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Abstract: We consider energy-efficient scheduling on multiprocessors, where the speed of each processor
can be individually scaled, and a processor consumes power sα when running at speed s, for α > 1. A scheduling
algorithm needs to decide at any time both processor allocations and processor speeds for a set of parallel jobs
with time-varying parallelism. The objective is to minimize the sum of the total energy consumption and certain
performance metric, which in this paper includes total flow time and makespan. For both objectives, we present
instantaneous parallelism-clairvoyant (IP-clairvoyant) algorithms that are aware of the instantaneous parallelism
of the jobs at any time but not their future characteristics, such as remaining parallelism and work. For total
flow time plus energy, we present an O(1)-competitive algorithm, which significantly improves upon the best

known non-clairvoyant algorithm. In the case of makespan plus energy, we present an O(ln1−1/α P )-competitive
algorithm, where P is the total number of processors. We show that this algorithm is asymptotically optimal
by providing a matching lower bound. In addition, we also study non-clairvoyant scheduling for total flow time
plus energy, and present an algorithm that achieves O(lnP )-competitive for jobs with arbitrary release time

and O(ln1/α P )-competitive for jobs with identical release time. Finally, we prove an Ω(ln1/α P ) lower bound
on the competitive ratio of any non-clairvoyant algorithm.

Keywords:Multiprocessors, Online Scheduling, Dynamic speed scaling, Energy-performance tradeoff, Com-
petitive Analysis, Total flow time, Makespan

1 Introduction

Energy has been widely recognized as a key consideration in the design of mobile and high-performance comput-
ing systems. One popular approach to controlling the energy consumption is by dynamically varying the speeds
of the processors, a technique generally known as dynamic speed scaling [15, 27, 48]. Major chip manufacturers,
such as Intel, AMD and IBM, have produced chips that enable the operating systems to perform dynamic power
management using this technology. It has been observed that, for most CMOS-based processors, the dynamic
power consumption satisfies the cube-root rule; that is, the power consumption of a processor is proportional to
s3 when it runs at speed s [15, 39]. Since the seminal paper by Yao, Demers and Shenker [49], who initiated
the theoretical investigation of energy-efficient scheduling, many algorithmic researchers have adopted a more
general power function of sα, where α > 1 is called the power parameter. As this power function is strictly
convex, using dynamic speed scaling can result in a non-linear tradeoff between the energy consumption and the
performance, and this has led to many interesting new research problems. One challenging problem concerns
how to balance the conflicting objectives of low energy and high performance. The problem has attracted much
attention among the algorithmic community and has become an active research topic in recent years. (See
[2, 32] for two surveys of the field.)

In this paper, we study the problem of scheduling parallel jobs on multiprocessors for the energy-performance
tradeoff. We focus on systems with per-processor speed scaling capability; that is, the speed of each processor can
be individually scaled [30, 50, 51]. This kind of architecture has been made possible by the recent advancements
in chip design technology, such as the on-chip switching regulators [36, 35]. Under this setting, a scheduling
algorithm needs to have both a processor allocation policy, which determines the number of processors allocated
to each job, and a speed scaling policy, which determines the speed of each allocated processor. Moreover, we
assume that the parallel jobs can have time-varying parallelism in different phases of their executions [22, 17, 44].
This poses an additional challenge compared to scheduling sequential jobs. In particular, it requires a scheduling
algorithm to have dynamic policies in order to respond to the jobs’ different resource requirements over time.
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Badly designed algorithms could either waste a large amount of energy or cause severe execution delays and
hence performance degradations.

Our objective is to minimize a linear combination of energy consumption and certain performance metric,
which in this paper includes total flow time and makespan. The flow time of a job is the duration between its
release time and completion, and the total flow time is the sum of the flow time of all the jobs in the system.
The makespan is the largest completion time of the jobs. Both total flow time and makespan are widely used
performance metrics: The former measures the average waiting time of all users in the system, and the latter
is closely related to the throughput of the system. Although energy and flow time (or makespan) have different
units, optimizing a linear combination of the two has a natural interpretation if we consider a user who is willing
to spend one unit of energy in order to reduce ρ units of total flow time (or makespan)1. In fact, minimizing the
sum of conflicting objectives has been a common approach in many bi-criteria optimization problems [3, 37],
and similar metrics have been considered previously in the scheduling literature by combining both performance
and the cost of scheduling as a single objective function [47, 43, 20].

Since Albers and Fujiwara [3] first considered the problem of minimizing total flow time plus energy, many
results (e.g., [7, 38, 37, 6, 16, 17, 44, 26, 4, 5]) have been obtained under different online scheduling settings.
Some of these results assume that the scheduling algorithm is clairvoyant ; that is, it gains complete knowledge
of all job characteristics immediately upon the job’s arrival. Other results are for an arguably more practical
non-clairvoyant setting, where the scheduler knows nothing about the un-executed portion of a job. Most of
these results, however, are only applicable to scheduling sequential jobs. Also, to the best of our knowledge, no
previous work has considered minimizing makespan plus energy. The closest result to ours is by Chan, Edmonds
and Pruhs [17], who studied non-clairvoyant scheduling for parallel jobs on multiprocessors to minimize total
flow time plus energy. In both [17] and our previous work [44], it has been observed that any non-clairvoyant
algorithm that allocates a set of uniform-speed processors to a job will perform poorly; in particular, a lower
bound of Ω(P (α−1)/α2

) on the competitiveness has been shown for any such algorithm, where P is the total
number of processors. The reason is because a non-clairvoyant algorithm may in the worst case allocate a
“wrong” number of processors to a job as compared to its parallelism, which will lead to either wasted energy
or delayed job execution.

To obtain a better competitive ratio, it turns out that a non-clairvoyant algorithm needs to assign processors
of different speeds to a job. To this end, Chan, Edmonds and Pruhs [17] proposed an execution model, in which
a job can be simultaneously executed by several groups of processors. The processors within the same group
must share the same speed, but different groups can run at different speeds. The execution rate of the job at
any time is determined by the group with the fastest speed2. They proposed a non-clairvoyant algorithm called
MultiLaps, and showed that it is O(logP )-competitive with respect to total flow time plus energy for any set

of parallel jobs. They also gave an Ω(log1/α P ) lower bound on the competitive ratio of any non-clairvoyant
algorithm under this execution model.

In this paper, we propose an alternative execution model, under which only one group of processors, possibly
with different speeds, can be allocated to a job at any time. The execution rate of the job is determined by
the speeds of the fastest processors that can be effectively utilized. This model is based on the assumption
that the maximum utilization policy [33, 9] is employed at the underlying task scheduling level, which always
utilizes faster processors before slower ones. Compared to the execution model proposed in [17], our model may
be implemented more easily especially for data-parallel jobs with independent and sufficiently long tasks. Our
first contribution includes a non-clairvoyant scheduling algorithm and its analysis under this execution model.
The following states our results:

• We propose a non-clairvoyant algorithm N-EQUI (Non-uniform Equi-partitioning), and show that it is
O(lnP )-competitive with respect to the total flow time plus energy for any set of parallel jobs with

arbitrary release time, and O(ln1/α P )-competitive for jobs with identical release time. Moreover, we

prove that any non-clairvoyant algorithm is Ω(ln1/α P )-competitive under our execution model, showing
that N-EQUI is asymptotically optimal in the batch-released setting.

Another contribution of this paper is to study a setting that lies between clairvoyance and non-clairvoyance.
In this intermediate setting, a scheduling algorithm is allowed to know the available parallelism, or the instan-
taneous parallelism (IP), of a job at any given time. The future characteristic of the job, such as its remaining
parallelism or work, is still unknown. We call such an algorithm IP-clairvoyant3. In many parallel systems

1By scaling the units of time and energy, we can assume without loss of generality that ρ = 1.
2In practice, this can be implemented by proper checkpointing of the executing program.
3This is to be distinguished from semi-clairvoyant scheduling [8], which is another intermediate setting that assumes a scheduling

algorithm is able to gain approximate knowledge of a job upon its arrival, such as an estimate of its total work, but not the job’s
exact information.
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Table 1: Competitive ratios of our non-clairvoyant and IP-clairvoyant algorithms for parallel jobs with arbitrary
and identical release times for total flow time plus energy.

Non-clairvoyant IP-clairvoyant
Arbitrary release time O(lnP ) O(1)

Identical release time Θ(ln1/α P ) 22−1/α + 2

using centralized task queues or thread pools, instantaneous parallelism is simply the number of ready tasks in
the queue or the number of ready threads in the pool, which is information practically available to the scheduler.
Even for parallel systems using distributed scheduling such as work-stealing [10], instantaneous parallelism can
be collected or estimated through counting or sampling without introducing much system overhead. It was
shown previously that, when minimizing total flow time alone, knowledge about the instantaneous parallelism
of the jobs provides limited benefit when compared to non-clairvoyant algorithms [21, 23, 34, 24]. However,
we show in this paper that IP-clairvoyance can bring significant performance improvements when it comes to
minimizing total flow time plus energy. Our contribution in this setting includes the following results:

• We present an IP-clairvoyant algorithm U-CEQ (Uniform Conservative Equi-partitioning), and show that

it is
(

max{ 4α2

α−1 , 4
αα} + 2α

)

-competitive with respect to total flow time plus energy for any set of parallel

jobs with arbitrary release time. This competitive ratio is independent of the total number P of processors,
and therefore can be considered as constant for a fixed power parameter α. In addition, we show that
U-CEQ is (22−1/α + 2)-competitive for any set of parallel jobs with identical release time.

Table 1 summarizes the competitive ratios of our algorithms under both non-clairvoyant and IP-clairvoyant
settings. Compared to any non-clairvoyant algorithm, our IP-clairvoyant algorithm achieves significantly better
competitive ratios. The reason for the improvement comes from the fact that, given the instantaneous par-
allelism, an IP-clairvoyant algorithm can now allocate a “right” number of processors to a job at any time,
ensuring that no energy will be wasted. At the same time, it can also guarantee a sufficient execution rate by
setting the total power consumption proportionally to the number of active jobs at any time. This has been a
common practice to designing online scheduling algorithms for total flow time plus energy and intuitively it pro-
vides the optimal balance between energy and performance [7, 38, 6, 16]. Moreover, unlike the non-clairvoyant
algorithms MultiLaps and N-EQUI, both of which require non-uniform speed scaling for an individual job, U-CEQ
only requires allocating processors of uniform speed to a job. Thus, in situations where the instantaneous paral-
lelism of a job does not change frequently and can be effectively measured, e.g., by using feedback mechanisms
[1, 29, 45], our IP-clairvoyant algorithm should be easier to implement and more practical.

Besides minimizing total flow time plus energy, there have been some recent studies that focus on the
weighted variant of this problem [18], or optimize a linear combination of energy and some other performance
metrics, such as total profit [41] and quoted lead time [19]. In this paper, we introduce a new objective function
of minimizing makespan plus energy. Unlike the previous metrics, where the completion time of each job
contributes to the overall objective function, makespan is determined by the completion time of the last job in
a job set, while the other jobs only contribute to the energy consumption part of the objective, and therefore
can be slowed down to improve the overall performance. However, without knowing the future characteristics
of the jobs, such as their remaining work, it is not clear even in the IP-clairvoyant setting which jobs should be
slowed down in order to reduce energy without affecting the makespan. In the preliminary version [46] of this
paper, we proposed an IP-clairvoyant algorithm that works for parallel jobs with identical release time and that
consist of only sequential phases and fully parallelizable phases (formally defined in Section 2). In this paper,
we develop a generalized strategy that works for any set of parallel jobs regardless of their release time and
degree of parallelism. The following shows our contribution for minimizing makespan plus energy:

• We present an IP-clairvoyant algorithm WCEP (Work-Conserving Equal-Power) and show that it is

O(ln1−1/α P )-competitive with respect to makespan plus energy for any set of parallel jobs regardless of

their release time, where P is the total number of processors. Moreover, we give a matching Ω(ln1−1/α P )
lower bound on the competitive ratio of any IP-clairvoyant algorithm, showing that WCEP is asymptoti-
cally optimal.

