
1/21

Identifying the Right Replication Level to Detect
and Correct Silent Errors at Scale

Anne Benoit1 Aurélien Cavelan1 Franck Cappello2

Padma Raghavan4 Yves Robert1,3 Hongyang Sun4

1ENS Lyon & INRIA, France

2Argonne National Laboratory, USA

3University of Tennessee Knoxville, USA

4Vanderbilt University, USA

hongyang.sun@vanderbilt.edu

Fault Tolerance for HPC at eXtreme Scale (FTXS) Workshop
June 26, 2017@Washington, D.C., USA

hongyang.sun@vanderbilt.edu


2/21

An Inconvenient Truth

Top ranked supercomputers in the US (June 2017)
Rank Name Laboratory Technology Cores PFlops/s MTBF

4 Titan ORNL Cray XK7 560,640 17.59 ≈ 1 day
5 Sequoia LLNL BG/Q 1,572,864 17.17 ≈ 1 day
6 Cori LBNL Cray XC40 622,336 14.01 ≈ 1 day
9 Mira ANL BG/Q 786,432 8.59 ≈ 1 day

Fail-stop errors: Node failure, resource crashes
Silent errors or silent data corruptions (SDCs): Double bit flips, soft faults

Exascale computing (1000 PFlops/s):
I Larger core count: millions or even billions of cores
I Shorter Mean Time Between Failures (MTBF) µ

Coping with faults:
I Build more reliable hardware!
I Make applications more fault tolerant!
I Design better resilience techniques/algorithms!



2/21

An Inconvenient Truth

Top ranked supercomputers in the US (June 2017)
Rank Name Laboratory Technology Cores PFlops/s MTBF

4 Titan ORNL Cray XK7 560,640 17.59 ≈ 1 day
5 Sequoia LLNL BG/Q 1,572,864 17.17 ≈ 1 day
6 Cori LBNL Cray XC40 622,336 14.01 ≈ 1 day
9 Mira ANL BG/Q 786,432 8.59 ≈ 1 day

Fail-stop errors: Node failure, resource crashes
Silent errors or silent data corruptions (SDCs): Double bit flips, soft faults

Exascale computing (1000 PFlops/s):
I Larger core count: millions or even billions of cores
I Shorter Mean Time Between Failures (MTBF) µ

Coping with faults:
I Build more reliable hardware!
I Make applications more fault tolerant!
I Design better resilience techniques/algorithms!



2/21

An Inconvenient Truth

Top ranked supercomputers in the US (June 2017)
Rank Name Laboratory Technology Cores PFlops/s MTBF

4 Titan ORNL Cray XK7 560,640 17.59 ≈ 1 day
5 Sequoia LLNL BG/Q 1,572,864 17.17 ≈ 1 day
6 Cori LBNL Cray XC40 622,336 14.01 ≈ 1 day
9 Mira ANL BG/Q 786,432 8.59 ≈ 1 day

Fail-stop errors: Node failure, resource crashes
Silent errors or silent data corruptions (SDCs): Double bit flips, soft faults

Exascale computing (1000 PFlops/s):
I Larger core count: millions or even billions of cores
I Shorter Mean Time Between Failures (MTBF) µ

Coping with faults:
I Build more reliable hardware!
I Make applications more fault tolerant!
I Design better resilience techniques/algorithms!



3/21

Resilience Techniques for HPC
Fail-stop errors (instantaneous error detection)
Standard approach: periodic checkpointing, rollback and recovery

Topt =
√

2µC [Young’74, Daly’06]

1. fail-stop error
2. recover

3. re-execute

C C C

Silent errors (arbitrary detection latency)
Promising approach: checkpointing + verification (error detection)

Topt =
√
µ(V + C)

1. silent error
2. detect error

3. recover

4. re-execute

V C V C V C

[1] A. Benoit, A. Cavelan, Y. Robert and H. Sun. Assessing General-Purpose Algorithms to Cope with Fail-Stop
and Silent Errors. ACM Transactions on Parallel Computing, 2016.



