is the total execution overhead given by

H(W):%V‘;V)q:%mmﬁo(ﬁ)

e.g., if Thase = 100 and Tina = 120, we have H(W) = 20%.




Theoretical Analysis

Minimizing makespan

@ Matrix A is essential to analysis. For instance, when n = 4 we have:

2 I+(1—-r) 14+(1=r)?2 14(1-r)
_ll1+(1-r) 2 1+(1—r) 1+4+(1-r)?
T2 141 -r)?2 14+(1-r) 2 1+ (1—r)

1+(1—=r)3® 14+(1-r)2 1+4+(1-r) 2

@ For an application with total work Tp.ee, the makespan Ty, is

E(W
Tfinal ~ % : Tbase - (]- + H( W)) . 7—base

where H(W) is the total execution overhead given by

H(W):%V‘;V)q:%mmﬁo(ﬁ)

e.g., if Thase = 100 and Tina = 120, we have H(W) = 20%.

Minimizing makespan is equivalent to minimizing overhead!



Theoretical Analysis

Optimal work length

The execution overhead of a pattern is minimized when its length is

of
A’

w* =

The optimal overhead is

H(W*) = 2/ Xogfre + o(V/A).

@ When the platform MTBF p = 1/) is large, o(v/)) is negligible.
@ Minimizing overhead is equivalent to minimizing product offre.

- Tradeoff between fault-free overhead and fault-induced
re-execution.



Theoretical Analysis

Optimal segment lengths

Theorem

The re-execution fraction f,. of a pattern is minimized when o = a*,

where
1
o = {("—2)r+2 7 s = 5l

m fork:2,3,...,n—1

and the optimal value of f,. is

1 A r 1 Time




Theoretical Analysis

Optimal segment lengths

Theorem

The re-execution fraction f,. of a pattern is minimized when o = a*,

where
1
o = {("—2)r+2 7 s = 5l

m fork:2,3,...,n—1

and the optimal value of f,. is

el [_[_[ - [ [T

1 1 Time

Special case: if all verifications are perfect, we get equal-length segments,
ie,af=%Vi<k<nandfi=3(1+1%).



Theoretical Analysis

Optimal number of segments

Theorem

The execution overhead of a pattern is minimized when the number of
segments is

1 1/1 1 o a
poJ1ms i (G —3) g2
1 if2 <2

and the optimal overhead is

= vBEE ) (1fi- 24 2)

_Vv
C+ V=

where a = 5'— represents accuracy and b =
—r

of the partial verification.

denotes relative cost

@ In practice, the number of segments can only be an integer. Thus,
the optimal number is either [n*] or |n*].



Theoretical Analysis

Optimal accuracy-cost tradeoff

Suppose a tradeoff exists between the cost V' and recall r of a partial
verification. What is the optimal tradeoff?

The execution overhead is minimized when the (V,r) pair maximizes the

accuracy-to-cost ratio 2 = -

recall r
overhead H

accuracy-to-cost ratio a/b

N CO;(V ° ° * “ “ N CO;(V ° ° * ° ° N CU;\V °
Remark:

@ The result is based on the optimal fractional solution (n*). Thus,
the overhead in the optimal integer solution contains rounding error,
which, however, is small for practical parameter settings.



Performance Evaluations

Outline

© Performance Evaluations



Performance Evaluations

Evaluation setup

Parameters in Exascale Platform:

@ 105 computing nodes with individual MTBF of 100 years
= platform MTBF pu = 8.7 hours.

@ Checkpoint size of 300GB with throughput of 0.5GB/s
= C = 600s = 10 mins, and V* in same order.

@ Partial verifications (from Argonne National Laboratory, USA)
= V typically tens of seconds, and r € [0.5,0.95].



Performance Evaluations

Evaluation setup

Parameters in Exascale Platform:

@ 105 computing nodes with individual MTBF of 100 years
= platform MTBF pu = 8.7 hours.

@ Checkpoint size of 300GB with throughput of 0.5GB/s
= C = 600s = 10 mins, and V* in same order.

@ Partial verifications (from Argonne National Laboratory, USA)
= V typically tens of seconds, and r € [0.5,0.95].

e.g., C =600, V* =300, V=30and r =0.8.

using partial verifications using perfect verifications
w 7335s =~ 2 hours 5328s =~ 1.5 hours
n 6 2
a | (0.19, 0.15, 0.15, 0.15, 0.15, 0.19) (0.5, 0.5)
H 28.6% 33.8%

Using partial verifications gains 5% improvement in overhead.
= Saving 1 hour for every 20 hours of computation!



Performance Evaluations

Impacts of m, V and r

Expected Overhead

78
m

50 100 150 200 250 300
v

r v



Performance Evaluations

Impact of ACR and rounding error

m= ° m=2
\fOp(imal Overhead — Worst Overhead\ 3 m=4 © m=5
— Optimal Overhead —- = Worst Overhead
0.34 0.3407 T T T
0.33871x
0.331
b=l 0.336
It o 1
o <
< 0321 0334
g =
3 L0332
T 0.311 °
2 50330
Q
g g
Q 0.328
£ 0.307 8
w x
11 0.326
0-291 0.324
0.322
0.28% e = + — i i i i i i
0 5 10 15 20 25 30 2 2.5 3 3.5 4 4.5 5
ACR (accuracy to cost ratio) ACR (accuracy to cost ratio)

@ Overhead decreases for increased accuracy-to-cost ratio (ACR).
o Different (V, r) pair could share same ACR with different m*, H*.

@ Rounding error to theoretical optimal overhead H* is insignificant.



Conclusion

Outline

@ Conclusion



Conclusion

Conclusion

Summary

@ A first analysis of computing patterns to include partial verifications
for silent error detection.

@ Theoretically: derive the optimal pattern parameters, i.e., period,
number of partial verifications and their positions.

@ Practically: assess and compare the performance of the optimal
pattern with realistic parameters.



Conclusion

Conclusion

Summary

@ A first analysis of computing patterns to include partial verifications
for silent error detection.

@ Theoretically: derive the optimal pattern parameters, i.e., period,
number of partial verifications and their positions.

@ Practically: assess and compare the performance of the optimal
pattern with realistic parameters.

Future work

@ Partial verifications with false positives/alarms

sion(p) F#£true errors
recision(p) = ————
P P #detected errors

@ Coexistence of fail-stop and silent errors.



	Problem Statement
	Theoretical Analysis
	Performance Evaluations
	Conclusion