Our analysis suggests that a good strategy for minimizing makespan plus energy is to set a constant power
consumption at all time, whereas a common strategy for minimizing total flow time plus energy is to set the
total power consumption at any time proportionally to the number of active jobs [7, 6, 16, 38]. Both strategies
share the same principle of balancing the overall cost incurred by both the power consumption and the target
performance metric during the jobs’ execution.
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The rest of this paper is organized as follows. Section 2 formally defines the models and the objective
functions. Section 3 presents our algorithms and analysis in both non-clairvoyant and IP-clairvoyant settings
for the objective of total flow time plus energy. Section 4 presents our IP-clairvoyant algorithm for minimizing
makespan plus energy. Finally, Section 5 concludes the paper with some discussions and future directions.

2 Models and Objective Functions

We consider a set J = {J1, J2, · · · , Jn} of n jobs with time-varying parallelism to be scheduled on P processors
whose speeds can be individually scaled. The power consumption of a processor running at speed s is given
by sα, where s can take any value in [0,∞) and α > 1 is the power parameter. Adopting the notations used
previously in [23, 22, 24, 17], each job Ji ∈ J contains ki phases 〈J1

i , J
2
i , · · · , J

ki

i 〉, and each phase Jk
i is

represented by an ordered pair 〈wk
i , h

k
i 〉, where wk

i ∈ R
+ denotes the amount of work and hk

i ∈ Z
+ denotes

the parallelism of the phase4. Since a job can receive at most P processors at any time, it does not benefit
from having a larger parallelism value than P . Hence, we can assume without loss of generality that hk

i ≤ P .
A phase Jk

i is said to be fully-parallelizable if hk
i = P and it is sequential if hk

i = 1. For convenience, we also
define xk

i = wk
i /(h

k
i )

1−1/α to be the unit-power span for each phase Jk
i . This represents the time to complete

the phase using exactly hk
i processors of the same speed with a total power of 1 at all time. Suppose the hk

i

processors have the same speed s, we have hk
i s

α = 1, and so s = (hk
i )
− 1

α . The amount of time to complete wk
i

amount of work is thus given by wk
i /(s · h

k
i ) = xk

i . For each job Ji, let w(Ji) =
∑ki

k=1 w
k
i denote its total work

and let x(Ji) =
∑ki

k=1 x
k
i denote the job’s total unit-power span.

Suppose that at some time t job Ji is in its k’th phase hence has parallelism hk
i , and it is allocated ai(t)

processors possibly with different speeds. Since a job cannot utilize more processors than its parallelism, its
effective processor allocation at time t is given by āi(t) = min{ai(t), h

k
i }. The execution of the job is assumed

to follow the maximum utilization policy [33, 9], which always utilizes faster processors before slower ones until
all the allocated processors are utilized or the number of utilized processors reaches the parallelism of the job.
In particular, let sij(t) denote the speed of the j’th processor allocated to job Ji at time t, and we can assume
without loss of generality that si1(t) ≥ si2(t) ≥ · · · ≥ siai(t)(t). Then, only the āi(t) = min{ai(t), h

k
i } fastest

processors are utilized, and the execution rate Γk
i (t) of the job is given by Γk

i (t) =
∑āi(t)

j=1 sij(t). In the case where

all the processors allocated to job Ji share the same speed si(t), the execution rate is simply Γk
i (t) = āi(t)si(t).

At any time t, a scheduling algorithm needs to specify the number ai(t) of processors allocated to each
job Ji, as well as the speed of each allocated processor. In this paper, we consider the following two types
of algorithms: An algorithm is said to be non-clairvoyant if it makes both scheduling decisions without any
current or future information about a job, such as its release time, parallelism profile and remaining work. If
an algorithm is aware of the current, or instantaneous parallelism of the job at any time but not its remaining
work and parallelism, the algorithm is said to be IP-clairvoyant.

In any valid schedule, we require the total processor allocation at any time to be at most the total number
of available processors, i.e.,

∑n
i=1 ai(t) ≤ P . Let ri denote the release time of job Ji. If all jobs are released

together, their release time can be assumed to be 0. Otherwise, we can assume without loss of generality that
the first released job arrives at time 0. Let ci denote the completion time of job Ji, and let cki denote the
completion time of phase Jk

i . We also require that a valid schedule cannot begin to execute a phase of a job

unless it has completed all its preceding phases, i.e., ri = c0i < c1i < · · · < cki

i = ci, and
∫ cki
ck−1
i

Γk
i (t)dt = wk

i for

all 1 ≤ k ≤ ki.
The flow time fi of any job Ji is the duration between its completion and release, i.e., fi = ci − ri. The

total flow time F (J ) of all jobs in J is given by F (J ) =
∑n

i=1 fi. The makespan M(J ) is the completion time
of the last completed job, i.e., M(J ) = maxi=1,··· ,n ci. Job Ji is said to be active at time t if it is released
but not completed at t, i.e., ri ≤ t < ci. An alternative expression for the total flow time is F (J ) =

∫∞

0 ntdt,
where nt is the number of active jobs at time t. Let ui(t) denote the power consumed by job Ji at time t,

i.e., ui(t) =
∑ai(t)

j=1 sij(t)
α. The overall energy consumption ei of the job is given by ei =

∫∞

0 ui(t)dt, and the

total energy consumption E(J ) of the job set is E(J ) =
∑n

i=1 ei, or alternatively E(J ) =
∫∞

0 utdt, where
ut =

∑n
i=1 ui(t) denotes the total power consumption of all jobs at time t. In this paper, we consider total

flow time plus energy G(J ) and makespan plus energy H(J ) of the job set, i.e., G(J ) = F (J ) + E(J ) and
H(J ) = M(J ) + E(J ). The objective is to minimize either G(J ) or H(J ).

We use competitive analysis [11] to evaluate an online scheduling algorithm by comparing its performance
with that of an optimal offline scheduler. An online algorithm A is said to be c1-competitive with respect to

4Instead of using a parallelism value, an arbitrary non-decreasing and sub-linear speedup function is specified for each phase in
[23, 22, 24, 17], which provides a more general job model. For any non-clairvoyant algorithm, it was shown that the simple model
used in this paper gives the hardest job instances for the combined objective of performance and energy [17].
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total flow time plus energy if it satisfies GA(J ) ≤ c1 ·GOPT(J ) for any job set J , where GOPT(J ) denotes the
total flow time plus energy of J under an optimal offline scheduler. Similarly, an online algorithm B is said to
be c2-competitive with respect to makespan plus energy if for any job set J we have HB(J ) ≤ c2 · HOPT(J ),
where HOPT(J ) denotes the makespan plus energy of the job set under an optimal offline scheduler.

3 Total Flow Time Plus Energy

We consider the objective of total flow time plus energy in this section. We first present a non-clairvoyant
algorithm N-EQUI and analyze its performances for jobs with both arbitrary release time and the same release
time. We then derive a lower bound on the competitive ratio of any non-clairvoyant algorithm. Finally, we
present an IP-clairvoyant algorithm U-CEQ and show that it significantly improves upon any non-clairvoyant
algorithm.

3.1 Preliminaries

We first derive two lower bounds on the total flow time plus energy of any job set, which allows us to bound the
performance of our online algorithms through indirect comparisons instead of comparing directly to the optimal
offline scheduler. We then introduce some useful notations, and outline the analysis techniques used to prove
the competitiveness of our online algorithms.

3.1.1 Lower Bounds on Total Flow Time plus Energy

Without loss of generality, we assume that the jobs in a job set J are renamed in non-increasing order of total
work, i.e., w(J1) ≥ w(J2) ≥ · · · ≥ w(Jn). The following lemma gives two lower bounds G∗1(J ) and G∗2(J ) on
the total flow time plus energy of job set J . Note that the second lower bound only applies to a set of jobs with
identical release time; an algorithm may incur a smaller total flow time plus energy than G∗2(J ) if the jobs in

J have arbitrary release time.

Lemma 1 The total flow time plus energy of any job set J satisfies the following two lower bounds, i.e.,
GOPT(J ) ≥ max{G∗1(J ), G

∗
2(J )},

G∗1(J ) =
α

(α− 1)1−1/α

n
∑

i=1

x(Ji), (1)

G∗2(J ) =
α

((α− 1)P )
1−1/α

n
∑

i=1

i1−1/α · w(Ji), (2)

where x(Ji) and w(Ji) denote the unit-power span and the total work of job Ji, respectively, and P is the total
number of processors. The second lower bound G∗2(J ) only applies to jobs with identical release time.

Proof. To derive the first lower bound, consider any phase Jk
i of job Ji. The optimal scheduler will only

perform better if there is an unlimited number of processors at its disposal. In this case, it will allocate a
processors of the same speed, say s, to the phase throughout its execution, since the convexity of the power
function implies that if different speeds are used, then averaging the speeds will result in the same execution
rate but consuming less energy [49]. Moreover, we have a ≤ hk

i , since allocating more processors to a phase than
its parallelism will incur more energy without improving flow time. The flow time plus energy introduced by the

execution of Jk
i is then given by

wk
i

as +
wk

i

as ·as
α = wk

i

(

1
as + sα−1

)

≥ α
(α−1)1−1/α ·

wk
i

a1−1/α ≥
α

(α−1)1−1/α ·
wk

i

(hk
i )

1−1/α =
α

(α−1)1−1/α · x
k
i . Extending this property over all phases and all jobs gives the first lower bound.

For the second lower bound, the optimal offline scheduler will do no worse in terms of total flow time plus
energy if each job in the job set is replaced by a simpler job that contains a single fully-parallelizable phase
with work wi, since the original optimal schedule is also a valid schedule for the new job set. Also, because the
jobs in the job set are assumed to have the same release time, it is well-known that the optimal offline scheduler
will execute them using the SJF (Shortest Job First) policy, since otherwise the total flow time can be reduced
by swapping the jobs without affecting the energy consumption. Moreover, for each job Ji, the optimal offline
scheduler will allocate all P processors the same speed, say s, throughout its execution, by the same argument
as in the proof of the first lower bound. The flow time plus energy introduced by the execution of Ji is then

given by w(Ji)
Ps · i+

w(Ji)
Ps · Psα = w(Ji)

(

i
Ps + sα−1

)

≥ α
(α−1)1−1/α ·

i1−1/α·w(Ji)
P 1−1/α . Summing the inequality over all

jobs gives the second lower bound.
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3.1.2 Concepts and Notations

We define some useful concepts and notations in this subsection in order to analyze the performance of any
online algorithm A.

First, let J (t) and J ∗(t) denote the sets of active jobs at any time t scheduled by an online algorithm A and
the optimal offline algorithm, respectively. Since an online algorithm and the optimal algorithm may schedule
the same job set differently, J (t) and J ∗(t) can be different from each other at any time instance. We define
dGA(J (t))

dt to be the instantaneous cost of the online algorithm A with respect to the total flow time plus energy

at time t, and define dGOPT(J
∗(t))

dt to be the instantaneous cost of the optimal offline algorithm at time t. Since
the online algorithm contains nt active jobs and consumes ut power at time t, its instantaneous cost is given

by dGA(J (t))
dt = nt + ut, and its total flow time plus energy for the entire job set can be obtained by integrating

the above instantaneous cost over time, i.e., GA(J ) =
∫∞

0
dGA(J (t))

dt dt =
∫∞

0 (nt + ut)dt. Similarly, we have
dGOPT(J

∗(t))
dt = n∗t + u∗t for the optimal offline algorithm, where n∗t and u∗t denote the number of active jobs and

the power consumption under the optimal algorithm at time t. The total flow time plus energy incurred by the

optimal offline algorithm is then given by GOPT(J ) =
∫∞

0
dGOPT(J

∗(t))
dt dt =

∫∞

0
(n∗t + u∗t )dt.