3/21

Resilience Techniques for HPC
Fail-stop errors (instantaneous error detection)
Standard approach: periodic checkpointing, rollback and recovery

Topt =
√

2µC [Young’74, Daly’06]

1. fail-stop error
2. recover

3. re-execute

C C C

Silent errors (arbitrary detection latency)
Promising approach: checkpointing + verification (error detection)

Topt =
√
µ(V + C)

1. silent error
2. detect error

3. recover

4. re-execute

V C V C V C

[1] A. Benoit, A. Cavelan, Y. Robert and H. Sun. Assessing General-Purpose Algorithms to Cope with Fail-Stop
and Silent Errors. ACM Transactions on Parallel Computing, 2016.



4/21

Approaches for Detecting Silent Errors
Application-specific approaches

I Algorithm-based fault tolerance (ABFT): checksums in dense matrices, limited
to one error detection and/or correction in practice [Huang and Abraham 1984]

I Partial differential equations (PDE): use lower-order scheme as verification
mechanism [Benson, Schmit and Schreiber 2014]

I Generalized minimal residual method (GMRES): inner-outer iterations
[Hoemmen and Heroux 2011]

I Preconditioned conjugate gradients (PCG): orthogonalization check iteratively,
re-orthogonalization if error detected [Sao and Vuduc 2013, Chen 2013]

Data-analytics/machine learning approaches
I Dynamic monitoring of datasets based on physical laws (e.g., temperature/speed

limit) and space or temporal proximity [Bautista-Gomez and Cappello 2014]
I Time-series prediction, spatial multivariate interpolation [Di et al. 2014]
I Offline training, online detection based on SDC signature for convergent

iterative applications [Liu and Agrawal 2016]
I Spatial regression based on support vector machines [Subasi et al. 2016]

General-purpose approaches
I Process replication [Fiala et al. 2012]
I Group replication [Casanova et al. 2014]
I Triple modular redundancy (TMR) and voting [Lyons and Vanderkulk 1962]



5/21

This Talk

Focus:
Analytical model for applying replication/redundancy (general
purpose approaches) in combination with checkpointing to
detect and correct silent errors for HPC!

Question:
How to optimally execute a parallel job obeying Amdahl’s law
on an error-prone platform?
What is the optimal error-aware speedup?



6/21

When Amdahl Meets Young/Daly

Error-free speedup with P processors and α sequential fraction:

Amdahl’s Law: S(P) = 1
α+ 1−α

P

I Bounded above by 1/α
I Strictly increasing function of P

Allocating more processors on an error-prone platform?
I Higher error-free speedup ,
I More errors/faults /

I More frequent checkpointing /
I More resilience overhead /

Optimal processor allocation and checkpointing interval?

[2] A. Cavelan, J. Li, Y. Robert and H. Sun, When Amdahl Meets Young/Daly. IEEE CLUSTER, 2016.



6/21

When Amdahl Meets Young/Daly

Error-free speedup with P processors and α sequential fraction:

Amdahl’s Law: S(P) = 1
α+ 1−α

P

I Bounded above by 1/α
I Strictly increasing function of P

Allocating more processors on an error-prone platform?
I Higher error-free speedup ,
I More errors/faults /

I More frequent checkpointing /
I More resilience overhead /

Optimal processor allocation and checkpointing interval?

[2] A. Cavelan, J. Li, Y. Robert and H. Sun, When Amdahl Meets Young/Daly. IEEE CLUSTER, 2016.



6/21

When Amdahl Meets Young/Daly

Error-free speedup with P processors and α sequential fraction:

Amdahl’s Law: S(P) = 1
α+ 1−α

P

I Bounded above by 1/α
I Strictly increasing function of P

Allocating more processors on an error-prone platform?
I Higher error-free speedup ,
I More errors/faults /

I More frequent checkpointing /
I More resilience overhead /

Optimal processor allocation and checkpointing interval?

[2] A. Cavelan, J. Li, Y. Robert and H. Sun, When Amdahl Meets Young/Daly. IEEE CLUSTER, 2016.



7/21

How Is Replication Used?

On a Q-processor platform, application is replicated n times:
I Duplication: each replica has P = Q/2 processors
I Triplication: each replica has P = Q/3 processors
I General case: each replica has P = Q/n processors

Having more replicas on an error-prone platform?
I Lower error-free speedup /
I More resilient ,

I Smaller checkpointing frequency ,
I Less resilience overhead ,

Optimal replication level, processor allocation per replica
and checkpointing interval?



