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Abstract—In this paper, we discuss several scheduling algo-

rithms to execute independent tasks with voltage overscalg.
Given a frequency to execute the tasks, operating at a voltag
below threshold leads to significant energy savings but alsim-
duces timing errors. A verification mechanism must be enfored
to detect these errors. Contrarily to fail-stop or silent erors,
timing errors are deterministic (but unpredictable). For each
task, the general strategy is to select a voltage for execofi, to
check the result, and to select a higher voltage for re-exetion
if a timing error has occurred, and so on until a correct resut is
obtained. Switching from one voltage to another incurs a gien
cost, so it might be efficient to try and execute several taskat the
current voltage before switching to another one. Determinig the
optimal solution turns out to be unexpectedly difficult. However,
we provide the optimal algorithm for a single task, the optinal
algorithm when there are only two voltages, and the optimal
level algorithm for a set of independent tasks, where a level
algorithm is defined as an algorithm that executes all remaiimg
tasks when switching to a given voltage. Furthermore, we sho
that the optimal level algorithm is in fact globally optimal (among
all possible algorithms) when voltage switching costs arenear.
Finally, we report a comprehensive set of simulations to agss
the potential gain of voltage overscaling algorithms.

Index Terms—HPC, Resilience, Failures, Timing Errors, Volt-
age Overscaling, Energy Efficiency

I. INTRODUCTION

output signals reach their final values, which could pogsibl
lead to an incorrect result. The occurrence of a timing error
depends upon many parameters: the voltage and frequency,
and the nature of the target operation: different operation
within the ALU may have different critical-path lengths. Bu
in addition, for a given operation, different sets of ope&®n
may lead to different critical-path lengths (to see thigeta
simple addition and think of a carry rippling to differenttga
depending upon the operands). Timing errors are therefore
very different from usual fail-stop failures or silent enso
that are dealt with in the literature: they are not random but
instead, they are purely deterministic. Indeed, replayhey
same operation with the same set of operand under the same
conditions will lead to the same result. Although deteristioj
timing errors are unpredictable, because it is not possible
test all possible operands for a given operation. Therefore
for a given operatioh an error probability is associated with
each voltage and represents the fraction of operands fahwhi
incorrect results will be produced by executing that openat
on these operands at that voltage.

We need to take actions to mitigate timing errors that strike
the application when voltage is aggressively lowered. iAfte
executing a task, we insert a verification mechanism to check

Energy minimization has become a critical concern in Higthe correctness of the result. In our study, the scheduling
Performance Computing (HPC). Many authors have suggestgdorithms are agnostic of the nature of this verification

to useDynamic Voltage and Frequency Scaling (DVRS)

mechanism, which could be anything from (costly) duplica-

reduce the energy consumption during the execution of #on to (cheap) checksumming and other application-specifi

application. Reducing the frequency (or speed) at whict eamethods. Of course, the cheaper the cost of the verification,

core is operated is the most frequently advocated approagte smaller the overhead.

and great savings have been demonstrated for a variety offg execute a given task, scheduling algorithms with voltage

scientific applications [7], [1], [4], [13]. However, redag overscaling operate as follows: they are given a (discrete)

the voltage for a given speed may lead to even greater savings of possible voltages to operate with, and one of them

because the total consumed power is proportional to thg an input voltage. The first decision to take is whether to

square of the voltage. On the contrary, the dynamic powgkecute the task at that voltage or to choose another one. In

is linearly proportional to the frequency, and the statispo the latter case, there is switching costto pay to change

is independent of it. voltage. Regardless of the decision, the result is verified
Keeping the same frequency and reducing the voltagedfier the execution of the task. If the verification mechanis

a promising direction which we explore in this paper. Thelturns that the result is correct, we are done. If not, we

is no free lunch, though. Given a frequency, there is alwayged to re-execute the task. Remember that timing errors are

a voltage recommended by the manufacturer, below whiglaterministic: there is no point in re-executing the taskhwi

it might be unsafe to operate the core. This voltage alwajge same voltage; we know that we will get the same error. We

includes some environmental margin to be on the safe sided to select a higher voltage that will reduce the proligbil

