
1/40

Resilience Algorithms to Cope with
Fail-Stop and Silent Errors

Hongyang Sun

ENS Lyon

hongyang.sun@ens-lyon.fr

http://perso.ens-lyon.fr/hongyang.sun/

HPC Days in Lyon
7 April, 2016

hongyang.sun@ens-lyon.fr
http://perso.ens-lyon.fr/hongyang.sun/

2/40

Acknowledgment

Joint work with

Anne Benoit, Aurélien Cavelan, Yves Robert (ENS Lyon & Inria,
France)

Leonardo Bautista-Gomez (Argonne National Laboratory, USA)

Saurabh K. Raina (Jaypee Institute of Information Technology,
India)

3/40

Computing at Exascale

Exascale platform

Larger node count: 105 or 106 nodes, each with 102 or 103 cores

Shorter Mean Time Between Failures (MTBF) µ

Theorem: µp = µind
p for arbitrary distributions

MTBF (individual node) 1 year 10 years 100 years
MTBF (platform of 106 nodes) 30 secs 5 mins 50 mins

Multiple failure sources: fail-stop error, silent data corruption, etc.

Need more reliable components!
Need more scalable algorithms!

Need more resilient techniques!

4/40

Coping with Fail-Stop Errors

Fail-stop errors: e.g., resource crash, node failure

- Instantaneous error detection

Standard approach: periodic checkpointing, rollback and recovery

TimeW W

fail-stop error

C C C

Well-known first-order approximation formula to compute optimal
checkpointing interval [Young 1973, Daly 2006]:

W ∗ =
√

2µC

µ: Platform MTBF
C : Checkpointing time

5/40

Coping with Silent Errors

Silent errors (or silent data corruptions): e.g., soft faults in L1 cache,
ALU, double bit flip, due to cosmic radiation, packaging pollution, etc.

- Arbitrary detection latency

Same approach?

TimeW W

detect!corrupted!

silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

5/40

Coping with Silent Errors

Silent errors (or silent data corruptions): e.g., soft faults in L1 cache,
ALU, double bit flip, due to cosmic radiation, packaging pollution, etc.

- Arbitrary detection latency

Same approach?

TimeW W

detect!

corrupted!

silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

5/40

Coping with Silent Errors

Silent errors (or silent data corruptions): e.g., soft faults in L1 cache,
ALU, double bit flip, due to cosmic radiation, packaging pollution, etc.

- Arbitrary detection latency

Same approach?

TimeW W

detect!corrupted!
silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

5/40

Coping with Silent Errors

Silent errors (or silent data corruptions): e.g., soft faults in L1 cache,
ALU, double bit flip, due to cosmic radiation, packaging pollution, etc.

- Arbitrary detection latency

Same approach?

TimeW W

detect!corrupted!
silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

5/40

Coping with Silent Errors

Silent errors (or silent data corruptions): e.g., soft faults in L1 cache,
ALU, double bit flip, due to cosmic radiation, packaging pollution, etc.

- Arbitrary detection latency

Same approach?

TimeW W

detect!corrupted!

silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

5/40

Coping with Silent Errors

Silent errors (or silent data corruptions): e.g., soft faults in L1 cache,
ALU, double bit flip, due to cosmic radiation, packaging pollution, etc.

- Arbitrary detection latency

Same approach?

TimeW W

detect!corrupted!

silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

5/40

Coping with Silent Errors

Silent errors (or silent data corruptions): e.g., soft faults in L1 cache,
ALU, double bit flip, due to cosmic radiation, packaging pollution, etc.

- Arbitrary detection latency

Same approach?

TimeW W

detect!corrupted!

silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

6/40

Coping with Silent Errors

Promising approach: coupling checkpointing with verification

TimeW W

silent error

V ∗ C V ∗ C V ∗ C

Before each checkpoint, run some verification
mechanism or error detection test

Silent error, if any, is detected by verification

Need to maintain only one checkpoint, which
is always valid ,

7/40

Methods for Detecting Silent Errors
General-purpose approaches

Replication [Fiala et al. 2012] or triple modular redundancy and voting
[Lyons and Vanderkulk 1962]

Application-specific approaches
Algorithm-based fault tolerance (ABFT): checksums in dense matrices
Limited to one error detection and/or correction in practice [Huang and
Abraham 1984]
Partial differential equations (PDE): use lower-order scheme as
verification mechanism [Benson, Schmit and Schreiber 2014]
Generalized minimal residual method (GMRES): inner-outer iterations
[Hoemmen and Heroux 2011]
Preconditioned conjugate gradients (PCG): orthogonalization check every
k iterations, re-orthogonalization if problem detected [Sao and Vuduc
2013, Chen 2013]