7/21

How Is Replication Used?

On a Q-processor platform, application is replicated n times:
I Duplication: each replica has P = Q/2 processors
I Triplication: each replica has P = Q/3 processors
I General case: each replica has P = Q/n processors

Having more replicas on an error-prone platform?
I Lower error-free speedup /
I More resilient ,

I Smaller checkpointing frequency ,
I Less resilience overhead ,

Optimal replication level, processor allocation per replica
and checkpointing interval?



7/21

How Is Replication Used?

On a Q-processor platform, application is replicated n times:
I Duplication: each replica has P = Q/2 processors
I Triplication: each replica has P = Q/3 processors
I General case: each replica has P = Q/n processors

Having more replicas on an error-prone platform?
I Lower error-free speedup /
I More resilient ,

I Smaller checkpointing frequency ,
I Less resilience overhead ,

Optimal replication level, processor allocation per replica
and checkpointing interval?



8/21

Why Is Replication Useful?

I Error detection (duplication):

I Error correction (triplication):



8/21

Why Is Replication Useful?

I Error detection (duplication):

I Error correction (triplication):



8/21

Why Is Replication Useful?

I Error detection (duplication):

I Error correction (triplication):



8/21

Why Is Replication Useful?

I Error detection (duplication):

I Error correction (triplication):



8/21

Why Is Replication Useful?

I Error detection (duplication):

I Error correction (triplication):



9/21

Two Replication Modes

I Process Replication:

I Group Replication:



9/21

Two Replication Modes

I Process Replication:

I Group Replication:



10/21

Probability of Failure
Independent process error distribution

I Exponential Exp(λ), λ = 1/µ (Memoryless)
I Error probability of one process during T time of computation:

P(T ) = 1− e−λT

Process Triplication:
I Failure probability of any triplicated process:

Pprc
3 (T , 1) =

(
3
2

)(
1− P(T )

)
P(T )2 + P(T )3

= 3e−λT (1− e−λT )2 +
(
1− e−λT )3

= 1− 3e−2λT + 2e−3λT

I Failure probability of P-process application:

Pprc
3 (T ,P) = 1− P(“No process fails”)

= 1− (1− Pprc
3 (T , 1))P

= 1−
(
3e−2λT − 2e−3λT )P



10/21

Probability of Failure
Independent process error distribution

I Exponential Exp(λ), λ = 1/µ (Memoryless)
I Error probability of one process during T time of computation:

P(T ) = 1− e−λT

Process Triplication:
I Failure probability of any triplicated process:

Pprc
3 (T , 1) =

(
3
2

)(
1− P(T )

)
P(T )2 + P(T )3

= 3e−λT (1− e−λT )2 +
(
1− e−λT )3

= 1− 3e−2λT + 2e−3λT

I Failure probability of P-process application:

Pprc
3 (T ,P) = 1− P(“No process fails”)

= 1− (1− Pprc
3 (T , 1))P

= 1−
(
3e−2λT − 2e−3λT )P



10/21

Probability of Failure
Independent process error distribution

I Exponential Exp(λ), λ = 1/µ (Memoryless)
I Error probability of one process during T time of computation:

P(T ) = 1− e−λT

Process Triplication:
I Failure probability of any triplicated process:

Pprc
3 (T , 1) =

(
3
2

)(
1− P(T )

)
P(T )2 + P(T )3

= 3e−λT (1− e−λT )2 +
(
1− e−λT )3

= 1− 3e−2λT + 2e−3λT

I Failure probability of P-process application:

Pprc
3 (T ,P) = 1− P(“No process fails”)

= 1− (1− Pprc
3 (T , 1))P

= 1−
(
3e−2λT − 2e−3λT )P



11/21

Probability of Failure
Group Triplication:

I Failure probability of any P-process group:

Pgrp
1 (T ,P) = 1− P(“No process in group fails”)

= 1−
(
1− P(T )

)P

= 1− e−λPT

I Failure probability of three-group application:

Pgrp
3 (T ,P) =

(
3
2

)
(1− Pgrp

1 (T , 1))Pgrp
1 (T , 1)2 + Pgrp

1 (T , 1)3

= 3e−λPT (1− e−λPT )2 +
(
1− e−λPT )3

= 1− 3e−2λPT + 2e−3λPT

> 1−
(
3e−2λT − 2e−3λT )P = Pprc

3 (T ,P)

What about duplication? (any error kills both cases)
Pprc

2 (T ,P) = Pgrp
2 (T ,P) = 1− e−2λTP



11/21

Probability of Failure
Group Triplication:

I Failure probability of any P-process group:

Pgrp
1 (T ,P) = 1− P(“No process in group fails”)

= 1−
(
1− P(T )

)P

= 1− e−λPT

I Failure probability of three-group application:

Pgrp
3 (T ,P) =

(
3
2

)
(1− Pgrp

1 (T , 1))Pgrp
1 (T , 1)2 + Pgrp

1 (T , 1)3

= 3e−λPT (1− e−λPT )2 +
(
1− e−λPT )3

= 1− 3e−2λPT + 2e−3λPT

> 1−
(
3e−2λT − 2e−3λT )P = Pprc

3 (T ,P)

What about duplication? (any error kills both cases)
Pprc

2 (T ,P) = Pgrp
2 (T ,P) = 1− e−2λTP



11/21

Probability of Failure
Group Triplication:

I Failure probability of any P-process group:

Pgrp
1 (T ,P) = 1− P(“No process in group fails”)

= 1−
(
1− P(T )

)P

= 1− e−λPT

I Failure probability of three-group application:

Pgrp
3 (T ,P) =

(
3
2

)
(1− Pgrp

1 (T , 1))Pgrp
1 (T , 1)2 + Pgrp

1 (T , 1)3

= 3e−λPT (1− e−λPT )2 +
(
1− e−λPT )3

= 1− 3e−2λPT + 2e−3λPT

> 1−
(
3e−2λT − 2e−3λT )P = Pprc

3 (T ,P)

What about duplication? (any error kills both cases)
Pprc

2 (T ,P) = Pgrp
2 (T ,P) = 1− e−2λTP



11/21

Probability of Failure
Group Triplication:

I Failure probability of any P-process group:

Pgrp
1 (T ,P) = 1− P(“No process in group fails”)

= 1−
(
1− P(T )

)P

= 1− e−λPT

I Failure probability of three-group application:

Pgrp
3 (T ,P) =

(
3
2

)
(1− Pgrp

1 (T , 1))Pgrp
1 (T , 1)2 + Pgrp

1 (T , 1)3

= 3e−λPT (1− e−λPT )2 +
(
1− e−λPT )3

= 1− 3e−2λPT + 2e−3λPT

> 1−
(
3e−2λT − 2e−3λT )P = Pprc

3 (T ,P)

What about duplication? (any error kills both cases)
Pprc

2 (T ,P) = Pgrp
2 (T ,P) = 1− e−2λTP



12/21

Two Observations

Observation 1 (Implementation)
I Process replication is more resilient than group replication

(assuming same overhead)
I Group replication is easier to implement by treating an application

as a blackbox

Observation 2 (Analysis)
Following two scenarios are equivalent w.r.t. failure probability:

I Group replication with n replicas, where each replica has P
processes and each process has error rate λ

I Process replication with one process, which has error rate λP
and which is replicated n times

Benefit of analysis: Group(n,P, λ) → Process(n, 1, λP)



12/21

Two Observations

Observation 1 (Implementation)
I Process replication is more resilient than group replication

(assuming same overhead)
I Group replication is easier to implement by treating an application

as a blackbox

Observation 2 (Analysis)
Following two scenarios are equivalent w.r.t. failure probability:

I Group replication with n replicas, where each replica has P
processes and each process has error rate λ

I Process replication with one process, which has error rate λP
and which is replicated n times

Benefit of analysis: Group(n,P, λ) → Process(n, 1, λP)