Now, let us define the notions of t-prefix and t-suffix. Specifically, the t-prefix Ji(
←−
t ) of a job Ji is defined

as the portion of the job scheduled by the online algorithm A no later than time t, and the t-suffix Ji(
−→
t ) is

the portion of job Ji scheduled by algorithm A after time t. Moreover, we can extend the notions of t-prefix
and t-suffix from an individual job to a job set as follows. The t-prefix of a job set J scheduled by the online
algorithm A is defined as J (

←−
t ) = {Ji(

←−
t ) : Ji ∈ J and ri ≤ t} and the t-suffix of job set J is defined as J (

−→
t ) =

{Ji(
−→
t ) : Ji ∈ J and ri ≤ t}. With the help of these notions, we define

dG∗

1(J (t))
dt =

G∗

1(J (
←−−−
t+∆t))−G∗

1(J (
←−
t ))

∆t and
dG∗

2(J (t))
dt =

G∗

2(J (
←−−−
t+∆t))−G∗

2(J (
←−
t ))

∆t to be the rates of change at any time t for the two lower bounds presented in
Lemma 1, where ∆t represents an infinitesimally small interval of time during which no job arrives or completes.
Note that these two rates of change are defined with respect to the t-prefix, or the completed portion, of the
job set J scheduled by the online algorithm A. From the definitions of the two lower bounds, we can see that
dG∗

1(J (t))
dt and

dG∗

2(J (t))
dt are essentially determined by how much work is done and how much unit-power span

is completed for the jobs at time t under the online algorithm A. For instance, if algorithm A does not schedule

any job at time t, the t-prefix of the job set will not change, i.e., J (
←−−−−
t+∆t) = J (

←−
t ), and as a result we will

have
dG∗

1(J (t))
dt =

dG∗

2(J (t))
dt = 0. If an online algorithm always schedules some job at all time, the following

lemma relates the two rates of change to the two lower bounds.

Lemma 2 For any job set J scheduled by an online algorithm A, which always schedules some job at all time,

it satisfies that G∗1(J ) =
∫∞

0
dG∗

1(J (t))
dt dt and G∗2(J ) =

∫∞

0
dG∗

2(J (t))
dt dt.

Proof. According to definition, the t-prefix Ji(
←−
t ) of a job Ji does not belong to J (

←−
t ) if the job is not yet

released at time t, but the job will remain in J (
←−
t ) even after it has been completed. This ensures that the

completion of a job will not decrease
dG∗

1(J (t))
dt and

dG∗

2(J (t))
dt , so they are non-negative at all time. Since the

online algorithm A always schedules some active job, all jobs are guaranteed to complete in finite amount of
time. Thus, we can express the two lower bounds by integrating their rates of change over time, as stated in
the lemma.

Finally, for analyzing the performance of an online algorithm A for a set of jobs with arbitrary release time,
we also need to define a potential function Φ(t), whose form is usually associated with the status of the job
set at any time t under both online algorithm and the optimal offline algorithm [31]. We can similarly define
dΦ(t)
dt = Φ(t+∆t)−Φ(t)

∆t to be the rate of change for the potential function at time t.

3.1.3 Analysis Techniques

We now outline two analysis techniques for proving the competitiveness of any online scheduling algorithm. They
are commonly known as the amortized local competitiveness argument and the local competitiveness argument
in the literature [40, 31]. Both techniques compare the cost of an online algorithm at any local time instance,
or its instantaneous cost, with respect to that of an optimal offline scheduler. For arbitrarily released jobs,
the comparison is performed with the help of the first lower bound given in Lemma 1 and a carefully designed
potential function. For jobs with identical release time, both lower bounds are used to represent the performance
of the optimal.

The following lemma first illustrates the use of amortized local competitiveness argument for jobs with
arbitrary release time. The technique arrives at the competitive ratio of any online algorithm A by bounding
its instantaneous cost at any time t with respect to the optimal offline scheduler.
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Lemma 3 Suppose that an online algorithm A schedules a set J of jobs with arbitrary release time. Then A is
(c1 + c2)-competitive with respect to total flow time plus energy, if given a potential function Φ(t), the execution
of the job set satisfies the following

- Boundary condition: Φ(0) ≤ 0 and Φ(∞) ≥ 0;
- Arrival condition: Φ(t) does not increase whenever a new job arrives;
- Completion condition: Φ(t) does not increase whenever a job completes under either A or the optimal

offline scheduler;

- Running condition: dGA(J (t))
dt + dΦ(t)

dt ≤ c1 ·
dGOPT(J

∗(t))
dt + c2 ·

dG∗

1(J (t))
dt at all time t ≥ 0.

Proof. Let T denote the set of time instances when a job arrives or completes under either the online algorithm
A or the optimal offline scheduler. Integrating the running condition over time and applying Lemma 2, we get
GA(J ) + Φ(∞) − Φ(0) +

∑

t∈T (Φ(t−)− Φ(t+)) ≤ c1 · GOPT(J ) + c2 · G
∗
1(J ), where t− and t+ denote the

times right before and after the event occurred at time t. Now, applying boundary, arrival and completion
conditions to the above inequality, we get GA(J ) ≤ c1 ·GOPT(J ) + c2 ·G

∗
1(J ). Since G∗1(J ) is a lower bound

on the total flow time plus energy of job set J according to Lemma 1, the performance of algorithm A satisfies
GA(J ) ≤ (c1 + c2) ·GOPT(J ).

When scheduling a set of jobs with identical release time, the analysis turns out to be simpler as the potential
function is usually not needed. In this case, we can get the competitive ratio of online algorithm A by using the
local competitiveness argument, which directly compares its instantaneous cost at any time t with respect to
the rates of change for both lower bounds given in Lemma 1. The following lemma illustrates this technique.

Lemma 4 Suppose that an online algorithm A schedules a set J of jobs with identical release time. Then A

is (c1 + c2)-competitive with respect to total flow time plus energy, if the execution of the job set satisfies the
following

- Running condition: dGA(J (t))
dt ≤ c1 ·

dG∗

1(J (t))
dt + c2 ·

dG∗

2(J (t))
dt at all time t ≥ 0.

Proof. Similarly to the proof of Lemma 3, by integrating the running condition over time and applying
Lemma 2, we get GA(J ) ≤ c1 ·G

∗
1(J )+ c2 ·G

∗
2(J ). Since both G∗1(J ) and G∗2(J ) are lower bounds on the total

flow time plus energy of job set J according to Lemma 1, the result follows.

3.2 Non-clairvoyant Algorithm: N-EQUI

It was shown in [17, 44] that any non-clairvoyant algorithm that allocates a set of uniform-speed processors to a

job is Ω(P (α−1)/α2

)-competitive, where P is the total number of processors. To achieve better performance, we
propose a non-clairvoyant algorithm called N-EQUI (Non-uniform Equi-partitioning), which equally partitions
the P processors among the nt active jobs at any time t. Algorithm 1 describes its details.

Specifically, when the number of processors is at least the number of active jobs, i.e., P ≥ nt, it sets the
speeds of the allocated processors for each active job in a non-uniform manner. Intuitively, since the algorithm
does not know the parallelism of a job to guide its processor allocation, the non-uniform speed assignment
balances the waste of energy due to the possible over-allocation and the delay of the job due to the possible
under-allocation. On the other hand, when nt > P , it assigns the same speed to all processors and relies on
time-sharing to allocate P/nt fraction of a processor to each active job, which is commonly implemented in an
operating system using the round robin policy. Note that since the parallelism of any active job is at least 1,
no energy waste will be incurred in this case.

Algorithm 1 N-EQUI

Input: total number P of processors and number nt of active jobs at time t.
Output: number of allocated processors and their speeds for each active job at time t.
1: if P ≥ nt then

2: allocate ai(t) =
⌊

P
nt

⌋

processors to each active job Ji.

3: set the speed of the j’th processor allocated to job Ji to be sij(t) =
(

1
(α−1)HP ·j

)1/α

, where j = 1, · · · , ai(t)

and HP =
∑P

k=1
1
k is the P ’th harmonic number.

4: else

5: allocate ai(t) =
P
nt

fraction of a processor to each active job Ji.

6: set the speed of all processors to be s(t) =
(

nt

(α−1)HP ·P

)1/α

.
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At any time t when job Ji is in its k’th phase, we say that it is satisfied if its processor allocation is at least
its instantaneous parallelism, i.e., ai(t) ≥ hk

i . Otherwise, the job is said to be deprived. Let J (t) denote the
set of all active jobs at time t, and let JS(t) and JD(t) denote the set of satisfied and deprived jobs at time t,
respectively. For convenience, we let nS

t = |JS(t)| and nD
t = |JD(t)|. Since an active job is either satisfied or

deprived, we have |J (t)| = nt = nS
t + nD

t . Moreover, we define xt = nD
t /nt to be the deprived ratio at time t.

To assist analysis, we first bound the execution rate and the power consumption of N-EQUI for any active job
at time t in the following lemma.

Lemma 5 Suppose that N-EQUI schedules a set J of jobs. Then for any job Ji ∈ J , its execution rate at time

t satisfies
(

1
(α−1)HP

)1/α
āi(t)

1−1/α

21/α
≤ Γk

i (t) ≤
(

1
(α−1)HP

)1/α
āi(t)

1−1/α

1−1/α , where āi(t) = min{ai(t), h
k
i } denotes the

effective processor allocation for job Ji at time t. Also, the power consumption of the job at time t satisfies
ui(t) ≤

1
α−1 .

Proof. When P < nt, we have ai(t) = P/nt < 1 ≤ hk
i for job Ji, so āi(t) = ai(t). The execution rate of the

job is given by Γk
i (t) = ai(t)s(t) =

(

1
(α−1)HP

)1/α

āi(t)
1−1/α, and its power consumed is ui(t) =

1
(α−1)HP

≤ 1
α−1 .

When P ≥ nt, we have āi(t) ≥ 1, since ai(t) = ⌊P/nt⌋ ≥ 1 and hk
i ≥ 1. The execution rate of the job is

Γk
i (t) =

∑āi(t)
j=1 sij(t) =

(

1
(α−1)HP

)1/α
∑āi(t)

j=1
1

j1/α
, which can be approximated with integration:

∑āi(t)
j=1 sij(t) ≤

(

1
(α−1)HP

)1/α
∫ āi(t)

0
1

j1/α
dj =

(

1
(α−1)HP

)1/α
āi(t)

1−1/α

1−1/α , and
∑āi(t)

j=1 sij(t) ≥
(

1
(α−1)HP

)1/α
∫ āi(t)+1

1
1

j1/α
dj =

(

1
(α−1)HP

)1/α
(āi(t)+1)1−1/α−1

1−1/α ≥
(

1
(α−1)HP

)1/α

· 21−1/α−1
1−1/α āi(t)

1−1/α ≥
(

1
(α−1)HP

)1/α
āi(t)

1−1/α

21/α
. The second

to last inequality follows because (x+1)1−1/α−1
x1−1/α is an increasing function of x for all x > 0 and we have āi(t) ≥ 1.