Data-analytics approaches
Dynamic monitoring of HPC datasets based on physical laws (e.g.,
temperature limit, speed limit) and space or temporal proximity
[Bautista-Gomez and Cappello 2014]
Time-series prediction, spatial multivariate interpolation [Di et al. 2014]

Our focus is not about the design of
silent error detectors

Instead, it is about how to make the best
use of detectors (verifications) to design
efficient resilience algorithms

What is optimal checkpointing interval?
Does intermediate verification help?
What is the optimal verification position?
How to cope with inaccurate detectors?

7/40

Methods for Detecting Silent Errors
General-purpose approaches

Replication [Fiala et al. 2012] or triple modular redundancy and voting
[Lyons and Vanderkulk 1962]

Application-specific approaches
Algorithm-based fault tolerance (ABFT): checksums in dense matrices
Limited to one error detection and/or correction in practice [Huang and
Abraham 1984]
Partial differential equations (PDE): use lower-order scheme as
verification mechanism [Benson, Schmit and Schreiber 2014]
Generalized minimal residual method (GMRES): inner-outer iterations
[Hoemmen and Heroux 2011]
Preconditioned conjugate gradients (PCG): orthogonalization check every
k iterations, re-orthogonalization if problem detected [Sao and Vuduc
2013, Chen 2013]

Data-analytics approaches
Dynamic monitoring of HPC datasets based on physical laws (e.g.,
temperature limit, speed limit) and space or temporal proximity
[Bautista-Gomez and Cappello 2014]
Time-series prediction, spatial multivariate interpolation [Di et al. 2014]

Our focus is not about the design of
silent error detectors

Instead, it is about how to make the best
use of detectors (verifications) to design
efficient resilience algorithms

What is optimal checkpointing interval?
Does intermediate verification help?
What is the optimal verification position?
How to cope with inaccurate detectors?

7/40

Methods for Detecting Silent Errors
General-purpose approaches

Replication [Fiala et al. 2012] or triple modular redundancy and voting
[Lyons and Vanderkulk 1962]

Application-specific approaches
Algorithm-based fault tolerance (ABFT): checksums in dense matrices
Limited to one error detection and/or correction in practice [Huang and
Abraham 1984]
Partial differential equations (PDE): use lower-order scheme as
verification mechanism [Benson, Schmit and Schreiber 2014]
Generalized minimal residual method (GMRES): inner-outer iterations
[Hoemmen and Heroux 2011]
Preconditioned conjugate gradients (PCG): orthogonalization check every
k iterations, re-orthogonalization if problem detected [Sao and Vuduc
2013, Chen 2013]

Data-analytics approaches
Dynamic monitoring of HPC datasets based on physical laws (e.g.,
temperature limit, speed limit) and space or temporal proximity
[Bautista-Gomez and Cappello 2014]
Time-series prediction, spatial multivariate interpolation [Di et al. 2014]

Our focus is not about the design of
silent error detectors

Instead, it is about how to make the best
use of detectors (verifications) to design
efficient resilience algorithms

What is optimal checkpointing interval?
Does intermediate verification help?
What is the optimal verification position?
How to cope with inaccurate detectors?

8/40

Outline

1 Coping with Silent Errors
Models
Analysis of several patterns

2 Coping with Fail-stop and Silent Errors

3 Conclusion and Future Work

9/40

Outline

1 Coping with Silent Errors
Models
Analysis of several patterns

2 Coping with Fail-stop and Silent Errors

3 Conclusion and Future Work

10/40

Models

Failure arrivals follow exponential law Exp(λ), where λ = 1/µ.

- P(λ,w) = 1− eλw (memoryless)

Design a periodic computing pattern that minimizes the expected
execution time (or makespan) of the application.

Time
Pattern

· · ·V ∗ C V ∗ C V ∗ C

A pattern has the following characteristics:

End with a verified checkpoint (avoid saving corrupted checkpoints)

May contain intermediate verifications (for better performance)

11/40

Models

Execution overhead
Suppose an application is divided into periodic patterns of work W . If
the expected execution time of a pattern is E(W), then

Makespan ≈ Total work
W · E(W)

= (1 + H) · Total work

where
H = E(W)

W − 1

denote the execution overhead of the pattern.