13/21

Analysis Steps

Maximize error-aware speedup

Sn(T ,P) = S(P)
En(T ,P)/T

1. Derive failure probability Pprc
n (T ,P) or Pgrp

n (T ,P) — exact

2. Compute expected execution time En(T ,P) — exact

3. Compute first-order approx. of error-aware speedup Sn(T ,P)

4. Derive optimal Topt, Popt and get Sn(Topt,Popt)

5. Choose right replication level n



14/21

Analytical Results
Duplication:
On a platform with Q processors and checkpointing cost C , the optimal
resilience parameters for process/group duplication are:

Popt = min

{
Q
2 ,
(

1
2

(1− α
α

)2 1
Cλ

) 1
3
}

Topt =
(

C
2λPopt

) 1
2

Sopt = S(Popt)

1 + 2
(

2λCPopt
) 1

2

Triplication & (n, k)-replication (k-out-of-n replica consensus):
similar results but different for process and group, less practical for n > 3

I For α > 0, not necessarily use up all available Q processors
I Checkpointing interval Topt nicely extends Young/Daly’s result
I Error-aware speedup Sopt minimally affected for small λ



14/21

Analytical Results
Duplication:
On a platform with Q processors and checkpointing cost C , the optimal
resilience parameters for process/group duplication are:

Popt = min

{
Q
2 ,
(

1
2

(1− α
α

)2 1
Cλ

) 1
3
}

Topt =
(

C
2λPopt

) 1
2

Sopt = S(Popt)

1 + 2
(

2λCPopt
) 1

2

Triplication & (n, k)-replication (k-out-of-n replica consensus):
similar results but different for process and group, less practical for n > 3

I For α > 0, not necessarily use up all available Q processors
I Checkpointing interval Topt nicely extends Young/Daly’s result
I Error-aware speedup Sopt minimally affected for small λ



14/21

Analytical Results
Duplication:
On a platform with Q processors and checkpointing cost C , the optimal
resilience parameters for process/group duplication are:

Popt = min

{
Q
2 ,
(

1
2

(1− α
α

)2 1
Cλ

) 1
3
}

Topt =
(

C
2λPopt

) 1
2

Sopt = S(Popt)

1 + 2
(

2λCPopt
) 1

2

Triplication & (n, k)-replication (k-out-of-n replica consensus):
similar results but different for process and group, less practical for n > 3

I For α > 0, not necessarily use up all available Q processors
I Checkpointing interval Topt nicely extends Young/Daly’s result
I Error-aware speedup Sopt minimally affected for small λ



15/21

Results Comparison
For fully parallel jobs, i.e., α = 0 (similar for α > 0)

I Duplication v.s. Process triplication

Popt = Q
2 Popt = Q

3 (Processors ↓)

Topt =
√

C
λQ Topt = 3

√
C

2λ2Q (Chkpt interval ↑)

Sopt = Q/2
1 + 2

√
λCQ

Sopt = Q/3

1 + 3 3
√(

λC
2

)2 Q
(Exp. speedup??)

I Process triplication v.s. Group triplication

Popt = Q
3 Popt = Q

3 (Processors =)

Topt = 3

√
C

2λ2Q Topt = 3

√
3C

2(λQ)2 (Chkpt interval ↓)

Sopt = Q/3

1 + 3 3
√(

λC
2

)2 Q
Sopt = Q/3

1 + 3 3
√

1
3

(
λCQ

2

)2
(Exp. speedup ↓)

Choosing Right Mode & Level of Replication
Based on analytical model and whether process replication
is supported



15/21

Results Comparison
For fully parallel jobs, i.e., α = 0 (similar for α > 0)

I Duplication v.s. Process triplication

Popt = Q
2 Popt = Q

3 (Processors ↓)

Topt =
√

C
λQ Topt = 3

√
C

2λ2Q (Chkpt interval ↑)

Sopt = Q/2
1 + 2

√
λCQ

Sopt = Q/3

1 + 3 3
√(

λC
2

)2 Q
(Exp. speedup??)