The power consumption of the job satisfies ui(t) =
∑ai(t)

j=1 sij(t)
α = 1

(α−1)HP

∑ai(t)
j=1

1
j =

Hai(t)

(α−1)HP
≤ 1

α−1 , where

Hai(t) is ai(t)’th harmonic number, and Hai(t) ≤ HP since ai(t) ≤ P at all time.

3.2.1 Performance for Jobs with Arbitrary Release Time

We first bound the performance of N-EQUI for a set of jobs with arbitrary release time. We adopt the potential
function proposed by Lam et al. [38] in the analysis of an online speed scaling algorithm for sequential jobs.

Specifically, we focus on the t-suffix J (
−→
t ) of job set J and define nt(z) to be the number of active jobs whose

remaining work is at least z at time t under N-EQUI, i.e., nt(z) =
∑

Ji∈J (t)[w(Ji(
−→
t )) ≥ z], where [x] is 1 if

proposition x is true and 0 otherwise. Also, define n∗t (z) to be the number of active jobs whose remaining work
is at least z at time t under the optimal offline algorithm. The potential function is then defined as

Φ(t) = η

∫ ∞

0









nt(z)
∑

i=1

i1−1/α



− nt(z)
1−1/αn∗t (z)



 dz, (3)

where η = η′
H

1/α
P

P 1−1/α and η′ is a constant to be specified later. In particular, the integration of the first term of
the potential function is proportional to the optimal total flow time plus energy for the remaining portion, or
t-suffix, of the job set at time t scheduled under N-EQUI. The second term of the potential function is added to
ensure that the arrival condition will be satisfied. (See proof of Theorem 1.)

In addition, we need to use the following lemma in our proof.

Lemma 6 For any nt ≥ 0, s∗j ≥ 0 and λ > 0, we have that n
1−1/α
t s∗j ≤

λ(HP ·P )1−1/α

α

(

s∗j
)α

+ 1−1/α

λ1/(α−1)(HP ·P )1/α
nt.

Proof. The lemma is a direct result of Young’s Inequality [28], which is stated formally as follows. If f is
a continuous and strictly increasing function on [0, c] with c > 0, f(0) = 0, a ∈ [0, c] and b ∈ [0, f(c)], then

ab ≤
∫ a

0
f(x)dx+

∫ b

0
f−1(x)dx, where f−1 is the inverse function of f . By setting f(x) = λ (HP · P )1−1/α xα−1,

a = s∗j and b = n
1−1/α
t , the lemma is directly implied.

Using Lemmas 3, 5 and 6, we now prove the competitive ratio of N-EQUI for jobs with arbitrary release
time.

Theorem 1 N-EQUI is O(lnP )-competitive with respect to total flow time plus energy for any set of parallel
jobs, where P is the total number of processors.
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Proof. We will show that the execution of any job set scheduled by N-EQUI (NE for short) satisfies the

boundary, arrival and completion conditions in Lemma 3, as well as the running condition dGNE(J (t))
dt + dΦ(t)

dt ≤

c1 ·
dGOPT(J

∗(t))
dt +c2 ·

dG∗

1(J (t))
dt , where c1 = O(lnP ) and c2 = O(ln1/α P ). The theorem then follows by Lemma 3.

- Boundary condition: At time 0, no job exists, so we have nt(z) = n∗t (z) = 0 for all z ≥ 0, and so Φ(0) = 0.
At time ∞, all jobs are completed, so again we have Φ(∞) = 0. Hence, the boundary condition is satisfied.

- Arrival condition: Let t− and t+ denote the time instances right before and after a new job with work
w arrives at time t. Then we have nt+(z) = nt−(z) + 1 for z ≤ w and nt+(z) = nt−(z) for z > w, and
similarly n∗t+(z) = n∗t−(z) + 1 for z ≤ w and n∗t+(z) = n∗t−(z) for z > w. For convenience, we define φt(z) =
(

∑nt(z)
i=1 i1−1/α

)

− nt(z)
1−1/αn∗t (z). It is obvious that for z > w, we have φt+(z) = φt−(z). For z ≤ w, we

can get φt+(z) − φt−(z) = n∗t−(z)
(

nt−(z)
1−1/α − (nt−(z) + 1)1−1/α

)

≤ 0. Hence, Φ(t+) = η
∫∞

0 φt+(z)dz ≤

η
∫∞

0
φt−(z)dz = Φ(t−), and the arrival condition is satisfied.

- Completion condition: When a job completes under either N-EQUI or the optimal schedule, Φ(t) is un-
changed because nt(z) or n∗t (z) reduces by 1 for z = 0 but does not change for all z > 0. Therefore, the
completion condition is satisfied.

- Running condition: According to Lemma 5, the overall power consumption ut of all active jobs at time

t under N-EQUI satisfies ut ≤
nt

α−1 . Thus, we have dGNE(J (t))
dt = nt + ut ≤

α
α−1nt. Suppose the optimal

offline scheduler sets the speed of the j’th processor to s∗j at time t, which then gives dGOPT(J
∗(t))

dt = n∗t +

u∗t = n∗t +
∑P

j=1

(

s∗j
)α

. To bound the rate of change
dG∗

1(J (t))
dt , it turns out to be sufficient to consider the

set JS(t) of satisfied jobs. Specifically, for each satisfied job Ji ∈ JS(t), if it is in its k’th phase at time
t under N-EQUI, then we have ai(t) ≥ hk

i . According to Lemma 5, the execution rate of the job is given by

Γk
i (t) ≥

(

1
(α−1)HP

)1/α (hk
i )

1−1/α

21/α
. Since

dG∗

1(J (t))
dt only depends on the unit-power span completed for the jobs at

time t under the schedule of N-EQUI, we have
dG∗

1(J (t))
dt ≥ α

(α−1)1−1/α

∑

Ji∈JS(t)
Γk
i (t)

(hk
i )

1−1/α ≥
α

α−1

(

1
2HP

)1/α

nS
t =

α
α−1

(

1
2HP

)1/α

(1− xt)nt, where xt is the deprived ratio.

Now, we focus on finding an upper bound for the rate of change dΦ(t)
dt of the potential function Φ(t) at time t.

To this end, we mainly consider the set JD(t) of deprived jobs. If a deprived job Ji ∈ JD(t) is in its k’th phase

at time t under N-EQUI, then ai(t) < hk
i , and the execution rate of the job satisfies

(

1
(α−1)HP

)1/α
ai(t)

1−1/α

21/α
≤

Γk
i (t) ≤

(

1
(α−1)HP

)1/α
ai(t)

1−1/α

1−1/α by Lemma 5. In the worst case, the nD
t deprived jobs may have the most

remaining work, so they will take the smallest nD
t indices in the first term of the potential function given in

Equation (3). While considering the set of satisfied jobs can further decrease Φ(t), we ignore these jobs for
deriving an upper bound on the rate of change for the first term of the potential function, and use all active
jobs for bounding the rate of change for the second term. The overall rate of change for the potential function
can then be bounded by

dΦ(t)

dt
= η ·

d

dt

∫ ∞

0









nt(z)
∑

i=1

i1−1/α



 − nt(z)
1−1/αn∗t (z)



 dz

≤
η

∆t

∫ ∞

0









nt+∆t(z)
∑

i=1

i1−1/α



−





nt(z)
∑

i=1

i1−1/α







 dz

+
η

∆t

∫ ∞

0

[

nt(z)
1−1/α

(

n∗t (z)− n∗t+∆t(z)
)

+ n∗t (z)
(

nt(z)
1−1/α − nt+∆t(z)

1−1/α
)]

dz

≤
η′H

1/α
P

P 1−1/α



−

nD
t
∑

i=1

i1−1/α · Γk
i (t) + n

1−1/α
t

P
∑

j=1

s∗j + n∗t

nt
∑

i=1

(

i1−1/α − (i − 1)1−1/α
)

Γk
i (t)



 .

We can get
∑nD

t

i=1 i
1−1/α ≥

∫ nD
t

0 i1−1/αdi =
(nD

t )
2−1/α

2−1/α ≥
x2
tn

2−1/α
t

2 and
∑nt

i=1

(

i1−1/α − (i− 1)1−1/α
)

=

n
1−1/α
t . Moreover, according to Lemma 6, we have n

1−1/α
t

∑P
j=1 s

∗
j ≤

λ(HP ·P )1−1/α

α

∑P
j=1

(

s∗j
)α

+ 1−1/α

λ1/(α−1)(HP ·P )1/α
Pnt,

where λ is a constant to be specified later. For each satisfied job Ji ∈ JS(t), we have h
k
i ≤ ai(t), so its execution

rate satisfies Γk
i (t) ≤

(

1
(α−1)HP

)1/α (hk
i )

1−1/α

1−1/α ≤
(

1
(α−1)HP

)1/α
ai(t)

1−1/α

1−1/α by Lemma 5. Finally, for each job

Ji ∈ J (t), we have P
2nt
≤
⌊

P
nt

⌋

≤ ai(t) ≤
P
nt
. Substituting these bounds into dΦ(t)

dt above and simplifying, we
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have

dΦ(t)

dt
≤ η′



−
x2
t

4(α− 1)1/α
nt +

λHP

α

P
∑

j=1

(

s∗j
)α

+
1− 1/α

λ1/(α−1)
nt +

α

(α− 1)1+1/α
n∗t



 . (4)

Now, we set η′ = 4α2

(α−1)1−1/α and λ = 4α−1(α−1)1−1/α. Substituting Inequality (4) as well as the bounds for
dGNE(J (t))

dt , dGOPT(J
∗(t))

dt and
dG∗

1(J (t))
dt into the running condition, we can see that it can be satisfied for all valid

values of xt by setting the multipliers to be c1 = max{ 4α3

(α−1)2 , 4
ααHP } and c2 = 2α · (2HP )

1/α
. Since α can be

considered as a constant with respect to P , and it is well-known that HP = O(lnP ), the theorem is proved.

3.2.2 Performance for Jobs with Identical Release Time

We now bound the performance of N-EQUI for jobs with identical release time. We show that the competitive
ratio of N-EQUI can be slightly improved in this case compared to the one achieved for arbitrarily released jobs.
The following theorem gives the result.

Theorem 2 N-EQUI is O(ln1/α P )-competitive with respect to total flow time plus energy for any set of parallel
jobs with identical release time, where P is the total number of processors.

Proof. We will show that the execution of any job set scheduled by N-EQUI satisfies the running condition
dGNE(J (t))

dt ≤ c1 ·
dG∗

1(J (t))
dt + c2 ·

dG∗

2(J (t))
dt , where c1 = O(ln1/α P ) and c2 = O(ln1/α P ). The theorem is then

implied by Lemma 4.

We first note from the proof of Theorem 1 that the instantaneous cost of N-EQUI satisfies dGNE(J (t))
dt ≤ α

α−1nt,

and the rate of change for the first lower bound satisfies
dG∗

1(J (t))
dt ≥ α

α−1

(

1
2HP

)1/α

(1 − xt)nt. It remains to

bound the rate of change
dG∗

2(J (t))
dt for the second lower bound. To this end, we focus on the t-prefix J (

←−
t ) of

the job set J and redefine nt(z) to be the number of jobs whose completed work is at least z at time t under

N-EQUI, i.e., nt(z) =
∑

Ji∈J
[w(Ji(

←−
t )) ≥ z]. Note that we do not restrict a job to be active when considering

its contribution towards nt(z). This is consistent with the definition of t-prefix J (
←−
t ) for job set J , which

allows us to express the the second lower bound given in Lemma 1 but with respect to the t-prefix J (
←−
t ) of job

set J as follows

G∗2(J (
←−
t )) =

α

((α− 1)P )
1−1/α

∫ ∞

0





nt(z)
∑

i=1

i1−1/α



 dz.