Near-threshold computing is a technique that consists df failure, paying a switching cost, and re-execute the task

reducing the voltage below the recommended value, dowih this voltage. Because the voltage is higher, the error

to athreshold voltage/r, (also callednominal voltagg that  probability is reduced, and we have a chance that the second

is still considered safe. Overscaling algorithms suggest éxecution is correct. The higher the second voltage, theet

further reduce the operating voltage, at the risk of proalgici

timing errors Because the voltage is set to a very low value, 154 5 given frequency: remember that throughout the texssame the

the results of some logic gates could be used before theéguency to be given.



that chance, but the higher the cost of the execution, se teerconcluding remarks in Section VII.
a trade-off to consider. If we are unlucky, we may have to try
several higher and higher voltages, until eventually fiimigh
the task by using the threshold voltage, whichl@®% safe =~ We now present a formal model for timing errors. We
but very costly. In Section IV, we give the optimal schedglinintroduce the main notations and assumptions, and investi-
algorithm for a single task, extending our previous resBit [ gate the impact of timing errors on the success and failure
to the case where an input voltage is given to the algorithrprobabilities of tasks. Because timing errors are deteistidn

The problem gets more complicated when there are mag@nditional properties are completely different from wiat
tasks to schedule. We assume that these tasks corresponidstilly enforced for the resilience of HPC applications.
the same operation but involve different operands (think g]‘
a collection of matrix products or stencil updates). Given
a voltage, each task has the same probability to fail. InAS already mentioned, we focus on a fixed frequency
the absence of switching costs (an unrealistic assumptionénvironment (this frequency may have been chosen to achieve
practice), the tasks can be dealt with independently. Hewev@ given performance). Then timing errors depend upon the
to amortize the switching cost from a given voltage to a nePltage selected for execution, and we model this with the
one, it might be a good idea to try and execute several tadR§owing two assumptions:

(or even all the remaining tasks) at a given voltage. One kﬁbésumption 1. Given an operation and an input (the set
contribution of this work is to analyzZevel algorithmswhich ¢ operands), there exists threshold voltage/s,(I): using
always execute all the remaining tasks once a voltage has bgﬁy voltageV” below the thresholdi( < Vi, (1)) will always
selected. We provide a dynamic programming algorithm th@laq 1o an incorrect result, while using any voltage above
computes the optimal level algorithm as a function of thgat threshold ¥ > Vi (D)) will always lead to a successful
voltage costs and error probabilities, and of the number gfacution. Note that different inputs for the same openatio

tasks to execute. _ may have different threshold voltages.
Level algorithms turn out to be dominant among all possible

algorithms when voltage switching costs are linear. TechSSumption 2. When an operation is executed under a given
nically, if we have three voltage¥; < Vo < Vi, linear vqltag_e V there is a probabilitypy that the computation
switching costs means that s = s1.5 + s2.3, Wheres, WI|! fall,_ ie., produc_e_s at least one error, on a random inpu
is the cost to switch fronV; to V; (or the other way round, This failure probability is computed as = | Z;(V)|/| Z|,
from V; to V;). With linear switching costs, we show that thevhereZ denotes the set of all possible inputs andV) € 7
optimal level algorithm is in fact optimal among all possibl denotes the set of inputs for vv_hlch the operation will fail at
algorithms, not just level algorithms. voltage V. Equwalently,zf_(V) is the set of inputs whose
Finally, an important contribution of the paper is to eXghreshold_ voltages are strictly larger thaW, a_ccordmg to
perimentally assess the usefulness of voltage overscalfigsumption 1. For any two voltagé$ and Vs with Vi > V5,
algorithms. We first consider a case study from numerici® Navez;(V1) € Z;(V2) (Assumption 1), hencey;, < pv,.
linear algebra, where tasks are matrix-products that can bef a task consists of identical operations, each executed at
verified through ABFT checksums. We then envision differe%nagev with error probabilitypy, then the probability of
scenarios, where we evaluate the impact of each paramejgicessful execution of the task is — py)*: the larger the
(verification cost, voltage cost and error probability, tsWing  task, the greater the risk. Since timing errors are esdgntia
costs). In addition to the gain in energy consumption, we algjlent errors, they do not manifest themselves until the cor
investigate the performance degradation: while we keep tAgyted data has led to an unusual application behavior,hwhic
same frequency (thereby avoiding a global slowdown of thfay be detected long after the error has occurred, wasting
execution as is the case with DVFS), we do have two souragg entire computation done so far. Hence, an error-detecti
of performance overhead: (i) the verification mechanisnd, afechanism (also callederification mechanism) is necessary
(ii) the time lost due to re-execution(s) and voltage switgh to ensure timely detection of timing errors after the exiecut
after timing errors. of each task. In this paper, we assume that this mechanism
To the best of our knowledge, this paper (together wiig given. All the algorithms presented in Sections IV and V
our initial workshop paper [3]) presents the first algorithare fully general and agnostic of the error-detection teghe