E.x. if W = 100, E(W) = 125, then H = 25%.

Proposition
For large applications, minimizing expected makespan is equivalent to
minimizing the execution overhead of a pattern.

12/40

Outline

1 Coping with Silent Errors
Models
Analysis of several patterns

2 Coping with Fail-stop and Silent Errors

3 Conclusion and Future Work

13/40

Base Pattern Pc (Revisiting Young/Daly)

TimeW

V ∗ C V ∗ C

Proposition
The optimal checkpointing interval W ∗ and optimal execution overhead
H∗ of the base pattern Pc are

W ∗ =
√

V ∗ + C
λ

H∗ = 2
√
λ(V ∗ + C) + O(λ)

Fail-stop errors Silent errors
Pattern W + C W + V ∗ + C

Optimal W ∗
√

2C
λ

√
V ∗+C
λ

Optimal H∗
√

2λC 2
√
λ(V ∗ + C)

14/40

Pattern Pv∗c with Intermediate Verifications

Can we do better by adding intermediate verifications in a pattern?

Time

silent error detect!

V ∗ C V ∗ V ∗ V ∗ C

Silent errors detected earlier in the pattern ,
Additional overhead in fault-free execution /

When is it better to use intermediate verifications?
What is the optimal checkpointing period?

How many verifications to use?
What are their positions?

14/40

Pattern Pv∗c with Intermediate Verifications

Can we do better by adding intermediate verifications in a pattern?

Time

silent error detect!

V ∗ C V ∗ V ∗ V ∗ C

Silent errors detected earlier in the pattern ,
Additional overhead in fault-free execution /

When is it better to use intermediate verifications?
What is the optimal checkpointing period?

How many verifications to use?
What are their positions?

15/40

Pattern Pv∗c with Intermediate Verifications

Time
W

w1 w2 wn

· · ·
· · ·

V ∗ C V ∗ V ∗ V ∗ V ∗ C

Proposition
The optimal Pv∗c pattern has checkpointing interval W ∗ and contains n∗
equi-spaced verifications:

n∗ =
√

C
V ∗ ⇐ necessary condition: C > V ∗

W ∗ =
√

n∗V ∗ + C
1
2
(
1 + 1

n∗

)
λ

=
√

2C
λ
>

√
V ∗ + C

λ
⇐ base pattern

H∗ =
√

2λV ∗ +
√

2λC + O(λ)
< 2

√
λ(V ∗ + C) + O(λ) ⇐ base pattern

Practical no. of verifications must be an integer: max(1, bn∗c) or dn∗e

15/40

Pattern Pv∗c with Intermediate Verifications

Time
W

w1 w2 wn

· · ·
· · ·

V ∗ C V ∗ V ∗ V ∗ V ∗ C

Proposition
The optimal Pv∗c pattern has checkpointing interval W ∗ and contains n∗
equi-spaced verifications:

n∗ =
√

C
V ∗ ⇐ necessary condition: C > V ∗

W ∗ =
√

n∗V ∗ + C
1
2
(
1 + 1

n∗

)
λ

=
√

2C
λ
>

√
V ∗ + C

λ
⇐ base pattern

H∗ =
√

2λV ∗ +
√

2λC + O(λ)
< 2

√
λ(V ∗ + C) + O(λ) ⇐ base pattern

Practical no. of verifications must be an integer: max(1, bn∗c) or dn∗e

15/40

Pattern Pv∗c with Intermediate Verifications

Time
W

w1 w2 wn

· · ·
· · ·

V ∗ C V ∗ V ∗ V ∗ V ∗ C

Proposition
The optimal Pv∗c pattern has checkpointing interval W ∗ and contains n∗
equi-spaced verifications:

n∗ =
√

C
V ∗ ⇐ necessary condition: C > V ∗

W ∗ =
√

n∗V ∗ + C
1
2
(
1 + 1

n∗

)
λ

=
√

2C
λ
>

√
V ∗ + C

λ
⇐ base pattern

H∗ =
√

2λV ∗ +
√

2λC + O(λ)
< 2

√
λ(V ∗ + C) + O(λ) ⇐ base pattern

Practical no. of verifications must be an integer: max(1, bn∗c) or dn∗e

16/40

Observations

Observation 1
The expected time to execute a pattern of length W is

E(W) = W + off︸ ︷︷ ︸
error-free time

+ λW︸︷︷︸
expected #errors

·
(

fre ·W + O(V ∗) + R
)

︸ ︷︷ ︸
expected re-execution time

+O(λ)

off: overhead in a fault-free execution, i.e.,
∑

resilience ops.
fre: fraction of re-executed work in case of faults.