Again we only focus on the set JD(t) of deprived jobs, and for each deprived job Ji ∈ JD(t), its execution

rate satisfies Γk
i (t) ≥

(

1
(α−1)HP

)1/α
ai(t)

1−1/α

21/α
by Lemma 5. In the worst case, the nD

t deprived jobs have

completed the most work so far, so they will take the smallest nD
t indices in the above expression of G∗2(J (

←−
t )).

Thus, the rate of change
dG∗

2(J (t))
dt is bounded by

dG∗2(J (t))

dt
=

α

((α − 1)P )
1−1/α

·
d

dt

∫ ∞

0





nt(z)
∑

i=1

i1−1/α



 dz

=
α

((α − 1)P )
1−1/α

·
1

∆t

∫ ∞

0









nt+∆t(z)
∑

i=1

i1−1/α



−





nt(z)
∑

i=1

i1−1/α







 dz

≥
α

((α − 1)P )
1−1/α

nD
t
∑

i=1

i1−1/α · Γk
i (t)

≥
α

α− 1
·

x2
tnt

4H
1/α
P

. (5)

Substituting Inequality (5) as well as the bounds for dGNE(J (t))
dt and

dG∗

1(J (t))
dt into the running condition,

we can see that it is satisfied for all valid values of xt if we set c1 = 21+1/αH
1/α
P and c2 = 4H

1/α
P . Thus, the

theorem is proved.
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3.3 Lower Bound for Any Non-clairvoyant Algorithm

In this section, we prove a lower bound of Ω(ln1/α P ) on the competitive ratio of any non-clairvoyant algorithm
even with non-uniform speed assignments. Since this lower bound matches the upper bound of N-EQUI for
parallel jobs with identical release time, it shows that N-EQUI is asymptotically optimal in that setting.

Before proving the lower bound, we first present a useful lemma, which gives the solution of a minimization
problem. The proof basically transforms this minimization problem into a convex optimization problem, and
solves it by applying the KKT conditions [12].

Lemma 7 For any P ≥ 1, α > 1 and b > 0, if
∑P

j=1 s
α
j = b and s1 ≥ s2 ≥ · · · ≥ sP ≥ 0, then

max1≤h≤P
h1−1/α
∑h

j=1 sj
is minimized when (s1, s2, · · · , sP ) satisfy

h1−1/α
∑h

j=1 sj
= (h−1)1−1/α

∑h−1
j=1 sj

for all h = 2, · · · , P .

Proof. To prove this lemma, we transform the stated problem into a convex optimization problem. We then
show that our proposed solution satisfies the KKT conditions [12], which are known to be sufficient for the
optimality of convex minimization problems. This then leads to the proof of the lemma. First, by introducing
a variable y, the original optimization problem can be transformed into the following minimization problem:

minimize y

subject to

P
∑

j=1

sαj = b (6)

sj ≥ sj+1 for j = 1, · · · , P − 1

y ≥
h1−1/α

∑h
j=1 sj

for h = 1, · · · , P

However, the above minimization problem is not convex because its equality constraint (Equation 6) is not
linear. Substituting zj = sαj , we transform it into a convex optimization problem as follows:

minimize y

subject to

P
∑

j=1

zj = b (7)

zj+1 − zj ≤ 0 for j = 1, · · · , P − 1 (8)

h1−1/α

∑h
j=1 z

1/α
j

− y ≤ 0 for h = 1, · · · , P (9)

For this minimization problem, the objective function and the only equality constraint (Equation (7)) are
linear, the inequality constraints (Inequalities (8) and Inequalities (9)) are convex. Note that Inequalities (9)

are convex because 1/f(x) is a convex function if f(x) is a positive concave function, and
∑h

j=1 z
1/α
j is concave

because z
1/α
j is concave for α > 1. We have now transformed our min-max optimization problem into a convex

minimization problem. We will prove that the following (y∗, z∗1 , · · · , z
∗
P ) is an optimal solution to the above

convex minimization problem, by showing that it satisfies the KKT conditions.

y∗ =
h1−1/α

∑h
j=1(z

∗
j )

1/α
for h = 1, · · · , P (10)

Let xj = j1−1/α − (j − 1)1−1/α for j = 1, · · · , P , so that xj > xj+1. From Equation (10) and Equation (7),
we get z∗j = b ·

xj
∑P

i=1 xα
j

and therefore z∗j > z∗j+1 for j = 1, · · · , P − 1.

To prove (y∗, z∗1 , · · · , z
∗
P ) satisfies the KKT conditions, we need to show that it satisfies primal feasibility, dual

feasibility, complementary slackness, and stationarity. It is not hard to see that the proposed solution satisfies
the primal feasibility in Equation (7), Inequalities (8) and Inequalities (9). Let us now associate multipliers
with the constraints:

λ :
P
∑

j=1

zj = b

wj : zj+1 − zj ≤ 0 for j = 1, ..., P − 1

µh :
h1−1/α

∑h
j=1 z

1/α
j

− y ≤ 0 for h = 1, ..., P

11



Since we have z∗j > z∗j+1 for j = 1, · · · , P − 1, to satisfy complementary slackness, we have wj = 0 for
j = 1, · · · , P −1. Now we need to show that there exists λ and µh ≥ 0 such that dual feasibility and stationarity
are satisfied. To derive the stationarity condition, consider the Lagrangian function:

L(y, zj, λ, µh) = y +

P
∑

h=1

µh

(

h1−1/α

∑h
j=1 z

1/α
j

− y

)

+ λ





P
∑

j=1

zj − b



 .

Taking the derivative of the Lagrangian function with respect to y and zj , setting them to zero, and
substituting in (y∗, z∗1 , ..., z

∗
P ), we get the following set of stationarity conditions:

P
∑

h=1

µh = 1, (11)

(y∗)2

α(z∗j )
1−1/α





P
∑

h=j

µh

h1−1/α



 = λ for j = 1, · · · , P. (12)

Solving the linear system in Equations (12) by considering µh as variables, we have µh = ch · λ, where

ch =
h1−1/α

(

(z∗

h)
1−1/α−(z∗

h+1)
1−1/α

)

α

(y∗)2 , for each h = 1, · · · , P , and z∗P+1 is defined to be 0. According to the

values of (y∗, z∗1 , · · · , z
∗
P ), we know that y∗ > 0, z∗h > 0 and z∗h > z∗h+1. Therefore, we have ch > 0 for

h = 1, ..., P . Substituting µh = ch · λ into Equation (11), we get λ = 1
∑

P
h=1 ch

> 0, which implies that

µh > 0 for all h = 1, · · · , P . Thus, we have shown that the dual feasibility is satisfied. Moreover, there
exist λ and µh that make our proposed solution (y∗, z∗1 , · · · , z

∗
P ) satisfy stationarity, and hence all the KKT

conditions. Therefore, it is an optimal solution for the convex minimization problem, and the corresponding
speed assignment s∗j = (z∗j )

1/α is optimal for the original optimization problem.

Using Lemma 7, the following theorem gives the lower bound for any non-clairvoyant algorithm.

Theorem 3 Any non-clairvoyant algorithm is Ω(ln1/α P )-competitive with respect to total flow time plus energy,
where P is the total number of processors.

Proof. Consider a job set J containing only a single job with constant parallelism h and work w, where
1 ≤ h ≤ P and w > 0. For any non-clairvoyant algorithm A, we can assume without loss of generality that
it allocates all P processors to the job with speeds s1 ≥ s2 ≥ · · · ≥ sP ≥ 0, which do not change throughout
the job’s execution since the work w can be arbitrarily small. The power consumption of A at any time is
then given by u =

∑P
j=1 s

α
j . The flow time plus energy of J scheduled by A is GA(J ) = (1 + u) w

∑h
j=1 sj

. The

optimal offline scheduler, knowing the parallelism h, will allocate exactly h processors of speed
(

1
(α−1)h

)1/α

,

thus incurring flow time plus energy of GOPT(J ) =
α

(α−1)1−1/α ·
w

h1−1/α . The competitive ratio of A is GA(J )
GOPT(J ) =

(α−1)1−1/α(1+u)
α · h1−1/α

∑h
j=1 sj

.

The adversary will choose parallelism h to maximize this ratio, i.e., to find max1≤h≤P
GA(J )

GOPT(J ) , while the

online algorithm A chooses (s1, · · · , sP ) to minimize max1≤h≤P
GA(J )

GOPT(J ) regardless of the choice of h. According

to Lemma 7, max1≤h≤P
h1−1/α
∑

h
j=1 sj

is minimized when h1−1/α
∑

h
j=1 sj

= (h−1)1−1/α

∑h−1
j=1 sj

for h = 2, · · · , P . Hence, by solving this

set of equations, the best non-clairvoyant algorithm will set sj =
(

j1−1/α − (j − 1)1−1/α
)

s1 for j = 1, 2, · · · , P .

Since j1−1/α − (j − 1)1−1/α ≥ 1−1/α

j1/α
, we have sj ≥

1−1/α

j1/α
s1. Substituting these into u =

∑P
j=1 s

α
j , we

get s1 ≤
αu1/α

(α−1)H
1/α
P

, where HP is the P ’th Harmonic number. The competitive ratio of any non-clairvoyant

algorithm A thus satisfies GA(J )
GOPT(J ) ≥

(α−1)1−1/α(1+u)
α · 1

s1
≥ (α−1)2−1/α

α2 · 1+u
u1/αH

1/α
P ≥ α−1

α · H
1/α
P . The last

inequality holds because 1+u
u1/α is minimized when u = 1

α−1 . Since it is also known that HP = Ω(lnP ), the
theorem is proved.

3.4 IP-clairvoyant Algorithm: U-CEQ

In this section, we present an IP-clairvoyant algorithm called U-CEQ (Uniform Conservative Equi-Partitioning).
We show that knowledge about the instantaneous parallelism of the jobs does help to improve the performance
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of an online algorithm. In particular, we prove that U-CEQ is O(1)-competitive with respect to total flow time
plus energy, even for jobs with arbitrary release time.

Algorithm 2 describes the U-CEQ algorithm. As we can see, U-CEQ works similarly to N-EQUI, but it never
allocates more processors to a job than the job’s instantaneous parallelism at any time. Moreover, the speeds
of the processors allocated to a job are assigned in a uniform manner.

Algorithm 2 U-CEQ

Input: total number P of processors, number nt of active jobs at time t and the instantaneous parallelism hk
i

of each active job Ji at time t.
Output: number of allocated processors and their speeds for each active job at time t.
1: if P ≥ nt then

2: allocate ai(t) = min{hk
i ,
⌊

P
nt

⌋

} processors to each active job Ji.

3: set the speed of all ai(t) processors allocated to job Ji to be si(t) =
(

1
(α−1)ai(t)

)1/α

.

4: else

5: allocate ai(t) =
P
nt

fraction of a processor to each active job Ji.

6: set the speed of all processors to be s(t) =
(

nt

(α−1)P

)1/α

.

To analyze the performance of U-CEQ, we say that job Ji is satisfied at time t if ai(t) = hk
i , and that it is

deprived if ai(t) < hk
i . We see that at time t, a job Ji scheduled by U-CEQ has execution rate Γk

i (t) =
ai(t)

1−1/α

(α−1)1/α

and consumes power ui(t) =
1

α−1 . Therefore, the overall power consumption is given by ut =
nt

α−1 . The following
theorem gives the performance of U-CEQ for jobs with arbitrary released times.

Theorem 4 U-CEQ is
(

max{ 4α2

α−1 , 4
αα}+ 2α

)

-competitive with respect to total flow time plus energy for any

set of parallel jobs.