I Process triplication v.s. Group triplication

Popt = Q
3 Popt = Q

3 (Processors =)

Topt = 3

√
C

2λ2Q Topt = 3

√
3C

2(λQ)2 (Chkpt interval ↓)

Sopt = Q/3

1 + 3 3
√(

λC
2

)2 Q
Sopt = Q/3

1 + 3 3
√

1
3

(
λCQ

2

)2
(Exp. speedup ↓)

Choosing Right Mode & Level of Replication
Based on analytical model and whether process replication
is supported



15/21

Results Comparison
For fully parallel jobs, i.e., α = 0 (similar for α > 0)

I Duplication v.s. Process triplication

Popt = Q
2 Popt = Q

3 (Processors ↓)

Topt =
√

C
λQ Topt = 3

√
C

2λ2Q (Chkpt interval ↑)

Sopt = Q/2
1 + 2

√
λCQ

Sopt = Q/3

1 + 3 3
√(

λC
2

)2 Q
(Exp. speedup??)

I Process triplication v.s. Group triplication

Popt = Q
3 Popt = Q

3 (Processors =)

Topt = 3

√
C

2λ2Q Topt = 3

√
3C

2(λQ)2 (Chkpt interval ↓)

Sopt = Q/3

1 + 3 3
√(

λC
2

)2 Q
Sopt = Q/3

1 + 3 3
√

1
3

(
λCQ

2

)2
(Exp. speedup ↓)

Choosing Right Mode & Level of Replication
Based on analytical model and whether process replication
is supported



16/21

Limitation of First-Order Approximation

Observation 3 (First-Order)
Suppose P = Θ(λ−x ) and T = Θ(λ−y ). Then, for first-order
approximation to accurately estimate error probabilities (e.g.,
1− e−λPT ≈ λPT ), we need:

x + y < 1
or P · T = o(µ)

e.g., µ = 10 years ⇒ P · T < 3 · 108 processor-seconds
Generally accurate for platform MTBF µP = Θ(days) or
µP = Θ(hours) depending on checkpointing cost C

What about larger systems?
One solution: multi-level checkpointing ⇒ error separation

[3] A. Benoit, A. Cavelan, V. Le Fèvre, Y. Robert and H. Sun. Towards Optimal Multi-Level Checkpointing. IEEE
Transactions on Computers, 2017.



16/21

Limitation of First-Order Approximation

Observation 3 (First-Order)
Suppose P = Θ(λ−x ) and T = Θ(λ−y ). Then, for first-order
approximation to accurately estimate error probabilities (e.g.,
1− e−λPT ≈ λPT ), we need:

x + y < 1
or P · T = o(µ)

e.g., µ = 10 years ⇒ P · T < 3 · 108 processor-seconds
Generally accurate for platform MTBF µP = Θ(days) or
µP = Θ(hours) depending on checkpointing cost C

What about larger systems?
One solution: multi-level checkpointing ⇒ error separation

[3] A. Benoit, A. Cavelan, V. Le Fèvre, Y. Robert and H. Sun. Towards Optimal Multi-Level Checkpointing. IEEE
Transactions on Computers, 2017.



17/21

Simulations

Consider an platform with Q = 106, and study

Efficiency = Sopt
Q

I Impact of MTBE and checkpointing cost C
I Impact of sequential fraction α
I Impact of number of processes P



18/21

Impact of MTBE and Checkpointing Cost

α = 10−6

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

(a) C = 1800s

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

(b) C = 60s

I First-order accurate except for duplication (where P is larger)
and with small MTBE

I Duplication can be sufficient for large MTBE, especially for
small checkpointing cost



19/21

Impact of Sequential Fraction

C = 1800s

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

(c) α = 10−7

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

(d) α = 10−6

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

(e) α = 10−5

I Increased α reduces efficiency
I Increased α increases minimum MTBE for which duplication

is sufficient



20/21

Impact of Number of Processes

α = 10−5,C = 1800s

(f) MTBE = 104 (g) MTBE = 103

I Efficiency/error-aware speedup no longer strictly increasing
function of P

I First-order Popt close to actual optimum



21/21

Conclusion

What to Remember
I “Replication + checkpointing” as a general-purpose fault-

tolerance protocol for coping with silent errors in HPC
I Process replication is more resilient than group replication,

but group replication is easier to implement
I Analytical solution for Popt,Topt, and Sopt and for choosing

right replication mode and level

Future Work
I Analyzing partial replication paradigm: different replication

modes and levels for tasks with different criticality
I Dealing with co-existence of fail-stop errors and silent errors
I Experimenting with real applications/platforms