Observation 2
The optimal pattern satisfies

W ∗ =
√

off
λfre

H∗ = 2
√
λ · freoff + O(λ)

Asymptotically, minimizing H is equivalent to minimizing freoff

16/40

Observations

Observation 1
The expected time to execute a pattern of length W is

E(W) = W + off︸ ︷︷ ︸
error-free time

+ λW︸︷︷︸
expected #errors

·
(

fre ·W + O(V ∗) + R
)

︸ ︷︷ ︸
expected re-execution time

+O(λ)

off: overhead in a fault-free execution, i.e.,
∑

resilience ops.
fre: fraction of re-executed work in case of faults.

Observation 2
The optimal pattern satisfies

W ∗ =
√

off
λfre

H∗ = 2
√
λ · freoff + O(λ)

Asymptotically, minimizing H is equivalent to minimizing freoff

16/40

Observations

Observation 1
The expected time to execute a pattern of length W is

E(W) = W + off︸ ︷︷ ︸
error-free time

+ λW︸︷︷︸
expected #errors

·
(

fre ·W + O(V ∗) + R
)

︸ ︷︷ ︸
expected re-execution time

+O(λ)

off: overhead in a fault-free execution, i.e.,
∑

resilience ops.
fre: fraction of re-executed work in case of faults.

Observation 2
The optimal pattern satisfies

W ∗ =
√

off
λfre

H∗ = 2
√
λ · freoff + O(λ)

Asymptotically, minimizing H is equivalent to minimizing freoff

17/40

Some Observations

Example 1: Base pattern Pc

E(W) = W + V ∗ + C︸ ︷︷ ︸
off

+λW (1︸︷︷︸
fre

·W + V ∗ + R) + O(λ)

W ∗ =
√

V ∗ + C
λ

and H∗ ≈ 2
√
λ(V ∗ + C)

Example 2: Pattern Pv∗c

E(W) = W + nV ∗ + C︸ ︷︷ ︸
off

+λW
(1

2
(
1 + 1

n
)

︸ ︷︷ ︸
fre

·W + n + 1
2 V ∗ + R

)
+ O(λ)

W ∗ =
√

nV ∗ + C
1
2
(
1 + 1

n
)
λ

and H∗ ≈ 2

√
λ

1
2 (nV ∗ + C)

(
1 + 1

n

)

18/40

Pattern Pvc with Partial Verifications

Guaranteed/perfect verifications can be very expensive

For HPC applications, many silent error detectors are partial

Lower cost ,
Lower accuracy /

cost V � cost V ∗ of guaranteed verification

recall r = #detected errors
#total errors < 1 (false negative)

precision p = #true errors
#detected errors < 1 (false positive)

19/40

Pattern Pvc with Partial Verifications

Can we do better by using partial verifications in a pattern?

Time

false alarm silent error detect? detect!

V ∗ C V V V V V ∗ C

A partial verification may raise false alarms (with prob. 1− p)

A partial verification may miss errors (with prob. 1− r)

Last verification guaranteed to avoid saving invalid checkpoints

When is it better to use partial verifications?
What is the optimal checkpointing period?

How many partial verifications to use?
What are their positions?

19/40

Pattern Pvc with Partial Verifications

Can we do better by using partial verifications in a pattern?

Time

false alarm silent error detect? detect!

V ∗ C V V V V V ∗ C

A partial verification may raise false alarms (with prob. 1− p)

A partial verification may miss errors (with prob. 1− r)

Last verification guaranteed to avoid saving invalid checkpoints

When is it better to use partial verifications?
What is the optimal checkpointing period?

How many partial verifications to use?
What are their positions?