Proof. As with the analysis of N-EQUI, we prove the competitiveness of U-CEQ using amortized local com-

petitiveness argument with the same potential function as in Equation (3), but with η now set to η = η′

P 1−1/α ,

where η′ = 4α2

(α−1)1−1/α . Clearly, the boundary, arrival and completion conditions continue to hold. We

now show that the execution of any job set under U-CEQ (UC for short) satisfies the running condition
dGUC(J (t))

dt + dΦ(t)
dt ≤ c1 ·

dGOPT(J
∗(t))

dt + c2 ·
dG∗

1(J (t))
dt , where c1 = max{ 4α2

α−1 , 4
αα} and c2 = 2α.

Following the proof of Theorem 1, we have dGUC(J (t))
dt = α

α−1nt,
dGOPT(J

∗(t))
dt = n∗t +

∑P
j=1

(

s∗j
)α

, and
dG∗

1(J (t))
dt ≥ α

(α−1)1−1/α

∑

Ji∈JS(t)
Γk
i (t)

(hk
i )

1−1/α = α
α−1 (1 − xt)nt, where xt is the deprived ratio as defined earlier.

The rate of change dΦ(t)
dt for the potential function Φ(t) at time t can be shown to satisfy

dΦ(t)

dt
≤

η′

P 1−1/α



−

nD
t
∑

i=1

i1−1/α · Γk
i (t) + n

1−1/α
t

P
∑

j=1

s∗j + n∗t

nt
∑

i=1

(

i1−1/α − (i− 1)1−1/α
)

Γk
i (t)





≤ η′



−
x2
t

4(α− 1)1/α
nt +

λ

α

P
∑

j=1

(

s∗j
)α

+
1− 1/α

λ1/(α−1)
nt +

n∗t
(α− 1)1/α



 ,

where λ = 4α−1(α − 1)1−1/α. Substituting these bounds into the running condition, we see that it is satisfied
for all valid values of xt. Hence, the theorem is proved.

Theorem 4 shows that U-CEQ is O(1)-competitive for total flow time plus energy, since α can be considered
as a constant with respect to P . The competitive ratio, however, is still exponential in α. The following theorem
shows that, for jobs with identical release time, the competitive ratio can be further improved to be strictly
smaller than 6 regardless of the value of α.

Theorem 5 U-CEQ is
(

22−1/α + 2
)

-competitive with respect to total flow time plus energy for any set of parallel
jobs with identical release time.

Proof. Similarly to the proof for N-EQUI, we prove the competitiveness of U-CEQ for jobs with identical
release time using the local competitive argument. In particular, we show that any job set scheduled by U-CEQ

satisfies the running condition dGUC(J (t))
dt ≤ 2 ·

dG∗

1(J
∗(t))

dt +22−1/α ·
dG∗

2(J (t))
dt . Again, we have dGUC(J (t))

dt = α
α−1nt
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and
dG∗

1(J (t))
dt ≥ α

α−1 (1 − xt)nt from the proof of Theorem 4. Also, by following the proof of Theorem 2, we

can get
dG∗

2(J (t))
dt ≥ α

((α−1)P )1−1/α

∑nD
t

i=1 i
1−1/α · Γk

i (t) ≥
α

α−1 ·
x2
tnt

22−1/α . Using these bounds, the desired running

condition can be satisfied for all valid values of xt.

U-CEQ improves upon any non-clairvoyant algorithm with respect to total flow time plus energy. This is
essentially due to U-CEQ not wasting any energy yet still guaranteeing a sufficient execution rate for the jobs.
Since it is known that non-clairvoyant algorithms perform similarly to the IP-clairvoyant ones with respect to
total flow time alone [21, 23, 34, 24], Theorems 4 and 5 show the importance of (even partial) clairvoyance when
energy is also of concern. Moreover, since U-CEQ is aware of the instantaneous parallelism of the jobs, uniform
speed scaling is sufficient to ensure its competitiveness. Therefore, compared to the non-clairvoyant algorithm
N-EQUI, which requires non-uniform speed scaling, U-CEQ may be more feasible in practice, especially when
scheduling for jobs whose parallelism does not change frequently. Lastly, note that non-uniform speed scaling is
not beneficial in the IP-clairvoyant setting. Indeed, using non-uniform speeds can only degrade an algorithm’s
performance, since generally less energy will be consumed at the same execution rate when using a uniform
speed [49].

4 Makespan Plus Energy

In this section, we consider the objective of minimizing makespan plus energy. In particular, we propose an
IP-clairvoyant algorithm called WCEP, and show that it is O(ln1−1/α P )-competitive for any set of parallel jobs
regardless of their release time. We also show that this ratio is asymptotically optimal for any IP-clairvoyant
algorithm.

4.1 Performance of the Optimal

To bound the performance of WCEP, we first derive a bound on the performance of the optimal offline scheduler.
It turns out that, for makespan plus energy, we need only focus on the case where all jobs are released together,
as we will show in Section 4.2.2, adding release time to the jobs will increase the competitive ratio of our
algorithm by at most a constant factor in the worst case.

In the following lemma, we show that to minimize makespan plus energy for jobs with identical release time,
the optimal scheduler always maintains a constant total power of 1

α−1 at any time.

Lemma 8 Given a set of jobs with identical release time, the optimal scheduler will execute the jobs with a
constant total power of 1

α−1 at any time during the execution.

Proof. We prove the lemma by contradiction.
Consider an interval ∆t during which the speeds of all processors, denoted by (s1, s2, · · · , sP ), remain

unchanged in the optimal schedule. The makespan plus energy incurred when executing this portion of the job
set is given by H = ∆t(1 + u), where u =

∑P
j=1 s

α
j is the power consumption of all the processors during ∆t.

Suppose that u 6= 1
α−1 . We will show that by modifying the power consumption, we can reduce the overall

makespan plus energy.
Specifically, the modified schedule executes the same portion of the job set by running the j’th processor at

speed k · sj , where k =
(

1
(α−1)u

)1/α

. This portion will then finish in ∆t
k time, and consumes 1

α−1 power at any

time during this interval. The new makespan plus energy incurred when executing this portion of the job set

is H ′ = ∆t
k (1 + 1

α−1 ) =
α

(α−1)1−1/α∆tu1/α. Hence, we have H
H′

= (α−1)1−1/α

α · 1+u
u1/α > 1, i.e., H > H ′, since 1+x

x1/α

is uniquely minimized at x = 1
α−1 for all x > 0 and u 6= 1

α−1 . While the costs incurred when executing other
portions of the job set are unchanged, the modified schedule incurs a strictly less makespan plus energy. This
contradicts the fact that the original schedule is optimal.

Intuitively, since the jobs contribute 1 towards the makespan part of the objective function at any time
during their execution, Lemma 8 implies that the optimal strategy provides a balanced contribution towards
the power consumption part of the objective at all time.5 However, this result only holds when the jobs have
identical release time. For jobs with arbitrary release time, speeding up the execution whenever the power is
less than 1

α−1 may not be helpful, for the subsequent jobs may not have arrived yet to fill in the gap. Therefore,

the optimal power consumption in this case would be upper-bounded by 1
α−1 .

5A similar argument will show that the optimal strategy for the objective of total flow time plus energy maintains a power
consumption of nt

α−1
at any time t, where nt is the number of active jobs at time t. The proof of Lemma 1 suggests that the

optimal scheduler indeed satisfies this property.
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Lemma 8 shows that the total power consumed by all the jobs should be constant over time in the optimal
schedule, provided that all jobs are released at the same time. The following lemma shows that the optimal
scheduler also uses a constant power throughout the execution of any individual job, provided that sufficient
processors are available.

Lemma 9 Given a set of jobs, suppose that there are sufficient processors available to satisfy all jobs at all
time, i.e., P ≥

∑n
i=1 h

max
i , where hmax

i = maxk=1..ki h
k
i . Then, the optimal scheduler will allocate a constant

power to any individual job throughout its execution.

Proof. Again, we prove the lemma by contradiction.
Since there are sufficient processors in the system, by the convexity of the power function, the optimal

scheduler should allocate exactly hk
i processors of the same speed to each phase Jk

i . Now, suppose that there
exist two phases from the same job, to which the optimal scheduler does not allocate the same power, and
let 〈w1, h1〉 and 〈w2, h2〉 denote the work-parallelism pairs of these two phases, respectively. Thus, we have
h1s

α
1 6= h2s

α
2 , where s1 and s2 denote the speeds of the processors allocated to the two phases. We will show

that, by modifying the power allocations for the two phases, we can reduce the overall energy consumption
while maintaining the execution time of the job.

Let t1 = w1

h1s1
and t2 = w2

h2s2
. The overall execution time and energy consumption of the two phases are

given by T = t1 + t2 and E = t1 · h1s
α
1 + t2 · h2s

α
2 , respectively. Let s′1 and s′2 denote the speeds used for the

two phases in the modified schedule, and we will make sure that their power consumptions are identical, i.e.,

h1(s
′
1)

α = h2(s
′
2)

α = u. (13)

Moreover, to maintain the same execution time for the job, the processor speeds in the modified schedule should
also satisfy w1

h1s′1
+ w2

h2s′2
= t1 + t2. This gives us

1 = β ·
s1
s′1

+ (1− β) ·
s2
s′2

, (14)

where β = t1
t1+t2

. Solving Equations (13) and (14), we get u =
(

β · h
1/α
1 s1 + (1 − β) · h

1/α
2 s2

)α

, and s′1 =
(

u
h1

)1/α

and s′2 =
(

u
h2

)1/α

. The total energy consumption for the two phases in the modified schedule is then

given by

E′ =

(

w1

h1s′1
+

w2

h2s′2

)

u

=

(

t1 ·
s1
s′1

+ t2 ·
s2
s′2

)

u

=
(

t1 · h
1/α
1 s1 + t2 · h

1/α
2 s2

)

u1−1/α

= (t1 + t2)
(

β · h
1/α
1 s1 + (1− β) · h

1/α
2 s2

)α

< (t1 + t2) (β · h1s
α
1 + (1 − β) · h2s

α
2 )

= t1 · h1s
α
1 + t2 · h2s

α
2

= E.

The inequality is because xα is strictly convex for α > 1, and h
1/α
1 s1 6= h

1/α
2 s2 according to our assumption.

Hence, the modified schedule consumes strictly less energy while having the same makespan. This contradicts
the fact that the original schedule is optimal.

We now give lower bounds on the performance of the optimal offline scheduler. In contrast to the total
flow time plus energy, where the completion time of each job contributes to the overall objective function, the
makespan for a set of jobs only depends on the completion time of the last job. Hence, the other jobs only
contribute to the energy consumption part of the objective, and can therefore be slowed down to consume less
energy and improve the overall performance. Based on this observation as well as Lemmas 8 and 9, we derive
the following two lower bounds.
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Lemma 10 The optimal makespan plus energy for any set J of jobs with identical release time satisfies
HOPT(J ) ≥ max{H∗1 (J ), H

∗
2 (J )}, where

H∗1 (J ) =
α

(α− 1)1−1/α
·

∑n
i=1 w(Ji)

P 1−1/α
, (15)

H∗2 (J ) =
α

(α− 1)1−1/α
·

(

n
∑

i=1

x(Ji)
α

)1/α

, (16)

and where w(Ji) and x(Ji) denote the work and the unit-time span of job Ji respectively, and P is the total
number of processors.