mic approach for voltage overscaling. Previous studies gehecksum, error correcting code, coherence tests, etc.).
hardware oriented and require special hardware mechanisms

to detect timing errors [9], [11], [10], [5]. On the contraryB. Notations

we propose scheduling algorithms that can be called by theWe consider a sef” = {7}, T%,--- , T} of n tasks to be

operating system of the platform. executed by the system. There is no precedence constraint
The rest of this paper is organized as follows. In Section lymong the tasks so that they aiedependent All tasks

we introduce a formal model for timing errors. In Section llishare the same computational weight, including the work

we illustrate several scheduling strategies by considevily to verify the correctness of the result at the end. Hence,

two available voltages. We present the optimal algorithmafo they have the same execution time and energy consumption

single task in Section 1V, and move to scheduling severéktasunder a fixed voltage. We applipynamic Voltage Over-

in Section V. We report the results of a comprehensive set 8€aling (DVOS)o tradeoff between energy cost and failure

simulations to assess the impact and benefits of the voltggebability. The platform can choose an operating voltage

overscaling algorithms in Section VI. Finally, we providemong a sety = {Vi,V5,---,Vi} of k discrete values,

Il. MODEL

Timing errors



where Vi < ¥, < --- < V. Each voltageV, has an Proof. We prove the claimed probabilities using Assump-
energy costper taskc, that increases with the voltage, i.e.fions 1 and 2. The task under study is the execution of some
c1 < co < -+ < ¢k Based on Assumption 2, each voltageomputation on some input. Since this task execution has
V, also has dailure probability p, that decreases with thefailed under voltage¥j, V1, - - - , V;_1, we know that inputl/
voltage, i.e.,p1 > p2 > --- > pi. We assume that the satisfiesl ﬂfl;lozf(‘/h) = T7(Vi—1) (recall thatZ;(V},) is
highest voltagé/;, equals thenominalvoltageV;, with failure the set of inputs on which the computation fails under vaitag
probability p, = 0, thus guaranteeing error-free execution fov},). Then, the task execution will fail again under voltdge

all possible inputs. For convenience, we also usalbvoltage if the input satisfied € 7;(V;) C Zy(V,—1). Otherwise, the

Vo with failure probabilityp, = 1 and null energy cosy = 0. task execution will succeed. Given that the input is rangom|

Here is a summary of these notations: chosen (we have no a priori knowledge on it), the failure
Voltages Vo Vil Vol - | Vi=Ven probability is
FEar:t:rrgeyF:;fsb{ o ;1) T e B 0 P(V-fail | VoV - - Vi y fail)
We further assume that DVOS is only applied to reduce = ||I?(c‘(/y)1|)| = ||If€1(/?)1|)/||/|zzl| = pf: ,

energy consumption, and leaving the system at a voltage o
below V4, after the execution of the task(s) is not allowe@nd the success probability is
(because it would not be safe). This is formally stated in theP(w-sucq VoVi - - - Vi1 -fail)

following assumption.
N Ve NVl _ - 1TVl pe

Assumption 3. The system is initially running at nominal = TV, =1- = :
. o Zy(Veo o—
voltage V4, and its voltage must be reset back g, when |Zs (V)| |Zs (Ve-1)] pe-1
all computations are done. 0
Switching the operating voltage also incurs an energy cost. 1. CASE WITH TWO VOLTAGES