20/40

Pattern Pvc with Partial Verifications

Proposition
The optimal pattern Pvc does not use any partial verification with
constant precision p < 1

In particular, the result holds if the precision satisfies p = 1− Ω(λ1/2)

Intuitively, an imprecise verification becomes another error source
with error probability 1− p

With first-order approximation, probability of a silent error in the
pattern is 1− eλW ≈ λW = Θ(λ1/2)

Having a recall r < 1 is fine, because errors are rare and will eventually
be detected by the final guaranteed verification

Tradeoff between recall and precision ⇒ maximize precision
(e.g. p > 0.999 for λ = 10−6)

We will assume p = 1 for subsequent analysis

20/40

Pattern Pvc with Partial Verifications

Proposition
The optimal pattern Pvc does not use any partial verification with
constant precision p < 1

In particular, the result holds if the precision satisfies p = 1− Ω(λ1/2)

Intuitively, an imprecise verification becomes another error source
with error probability 1− p

With first-order approximation, probability of a silent error in the
pattern is 1− eλW ≈ λW = Θ(λ1/2)

Having a recall r < 1 is fine, because errors are rare and will eventually
be detected by the final guaranteed verification

Tradeoff between recall and precision ⇒ maximize precision
(e.g. p > 0.999 for λ = 10−6)

We will assume p = 1 for subsequent analysis

21/40

Pattern Pvc with Partial Verifications

Time
1

α1 α2 α3 αn

· · ·
· · ·

V ∗ C V V V V V ∗ C

(1) Apply the freoff analysis

Proposition
Suppose a pattern Pvc has n segments (n − 1 partial verifications and
one guaranteed verification), and the i-th segment has αi fraction of
work. Then the pattern is characterized by

off = (n − 1)V + V ∗ + C
fre = αT Aα

where α = [α1, α2, . . . , αn]T and A is a symmetric positive definite
matrix defined by Ai,j = 1

2
(
1 + (1− r)|i−j|) for 1 ≤ i , j ≤ n

22/40

Pattern Pvc with Partial Verifications

(2) Determine α to minimize fre (involved analysis)

Proposition
The re-execution fraction fre of a pattern Pvc with n segments is
minimized when α = α∗, where

α∗i =
{

1
(n−2)r+2 for i = 1, n

r
(n−2)r+2 for i = 2, 3, . . . , n − 1

and the optimal value of fre is

f ∗re = 1
2

(
1 + 2− r

(n − 2)r + 2

)

Time1 r r 1

· · ·
· · ·

V ∗ C V V V V V ∗ C

If all verifications are perfect (r = 1), we retrieve equal-length segments,
i.e., α∗i = 1

n for all 1 ≤ i ≤ n and f ∗re = 1
2
(
1 + 1

n
)

23/40

Pattern Pvc with Partial Verifications
(3) Minimize freoff = 1

2

(
1 + 2−r

(n−2)r+2

)(
(n − 1)V + V ∗ + C

)
accuracy a = r

2−r and relative cost b = V
V ∗+C

accuracy-to-cost ratio φ = a
b

Proposition

The optimal Pvc pattern satisfies

n∗ = 1− 1
a +

√
1
a

(
1
b −

1
a

)
⇐ necessary condition: φ > 2

W ∗ =

√
2(V ∗ + C)

λ

(
1− 1

φ

)
>

√
2C
λ

⇐ Pattern Pv∗c

H∗ =
√

2λ(V ∗ + C)
(√

1− 1
φ

+

√
1
φ

)
+ O(λ)

<
√

2λV ∗ +
√

2λC + O(λ) ⇐ Pattern Pv∗c

24/40

Pattern Pvc with Partial Verifications
Assessing the benefit of partial verifications on realistic platform

105 computing nodes with individual MTBF of 100 years
⇒ platform MTBF µ = 31536s ≈ 8.7 hours

Checkpoint size of 300GB with throughput of 0.5GB/s
⇒ C = 600s = 10 mins, and V ∗ in same order

Partial verifications using lightweight detectors
⇒ V typically tens of seconds, and r ∈ [0.5, 0.95]

e.g., C = 600, V ∗ = 300, V = 30 and p = 1, r = 0.8

Pattern Pvc Pattern Pv∗c Pattern Pc
W ∗ 7335s ≈ 2.04 hours 7103s ≈ 1.97 hours 5328s ≈ 1.48 hours
n∗ 6 2 1

α∗ αi =
{

0.20, i = 1, 6
0.15, i = 2..5

[0.5, 0.5] [1]

H∗ 28.6% 33.3% 33.8%

25/40

Pattern with Multiple Partial Detectors

Can we do better by using multiple types of partial verifications?

D(1) =
(
V (1), r (1)), D(2) =

(
V (2), r (2)), . . . , D(k) =

(
V (k), r (k))

Time
1

α1 α2 α3 αn

· · ·
· · ·

V ∗ C V1 V2 V3 Vn−1 V ∗ C

The i-th partial verification has type j, i.e., Vi = V (j) for some 1 ≤ j ≤ k

Which verification is the optimal one to use?
What is the optimal combination of partial verifications?