Proof. By Lemma 8, the optimal scheduler at any time t consumes power u∗t = 1
α−1 . Hence, the energy

consumption EOPT(J ) under the optimal schedule satisfies EOPT(J ) =
∫MOPT(J )

0
u∗tdt = 1

α−1MOPT(J ). The
optimal makespan plus energy is then given by HOPT(J ) = MOPT(J ) + EOPT(J ) =

α
α−1MOPT(J ). Therefore,

we only focus on the makespan in the following.
To get the first lower bound, we observe that the maximum execution rate on P processors using a total power

of 1
α−1 is achieved when all processors run at the same speed of s =

(

1
(α−1)P

)1/α

. Since the total work of all

jobs in the job set is
∑n

i=1 w(Ji), the optimal makespan satisfies MOPT(J ) ≥
∑n

i=1 w(Ji)

Ps = (α−1)1/α ·
∑n

i=1 w(Ji)

P 1−1/α .
For the second lower bound, we give infinite number of processors to the optimal scheduler, which can only

improve its performance. Thus, all jobs can be satisfied at all time, and the optimal scheduler will allocate
exactly hk

i processors of the same speed ski to each phase Jk
i . By Lemma 9, the power consumption of any job

is constant over all phases, i.e., for each job Ji ∈ J , we have h1
i (s

1
i )

α = hk
i (s

k
i )

α for all 1 ≤ k ≤ ki. Hence,
the execution rate for phase Jk

i is given by hk
i s

k
i = (hk

i )
1−1/α(h1

i )
1/αs1i , and so the completion time of job Ji

satisfies ci =
∑ki

k=1
wk

i

hk
i s

k
i

= x(Ji)
(h1

i )
1/αs1i

. Moreover, the optimal scheduler will finish all the jobs at the same time,

since otherwise slowing down the jobs that finish early will reduce the energy without increasing makespan.

This gives x(J1)
(h1

1)
1/αs11

= x(Ji)
(h1

i )
1/αs1i

for all 1 ≤ i ≤ n. By Lemma 8, the total power is constant when the optimal

scheduler starts to execute the first phase of all jobs, i.e.,
∑n

i=1 h
1
i (s

1
i )

α = 1
α−1 . Solving all these equations

gives us s1i =
(

1
α−1

)1/α

· x(Ji)
(h1

i )
1/α ·

1

(
∑

n
i=1 x(Ji)α)

1/α . The optimal makespan is thus MOPT(J ) = ci =
x(Ji)

(h1
i )

1/αs1i
=

(α − 1)1/α · (
∑n

i=1 x(Ji)
α)

1/α
.

4.2 IP-clairvoyant Algorithm: WCEP

We now present an IP-clairvoyant algorithm WCEP (Work-Conserving Equal-Power) for any set of parallel jobs.
Algorithm 3 describes its details.

There are two operating modes in WCEP, namely Work-Conserving (WC) and Equal-Power (EP). Whenever
the sum of the instantaneous parallelism of all active jobs exceeds the total number of processors, the algorithm
enters WC mode. In this mode, the P processors can be allocated in any manner as long as all processors
are assigned and no job receives more processors than its instantaneous parallelism. This can be achieved by
any work-conserving algorithm, such as Proportional Allocation [14] or Dynamic Equi-partitioning [13, 21]. All
processors in this mode share the same speed. On the other hand, when the total instantaneous parallelism of
all active jobs is not more than the total number of processors, the algorithm enters EP mode, in which each
job receives exactly the same number of processors as its instantaneous parallelism and all jobs consume the
same power.

Similarly to the optimal offline scheduler, we can see from Algorithm 3 that WCEP consumes a total power of
ut =

1
α−1 at any time t. Hence, the overall energy consumption satisfies E(J ) = 1

α−1M(J ), and the makespan
plus energy is given by H(J ) = α

α−1M(J ). For convenience, we drop the algorithm subscript in this section
and let H(J ) denote HWCEP(J ), since WCEP is the only algorithm we study for this objective.

4.2.1 Performance for Jobs with Identical Release Time

Before analyzing the performance of WCEP for jobs with identical release time, we first define some notations
and prove a useful lemma. For each job Ji, let J

wc
i and Jep

i denote the portions of the job executed under WC
and EP modes, respectively. Moreover, we define J wc = {Jwc

i : Ji ∈ J } and J ep = {Jep
i : Ji ∈ J }. The

following lemma shows that all jobs in J ep reduce their unit-power span at the same rate.
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Algorithm 3 WCEP

Input: total number P of processors and the instantaneous parallelism hk
i of each active job Ji ∈ J (t) at time

t.
Output: number of allocated processors and their speeds for each active job at time t.
1: if

∑

Ji∈J (t) h
k
i > P then

2: allocate ai(t) ≤ hk
i processors to each job Ji ∈ J (t) subject to

∑

Ji∈J (t) ai(t) = P .

3: set the speed of all P processors to be s(t) =
(

1
(α−1)P

)1/α

.

4: else

5: allocate ai(t) = hk
i processors to each job Ji ∈ J (t).

6: set the speed of all ai(t) processors allocated to job Ji to be si(t) =
(

1
(α−1)ai(t)nt

)1/α

.

Lemma 11 Suppose that WCEP schedules a set of jobs with identical release time. Then at any time t in

EP mode, the unit-power span of any active job in J ep is reduced at the rate of
(

1
(α−1)nt

)1/α

regardless of its

instantaneous parallelism, where nt is the total number of active jobs at time t.

Proof. At any time t when WCEP is in EP mode, let hk
i denote the instantaneous parallelism of active job Ji ∈

J ep. According to Algorithm 3, the work of the job is reduced at a rate of
dw(Jep

i )

dt = ai(t)si(t) =
(hk

i )
1−1/α

((α−1)nt)
1/α .

Hence, by definition, the unit-power span of the job is reduced at a rate of
dx(Jep

i )

dt =
dw(Jep

i )

dt · 1
(hk

i )
1−1/α =

(

1
(α−1)nt

)1/α

.

The following theorem shows the competitive ratio of WCEP for jobs with identical release time.

Theorem 6 WCEP is Θ(ln1−1/α P )-competitive with respect to makespan plus energy for any set of jobs with
identical release time, where P is the total number of processors.

Proof. We again only focus on the makespan M(J ) of the job set scheduled by WCEP, since the makespan
plus energy satisfies H(J ) = α

α−1M(J ). We separately bound the time Mwc(J ) when the algorithm is in WC
mode and the time Mep(J ) when the algorithm is in EP mode. Obviously, we have M(J ) = Mwc(J )+Mep(J ).

We first bound Mwc(J ). According to WCEP, the total execution rate for the active jobs at any time t in

WC mode is given by P 1−1/α

(α−1)1/α
. Since the total work of all jobs in J wc satisfies

∑n
i=1 w(J

wc
i ) ≤

∑n
i=1 w(Ji), we

have Mwc(J ) ≤ (α− 1)1/α
∑n

i=1 w(Ji)

P 1−1/α .
We now bound Mep(J ) when the algorithm is in EP mode. Let T denote the first time instance when

the algorithm enters EP mode, and let m denote the number of active jobs at T , i.e., m = nT . Since the
instantaneous parallelism of each active job is at least 1 and all m active jobs are satisfied at T , we have
m < P . For convenience, rename the jobs in J ep in non-decreasing order of their unit-power span, i.e.,
x(Jep

1 ) ≤ x(Jep
2 ) ≤ · · · ≤ x(Jep

m ). According to Lemma 11, whenever the algorithm is in EP mode, WCEP will

reduce the unit-power span of all the active jobs in J ep at the same rate of
(

1
(α−1)nt

)1/α

. Thus, the jobs in J ep

will complete in exactly the above order. Let x(Jep
0 ) = 0. Then we have M ep(J ) =

∑m
i=1

x(Jep
i )−x(Jep

i−1)

( 1
(α−1)(m−i+1) )

1/α =

(α−1)1/α
∑m

i=1

(

(m− i+ 1)1/α − (m− i)1/α
)

x(Jep
i ). For convenience, define ci = (m−i+1)1/α−(m−i)1/α for

1 ≤ i ≤ m, so we have ci ≤
1

(m−i+1)1−1/α . Let R =
∑m

i=1 x(J
ep
i )α, and subject to this condition and the ordering

of x(Jep
i ), we can show using Lagrange multipliers that

∑m
i=1 ci · x(J

ep
i ) is maximized when x(Jep

i ) = R1/α ·

c
1

α−1

i /
(

∑m
i=1 c

α
α−1

i

)1/α

. Hence, we haveM ep(J ) ≤ (α−1)1/αR1/α
(

∑m
i=1 c

α
α−1

i

)1−1/α

≤ (α−1)1/αR1/αH
1−1/α
m ,

where Hm = 1 + 1/2 + · · ·+ 1/m is the m’th harmonic number.
The makespan plus energy of the job set scheduled under WCEP thus satisfies H(J ) ≤ α

(α−1)1−1/α ·
(

∑n
i=1 w(Ji)

P 1−1/α +R1/αH
1−1/α
m

)

. Since
∑n

i=1 x(Ji)
α ≥

∑m
i=1 x(J

ep
i )α = R, we get using Lemma 10 that H(J ) ≤

(1 +H
1−1/α
m ) ·HOPT(J ) = O(ln1−1/α P ) ·HOPT(J ).

To show that this ratio is asymptotically optimal for WCEP, consider a set J of P sequential jobs released
at time 0, where the i’th job has unit-power span x(Ji) =

1
(P−i+1)1/α

. From Lemma 10, the optimal scheduler

has makespan plus energyHOPT(J ) =
α

(α−1)1−1/αH
1/α
P , whereHP is the P ’th harmonic number. From the above

proof, the performance ofWCEP is given byH(J ) = α
α−1M(J ) = α

(α−1)1−1/α

∑P
i=1

(

(P − i+ 1)1/α − (P − i)1/α
)

x(Ji) ≥
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α
(α−1)1−1/α

∑P
i=1

x(Ji)
α(P−i+1)1−1/α = 1

(α−1)1−1/αHP . The competitive ratio of WCEP in this case is thus H(J )
HOPT(J ) ≥

1
α ·H

1−1/α
P = Ω(ln1−1/α P ).

4.2.2 Performance for Jobs with Arbitrary Release Time

In this section, we show that WCEP has the same asymptotic performance with respect to makespan plus
energy when the jobs can have arbitrary release time. In fact, the competitive ratio as compared to the case
with identical release time will increase by an additive factor of α

α−1 in the worst case.
For convenience, we assume that the jobs in any job set J are renamed according to their release time, i.e.,

0 = r1 ≤ r2 ≤ · · · ≤ rn. Obviously, the last release time rn is a lower bound on the makespan plus energy of
job set J , i.e., HOPT(J ) ≥ rn. Moreover, the two lower bounds shown in Lemma 10 will continue to hold even
though Lemma 8 cannot be applied to jobs with arbitrary release time. To see this, define a corresponding
job set J ′, which contains exactly the same set of jobs in J but with the release time of all jobs set to 0.
The optimal schedule for J is a valid schedule for J ′, which implies HOPT(J ) ≥ HOPT(J

′). Furthermore, the
corresponding jobs in J and J ′ share the same work and unit-power span, which gives H∗1 (J ) = H∗1 (J

′) and
H∗2 (J ) = H∗2 (J

′) according to definition. Hence, we have HOPT(J ) ≥ HOPT(J
′) ≥ max{H∗1 (J

′), H∗2 (J
′)} =

max{H∗1 (J ), H
∗
2 (J )}, where the second inequality follows by Lemma 10.

The following theorem gives the performance of WCEP for the general case.

Theorem 7 WCEP is Θ(ln1−1/α P )-competitive with respect to makespan plus energy for any set of parallel
jobs, where P is the total number of processors.