Let s, denote the energy consumed to switch the system’s|p, this section, we focus on the special case where there are
operating voltage fronV, to Vj,. We haves,, = 0if £ =h only two available voltages (i.ek, = 2). In the first study, for
and s, > 0 if £ # h. Moreover, we make the following the sake of illustration, we assume that Assumption 3 does
assumptions on the properties of the switching costs, whigt hold and that the system is originally at voltdge In the

are true in many systems in practice. second study, we derive the optimal policy, for two voltages
Assumption 4. The voltage switching costs of the systef@SSUming that Assum_pﬂon 3 (_joes hold (which will always be
satisfy: the case in the following sections).

o Symmetry:sy , = sp ¢ for all Vo, Vi, € V;
e Dominance:sy , > s¢p andsg p, > spp for Vo <V, < Vj;
o Triangle inequality:s¢ , < s¢p + Spp for V, <V, <Vj,.

A. Two voltages without Assumption 3

The system is initially at voltag®;. We assume that there
are only two tasks to execute. It is twice as expensive erergy
Definition 1 (Linear switching costs)We have linear costs wise to execute a task & than atV; (¢; = 1 andey = 2),
when the triangle inequality is always an equality;, = the failure probability at; is 80% @, = 0.8), and switching
Sep + spp forall V, <V, < V. voltage fromV; to V; is as expensive as executing 20 tasks

Vi (s1,2 = 20). If there were no switching costs;(; = 0),

task would be executed at voltalje Indeed, executing a
task at voltagd’ costsc, = 2, whereas the expected cost of
executing a task at; isc; +p1-co =1+408-2=2.6. If
C. Success and failure probabilities we could switch voltages for free, we would always switch to

We now consider the implications of Assumptions 1 anté]e nominal voltage to execute tasks. However, the switchin

2 on the success and failure probabilities of executing ka ta%o stv\z i);zegr?\l/\i/;ohneiﬁ}ee:enggl?gezyStem Is initially at veltag
1- .

following a sequence of vqltages. For the ease of wntm_g, Switch directly toV, to execute both tasks. This costs
we assume that the execution of each task has already failed 104200 — 24
1,2 62 = .

under the null voltagd’, (at energy costo = 0). « Execute both tasks af;. If both executions succeed,

The objective is to minimize the expected total ener
consumption by determining the optimal strategy to exec
the set of tasks.

Lemma 1. Consider a sequencéVy,Va,---,Vy,) of m which happens with probabilityl — p;)?, we are done.
voltages, wherd’; < V, < --- < V,,;, under which a given Otherwise, switch td; and re-execute the failed task(s).
task is executed. For any voltadge, wherel < ¢ < m, given The expected cost Bc1+(1—(1—p1)?)s1,2+2-p1-ca =

that the execution of the task on a certain input has already 24.4.
failed under voltage$q, V1, - - - , Vy—_1, the probabilities that o Execute the first task dt; and switch toVs if and only
the task execution will fail and succeed respectively under if its execution failed. The rationale is as follows. If the

voltageV; on the same input are given by execution of the first task fails, whatever the result of the
_ _ e execution of the second task, we will have to switclvto
P(Ve-fail | VoV -+ - Vg Hfail) = ——, to re-execute the first task. Moreover, we have shown that
et P executing a task at; is cheaper than trying to execute

P(Ve-succ| VoVi - - - Vg -fail) 1- it at V; and then re-executing it a6 in case of failure.

Pe—1 .