26/40

Pattern with Multiple Partial Detectors

Proposition
The optimal pattern Pvc uses the partial verification with the highest
accuracy-to-cost ratio

20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

cost V

re
ca

ll
r

20 25 30 35 40 45 50
14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

cost V

ac
cu

ra
cy

−
to

−
co

st
 r

at
io

 a
/b

20 25 30 35 40 45 50
0.287

0.288

0.289

0.29

0.291

0.292

0.293

0.294

0.295

0.296

cost V

ov
er

he
ad

 H

Result is based on optimal rational solution (n∗)

Overhead of rounded integer solution may no longer be optimal

What is the optimal integer solution?

26/40

Pattern with Multiple Partial Detectors

Proposition
The optimal pattern Pvc uses the partial verification with the highest
accuracy-to-cost ratio

20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

cost V

re
ca

ll
r

20 25 30 35 40 45 50
14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

cost V

ac
cu

ra
cy

−
to

−
co

st
 r

at
io

 a
/b

20 25 30 35 40 45 50
0.287

0.288

0.289

0.29

0.291

0.292

0.293

0.294

0.295

0.296

cost V

ov
er

he
ad

 H

Result is based on optimal rational solution (n∗)

Overhead of rounded integer solution may no longer be optimal

What is the optimal integer solution?

27/40

Pattern with Multiple Partial Detectors

Proposition
Finding the optimal Pvc pattern with k verification types is NP-complete,
even when all verification types share the same accuracy-to-cost ratio,
i.e., a(j)

b(j) = φ for all 1 ≤ j ≤ k

Approximation algorithms:

FPTAS (Fully Polynomial-Time Approximation Scheme)
- Overhead within 1 + ε times the optimal with running time

polynomial in the input size and 1/ε for any ε > 0.
- The solution is independent of the ordering of the verifications

Greedy algorithm
- Compute the optimal solution using the one detector with the

highest accuracy-to-cost ratio, and then round up the solution
- This algorithm has approximation ratio

√
3/2 < 1.23

27/40

Pattern with Multiple Partial Detectors

Proposition
Finding the optimal Pvc pattern with k verification types is NP-complete,
even when all verification types share the same accuracy-to-cost ratio,
i.e., a(j)

b(j) = φ for all 1 ≤ j ≤ k

Approximation algorithms:

FPTAS (Fully Polynomial-Time Approximation Scheme)
- Overhead within 1 + ε times the optimal with running time

polynomial in the input size and 1/ε for any ε > 0.
- The solution is independent of the ordering of the verifications

Greedy algorithm
- Compute the optimal solution using the one detector with the

highest accuracy-to-cost ratio, and then round up the solution
- This algorithm has approximation ratio

√
3/2 < 1.23

28/40

Pattern with Multiple Partial Detectors

Performance evaluation on realistic platform

105 computing nodes with individual MTBF of 100 years
⇒ platform MTBF µ ≈ 8.7 hours

Checkpoints size of 300GB with throughput of 0.5GB/s
⇒ C = 600s = 10 mins, and V ∗ in same order

Several realistic partial detectors based on data-analytics approach

cost recall ACR
Time series prediction V (1) = 3s r (1) = [0.5, 0.9] φ(1) = [133, 327]
Spatial interpolation V (2) = 30s r (2) = [0.75, 0.95] φ(2) = [24, 36]
Combination of two V (3) = 6s r (3) = [0.8, 0.99] φ(3) = [133, 196]
Perfect verification V ∗ = 600s r∗ = 1 φ∗ = 2

A detector’s recall may vary depending on the application or dataset

29/40

Pattern with Multiple Partial Detectors

Using one type of verification (r (1) = 0.5, r (2) = 0.95, r (3) = 0.8)

Best partial detectors offer ∼9% improvement in overhead
Saving ∼55 minutes for every 10 hours of computation!

30/40

Pattern with Multiple Partial Detectors

Using multiple types of verifications

m overhead H diff. from opt.