Proof. Using the notions of t-prefix and t-suffix introduced in Section 3.1.2, we define J (←−rn) to be the rn-
prefix of the job set J , or the portion of the job set completed no later than time rn, under the schedule of
WCEP. Similarly, we define J (−→rn) to be the rn-suffix of the job set J scheduled under WCEP. Since all jobs
in J have arrived by time rn, the makespan plus energy incurred by WCEP for the entire job set J is given by
H(J ) = H(J (←−rn)) +H(J (−→rn)).

According to the definition of WCEP, the makespan plus energy incurred by executing J (←−rn) is H(J (←−rn)) =
α

α−1M(J (←−rn)) =
α

α−1rn. By the proof of Theorem 6, the makespan plus energy incurred by executing J (−→rn) is

H(J (−→rn)) ≤ H∗1 (J (
−→rn)) +H

1−1/α
P ·H∗2 (J (

−→rn)), where HP is the P ’th harmonic number. Apparently, we have
H∗1 (J (

−→rn)) ≤ H∗1 (J ) and H∗2 (J (
−→rn)) ≤ H∗2 (J ) by the definitions of H∗1 and H∗2 . Thus, based on the three lower

bounds for the makespan plus energy, the total cost ofWCEP satisfiesH(J ) ≤
(

α
α−1 + 1 +H

1−1/α
P

)

HOPT(J ) =

O(ln1−1/α P ) ·HOPT(J ).

From the proofs of Theorems 6 and 7, we can see that the cost of the WCEP algorithm when executing in WC
mode can be amortized against the cost of the optimal offline scheduler. Hence, the competitive ratio of WCEP

comes primarily from the execution of the jobs in EP mode, during which sufficient processors are available.
The strategy of WCEP in this mode is to give each active job the same amount of power, thus reducing the jobs’
unit-power span at the same rate. Without knowing the jobs’ remaining characteristics, this strategy seems to
provide an optimal solution for any online algorithm. In the next section, we confirm the intuition by proving
a matching lower bound for any IP-clairvoyant algorithm, which shows that WCEP is asymptotically optimal
with respect to makespan plus energy.

4.3 Lower Bound for Any IP-clairvoyant Algorithm

In this section, we present an Ω(ln1−1/α P ) lower bound on the competitiveness of any IP-clairvoyant algorithm
with respect to makespan plus energy. The idea is to show that, without any knowledge about the remaining
characteristics of the jobs, the WCEP algorithm will perform no worse than any IP-clairvoyant algorithm under
a particular adversarial strategy. This is achieved by transforming any IP-clairvoyant schedule for a set of
sequential jobs into a WCEP schedule without increasing the overall cost.

Before proving the lower bound, we first consider the following scenario, which represents an intermediate
state of the jobs during the transformation process.

Scenario 1 Suppose that there are two sequential jobs with the same total work. Each job is divided into m
segments, where m ≥ 1, and the corresponding segments of the two jobs also have the same work. Each job is to
be executed independently on a processor, starting at time 0 and ending at time T , where T > 0. Each segment of
a job is to be executed with the same speed, but different segments of the same job or the corresponding segments
of different jobs may be executed with different speeds. Let A denote any valid schedule in this scenario. For
each job Ji scheduled by A, where i = 1, 2, let tji denote the completion time for the j’th segment of the job,
where 1 ≤ j ≤ m. Hence, we have 0 < t1i < t2i < · · · < tmi = T .
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For the scenario described above, the following lemma transforms any valid schedule A that executes the two
jobs differently into a more energy-efficient schedule that executes the two jobs identically throughout execution.

Lemma 12 For any valid schedule A satisfying Scenario 1, there exists a valid schedule B that executes the
two jobs identically, i.e., using the same speed at any time during their execution, and which consumes no
more energy than A. Moreover, the time tj when the j’th segment of both jobs is completed in B satisfies
min{tj1, t

j
2} ≤ tj ≤ max{tj1, t

j
2} for each 1 ≤ j ≤ m− 1.

Proof. We prove the lemma by induction on the number m of segments.
In the base case, we have m = 1. Since both jobs are started and completed at the same time, their execution

speeds are identical. Hence, the claim holds trivially.
For the inductive step, let m ≥ 1 and suppose that the claim holds when the jobs consist of K segments

for each 1 ≤ K ≤ m. We will show that the claim also holds when the jobs have K = m + 1 segments. For
convenience, let t01 = t02 = 0 and let tm+1

1 = tm+1
2 = T . Without loss of generality, we can assume t11 ≤ t12 under

schedule A. Let l denote the smallest index that satisfies tl1 ≥ tl2 and l ≥ 1. Note that l = 1 if t11 = t12, and
l = m + 1 if tj1 < tj2 for all 1 ≤ j ≤ m. Also, let sji denote the execution speed for the j’th segment of job

Ji. Our goal is to transform schedule A by adjusting the speeds s11, s
1
2, s

l
1 and sl2 to achieve tj1 = tj2 for some

1 ≤ j ≤ l − 1, while not increasing the total energy consumption. Then, the adjusted time tj1 (or tj2) divides
each job Ji into two parts J ′i and J ′′i with j and m+1− j segments, respectively. By the inductive hypothesis,

there exists a more energy-efficient schedule B′ that executes J ′1 and J ′2 identically in [0, tj1], and similarly there

is a more energy-efficient schedule B′′ that executes J ′′1 and J ′′2 identically in [tj1, T ]. Schedule B is then obtained

by combining B
′ and B

′′. Now, to achieve tj1 = tj2 for some 1 ≤ j ≤ l − 1, we distinguish two cases.
Case 1: s11 ≤ sl1. Since we assumed that l is the smallest index to satisfy tl1 ≥ tl2, we have tl−11 < tl−12 . As

we also assumed t11 ≤ t12, we can observe that s12 ≤ s11 ≤ sl1 ≤ sl2. In this case, we can decrease tj2 for each
1 ≤ j ≤ l−1 by an infinitesimal amount of time ∆t by increasing speed s12 and reducing speed sl2, while keeping
s12 ≤ sl2. By the convexity of the power function, the total energy consumption will not increase. Repeat this
process until we get tj1 = tj2 for some 1 ≤ j ≤ l − 1, which is always possible due to the above observation.

Case 2: s11 > sl1. In this case, we can increase tj1 for each 1 ≤ j ≤ l − 1 by an infinitesimal amount of time
∆t by reducing speed s11 and increasing speed sl1. Again, the total energy consumption will not increase, by the
convexity of the power function. Repeat this process until we get tj1 = tj2 for some 1 ≤ j ≤ l − 1 or s11 = sl1. In
the latter case, the situation can be handled by Case 1.

Observe that the speed adjustments in both cases make each pair of time instances tj1 and tj2, for any

1 ≤ j ≤ l − 1, shift toward each other. Hence, in the final schedule B, we have min{tj1, t
j
2} ≤ tj ≤ max{tj1, t

j
2}

for each 1 ≤ j ≤ m. This completes the proof of the lemma.

Using Lemma 12, we can now prove a lower bound on the competitive ratio of any IP-clairvoyant algorithm.

Theorem 8 Any IP-clairvoyant algorithm is Ω(ln1−1/α P )-competitive with respect to makespan plus energy,
where P is the total number of processors.

Proof. Consider any set J of P sequential jobs with identical release time and whose total work satisfies
w(J1) < w(J2) < · · · < w(JP ). Since the number of jobs is the same as the number of processors, we can assume
that any IP-clairvoyant algorithm A assigns exactly one job to each processor. Otherwise, we can always shift
a job from a processor with two or more jobs to an idle processor, which will not use any more energy while
possibly reducing the makespan. In the rest of the proof, we will show that the WCEP algorithm performs no
worse than A for any such job set J under a certain adversarial strategy. Since Theorem 6 showed a lower
bound of Ω(ln1−1/α P ) for WCEP on a particular instance of J , the same lower bound holds for A as well.

Since the only information an IP-clairvoyant algorithm has about a set of jobs is their instantaneous par-
allelism, which is one in this case, all active jobs are indistinguishable to A before they complete. Thus, the
adversary is free to choose which processor each job is assigned to. In particular, the adversarial strategy is
to always assign job Ji, where i = 1, 2, · · · , P , to the processor that first completes w(Ji) amount of work,
with ties broken arbitrarily. For convenience, we assume that job Ji is assigned to the i’th processor. Now, to
show HWCEP(J ) ≤ HA(J ) under such an adversary, we transform schedule A to WCEP step by step without
increasing the total cost. For each i = 1, 2, · · · , P , we divide job Ji into i segments. The j’th segment has work
w(Jj) − w(Jj−1), for 1 ≤ j ≤ i, and w(J0) is defined to be 0. Let tji denote the completion time of the j’th
segment of job Ji in schedule A. By the adversarial strategy, we have tii ≤ tik for all i ≤ k ≤ P .

First, we construct schedule A′ from A by averaging the execution speed for each segment of each job. By
the convexity of the power function, the completion time of all the segments will remain the same in A

′, but the
energy consumption may be reduced. We then get schedule A′′ from A′ by iteratively performing the following
two-step transformation for each i = P − 1, P − 2, · · · , 1: (1) Slow down the execution of the last segment of job
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Ji until its completion time tii is equal to tii+1. (2) Apply Lemma 12 to get a potentially more energy-efficient
schedule that executes the first i segments of all jobs in {Ji, · · · , JP } identically. Note that, after each iteration
i, the corresponding segments of all jobs in {Ji, · · · , JP } will be completed at the same time, so that the first i−1
segments of them can be collectively considered as a single job in the next iteration when applying Lemma 12 in
step (2). Also notice that, for each j = 1, · · · , i− 1 after iteration i, the completion time tj for the j’th segment
of all jobs in {Ji, · · · , JP } satisfies t

j ≥ tjj by Lemma 12 and the adversarial strategy, so that we can apply step
(1) in the subsequent iterations. Therefore, at the end of the last iteration, the corresponding segments of all
jobs are aligned. Moreover, schedule A′′ apparently has the same makespan as A′ but may consume less energy.
Now, we apply Lemma 8 to construct a schedule B from A′′ such that it consumes constant total power 1

α−1 at
any time, and has HB(J ) ≤ HA′′(J ). By observing that B is identical to WCEP, the proof is complete.

5 Discussions and Conclusion

In this paper, we considered energy-efficient scheduling for parallel jobs on multiprocessor systems. We have
presented new models, algorithms and analysis for the objective of total flow time plus energy in non-clairvoyant
and IP-clairvoyant settings. Moreover, we have studied, for the first time in the literature, makespan plus energy
as an objective function. Tight bounds have been proven in this case under the IP-clairvoyant setting.

For the objective of total flow time plus energy, the non-clairvoyant algorithm MultiLaps proposed by Chan,
Edmonds and Pruhs [16] has the same upper and lower bounds as our N-EQUI algorithm. However, their results
are based on a different execution model than ours. It would be interesting to study the relationship between
the two models, and to close the gap between the upper and lower bounds for arbitrarily released jobs under
either model. In the IP-clairvoyant setting, Fox, Im and Moseley [25] recently extended the study to jobs with
non-decreasing and sub-linear speedup functions as well as arbitrarily convex power functions. They devised a
scalable algorithm using resource augmentation.

For the objective of makespan plus energy, we have only studied the performance of IP-clairvoyant algorithms.
The natural question is to consider non-clairvoyant scheduling. Previous studies have shown that, for minimizing
makespan alone, a 2-competitive algorithm exists in the IP-clairvoyant setting [13], whereas any non-clairvoyant
algorithm is at least Ω(lnn/ ln lnn)-competitive [42]. Note that, in the proof of Theorem 3, the instance contains

only one job, so the lower bound of Ω(ln1/α P ) also applies to makespan plus energy. We conjecture that
minimizing makespan plus energy in general is more difficult, and hence is likely to incur a much larger lower
bound in the non-clairvoyant setting.
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