Scenario 1: r (1) = 0.51, r (3) = 0.82, φ(1) ≈ 137, φ(3) ≈ 139
Optimal solution (1, 15) 29.828% 0%
Greedy with V (3) (0, 16) 29.829% 0.001%

Scenario 2: r (1) = 0.58, r (3) = 0.9, φ(1) ≈ 163, φ(3) ≈ 164
Optimal solution (1, 14) 29.659% 0%
Greedy with V (3) (0, 15) 29.661% 0.002%

Scenario 3: r (1) = 0.64, r (3) = 0.97, φ(1) ≈ 188, φ(3) ≈ 188
Optimal solution (1, 13) 29.523% 0%
Greedy with V (1) (27, 0) 29.524% 0.001%
Greedy with V (3) (0, 14) 29.525% 0.002%

The Greedy algorithm works very well in this practical setting!

31/40

Outline

1 Coping with Silent Errors
Models
Analysis of several patterns

2 Coping with Fail-stop and Silent Errors

3 Conclusion and Future Work

32/40

Coping with Fail-stop and Silent Errors
Fail-stop errors and silent errors coexist in large-scale platforms
A resilience pattern needs to cope with both error sources simultaneously

Two-level checkpointing and verification framework
Fail-stop errors (λf) are handled by disk checkpoints (CD)
Silent errors (λs) are handled by in-memory checkpoints (CM) and
verifications (guaranteed V ∗ or partial V)

Time
W

fail-stop errorsilent error detect!

V ∗ CM CD V V V ∗ CM V ∗ CM V V ∗ CM CD

Framework enforcing two properties:
A guaranteed verification before each memory checkpoint
⇒ Checkpoints always valid
A memory checkpoint before each disk checkpoint
⇒ Always recover from latest checkpoints

32/40

Coping with Fail-stop and Silent Errors
Fail-stop errors and silent errors coexist in large-scale platforms
A resilience pattern needs to cope with both error sources simultaneously

Two-level checkpointing and verification framework
Fail-stop errors (λf) are handled by disk checkpoints (CD)
Silent errors (λs) are handled by in-memory checkpoints (CM) and
verifications (guaranteed V ∗ or partial V)

Time
W

fail-stop errorsilent error detect!

V ∗ CM CD V V V ∗ CM V ∗ CM V V ∗ CM CD

Framework enforcing two properties:
A guaranteed verification before each memory checkpoint
⇒ Checkpoints always valid
A memory checkpoint before each disk checkpoint
⇒ Always recover from latest checkpoints

33/40

Two-level Base Pattern PD (Revisiting Young/Daly Again)

TimeW

V ∗ CM CD V ∗ CM CD

Proposition
The optimal checkpointing interval W ∗ and optimal execution overhead H∗ of
the two-level base pattern PD are

W ∗ =

√
V ∗ + CM + CD

λs + λf
2

H∗ = 2
√(

λs + λf

2

)
(V ∗ + CM + CD) + O(λ)

Fail-stop errors Silent errors Both errors
Pattern W + CD W + V ∗ + CM W + V ∗ + CM + CD

Optimal W ∗
√

2CD
λf

√
V ∗+CM
λs

√
V ∗+CM +CD
λs + λf

2

Optimal H∗ √
2λf CD 2

√
λs (V ∗ + CM) 2

√(
λs + λf

2

)
(V ∗ + CM + CD)

34/40

Various Two-level Patterns

Pattern PD

Pattern PDM

Pattern PDV ∗

or PDV

Pattern
PDMV ∗ or
PDMV

TimeW

V ∗ CM CD V ∗ CM CD

Timew1 w2 wn
W

· · ·
· · ·

V ∗ CM CD V ∗ CM V ∗ CM V ∗ CM V ∗ CM CD

Timew1,1 w1,2 w1,m
W

· · ·
· · ·

V ∗ CM CD V V V V ∗ CM CD

Timew1,1 w1,m1 wn,1 wn,mn
w1 wn

W

· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

V ∗ CM CD V V V ∗ CM V ∗ CM V V V ∗ CM CD

35/40

Summary of Results
Parameters of various optimal patterns

W ∗: optimal pattern length

n∗: optimal #memory checkpoints between two disk checkpoints

m∗: optimal #verifications between two memory checkpoints

Pattern W ∗ n∗ m∗ H∗

PD

√
V ∗+CM +CD

λs +λf
2

– – 2
√(

λs + λf
2

)
(V ∗ + CM + CD)

PDV ∗

√
m∗V ∗+CM +CD
1
2 (1+ 1

m∗)λs +λf
2

–
√

λs
λs +λf

· CM +CD
V ∗

√
2(λs + λf)CM + CD +

√
2λsV ∗

PDV √
(m∗−1)V +V ∗+CM +CD
1
2

(
1+ 2−r

(m∗−2)r+2

)
λs +λf

2
–

2− 2
r +

√
λs

λs +λf

√
2(λs + λf)

(
V ∗ − 2−r

r V + CM + CD
)

×
√

2−r
r

(
V ∗+CM +CD

V − 2−r
r

)
+
√

2λs
2−r

r V

PDM

√
n∗(V ∗+CM)+CD

λs
n∗ +λf

2

√
2λs
λf
· CD

V ∗+CM
– 2

√
λs(V ∗ + CM) +

√
2λf CD

PDMV ∗

√
n∗m∗V ∗+n∗CM +CD

1
2 (1+ 1

m∗)λs
n∗ +λf

2

√
λs
λf
· CD

CM

√
CM
V ∗

√
2λf CD +

√
2λsCM +

√
2λsV ∗

PDMV √
n∗(m∗−1)V +n∗(V ∗+CM)+CD

1
2

(
1+ 2−r

(m∗−2)r+2

)
λs
n∗ +λf

2

√
λs
λf
· CD

V ∗− 2−r
r V +CM

2− 2
r

√
2λf CD +

√
2λs

(
V ∗ − 2−r

r V + CM
)

+
√

2−r
r

(
V ∗+CM

V − 2−r
r

)
+
√

2λs
2−r

r V

36/40

Performance Evaluation

Parameters of four real platforms [Moody et al. 2010]
V ∗ = CM , V = CM/100 and r = 0.8

platform #nodes λf λs CD CM
Hera 256 9.46e-7 3.38e-6 300s 15.4s
Atlas 512 5.19e-7 7.78e-6 439s 9.1s

Coastal 1024 4.02e-7 2.01e-6 1051s 4.5s
Coastal SSD 1024 4.02e-7 2.01e-6 2500s 180.0s

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

E
xp

ec
te

d
O

ve
rh

ea
d

0

0.05

0.1

0.15

0.2
Platform Hera

Predicted
Simulated

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

E
xp

ec
te

d
O

ve
rh

ea
d

0

0.05

0.1

0.15

0.2
Platform Atlas

Predicted
Simulated

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

E
xp

ec
te

d
O

ve
rh

ea
d

0

0.05

0.1

0.15

0.2
Platform Coastal

Predicted
Simulated

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

E
xp

ec
te

d
O

ve
rh

ea
d

0

0.05

0.1

0.15

0.2
Platform Coastal SSD

Predicted
Simulated

37/40

Dealing with Linear Task Graph

A linear chain of n task, and each task Ti is characterized by a work wi

Resilience operations (e.g., checkpoint, verification) possible only at the
end of a task

1 2 3 n

Which tasks to checkpoint (memory or disk) and which tasks to verify
(guaranteed or partial) to minimize the expected makespan?

Optimal algorithm based on dynamic programming:

Complexity O(n4) using only guaranteed verification

Complexity O(n6) using also partial verification

38/40

Outline

1 Coping with Silent Errors
Models
Analysis of several patterns

2 Coping with Fail-stop and Silent Errors

3 Conclusion and Future Work

39/40

Conclusion

Summary

First comprehensive analysis of computing patterns to cope with
silent errors

Two-level checkpointing and verification framework to cope with
fail-stop and silent errors

Optimal dynamic programming algorithms for linear task graph

Performance evaluation based on parameters from real platforms

Future Work

Analysis of multi-level/hierarchical checkpointing patterns

Coping with failures in computational workflows modeled as
directed acyclic graphs (DAGs)

40/40

Thanks for Your Attention!

References
[1] Assessing general-purpose algorithms to cope with fail-stop and silent
errors. In Proceedings of PMBS’14, extended version to appear in ACM
TOPC, available as INRIA research report RR-8599.
[2] Assessing the impact of partial verifications against silent data
corruptions. In Proceedings of ICPP’15, available as INRIA research
report RR-8711.
[3] Which verification for soft error detection? In Proceedings of
HiPC’15, available as INRIA research report RR-8741.
[4] Coping with recall and precision of soft error detectors. INRIA
research report RR-8832.
[5] Optimal resilience patterns to cope with fail-stop and silent errors. To
appear in IPDPS’16, available as INRIA research report RR-8786.
[6] Two-level checkpointing and verifications for linear task graphs. To
appear in PDSEC’16, available as INRIA research report RR-8794.

	Coping with Silent Errors
	Models
	Analysis of several patterns

	Coping with Fail-stop and Silent Errors
	Conclusion and Future Work