Therefore, we save energy by not attempting to execute execute the task after it has just failed under volt&ge
the second task &f, . If the execution of the first task wasThe following theorem shows the optimal solution.

successful, we remain &} in (the unlikely) case that theT corem 1. To execute a single task on a system with

execution of the second case will also succeed and tf\}/% tages, the optimal expected energy consumption as well a
we will never have to switch t®; (thus saving the huge ges, P b gy P

switching cost). The expected cost of this policy is thetr?e optimal sequence of voltages can be obtained by dynamic

: . : 5
c1+p1(s1.242-2)+ (1—p1)(c1+pi1(s1,2+¢2)) = 23.92. programming with complexit@ (k=).

The third policy is the optimal in this case. This exampl@roof. Suppose the task has just failed under voltéigand it

illustrates two important facts: (i) the optimal policy mhg is aboutto be executed at a higher voltdge> V,. According

dynamic, that is, the decision at which voltage the next tagk Lemma 1, the probability that the tasks will fail again end

should be executed depends on the success or failwthef V}, is given by P(V,-fail | Vi-fail) = pp,/pe. If the task is

tasks; (ii) switching costs can have a significant impacthen tsuccessfully completed &at;,, we can just reset the voltage

shape of the optimal solution. from V}, back to the nominal voltagd/. Otherwise, we
) need to determine the optimal voltad&, (V%) to continue
B. Two voltages under Assumption 3 executing the task until successful completion. Thus, for a

We now assume that we hawetasks to process, and thatpair (V3,,V;) of voltages withV, < V, < V, < V4,
Assumption 3 holds (as it should). We have two cases te can computeEs,(Vx, V) by the following dynamic
consider, depending on whethgt is used or not. programming formulation:

e V7 is not used. The cost is then- c,.

« V1 is used. Then, whatever the policy, the two switching g* (v, V;) = ¢; + <1 _ p_h> Shok

costss; o and s3; will be payed. Executing a task at 2
voltage V> costsce. Executing a task first at voltade + Pr i {SM + B (Vy, Vh)} . ()
costs:cy + p; - co. Therefore, it may only be worth using De h<psk

Viif ci+pi-ca <2 1 < (1—p1)ea. Inthis case, an The table is initialized withEy, . (Vi, Vi) = ¢, regardless of
optimal solution is to first executall tasks atl;, then V,, and the entire table can be computec{j(‘]ﬁ) time.

the voltage must be switched back %, and finally  The optimal expected energy to execute the task after it has
the failed tasks must be re-executed. Indeed, whateygst failed under voltagé; is therefore

happens, both switching costs are paid, and the solution

is the same as if switching costs were zero. The expected Eone(Ve) = min, {Se,h + Edne(Va, W)} ; 2

cost is therRs; o +n-c1 +n-p;y - co. This is better than . ] )
the first policy if and only if: and the optimal voltage to execute the task in this case

0 is Vae(Ve) = Vhf, where h_’ = argming <y {sNL +

n-cg > 281 2+n-ci1+n-pi-co & n > ’7#—‘ . ESNE(th Vé)} Again, CompUtlngESNE(w) andVO*NE(w> for
’ ca(l=p1) — a1 all 1 < ¢ < k takesO(k?) time. The optimal expected energy

The optimal strategy is thus: if; < (1 — p1)eo and to execute the task from the initial nominal voltalgeis thus:
n > [—=222__7 then switch tol;, execute all tasks at

—p1)—c _ ; Ef_ — mi {s + B (Vi VK }
Vi, switch tévgland re-execute all failed tasks; otherwise, ONE ™ ) Chk LR one(Vh: Vo)

stay atl, and execute all tasks at that voltage. Hence, théere 1 is the null voltage with failure probability, = 1.

shape of the optimal strategy depends on the number of tagig, optimal starting voltage to execute the taskjs. = Vi,
to execute. Note that thanks to Assumption 3, the shape gierer/ — arg min, < <, {Sk h o+ B (Vi Vo)}- This can
the solution is simpler than in the previous study. be computed irO(k)_ti;ﬁe. ' oNERT

IV. SCHEDULING FOR A SINGLE TASK V. SCHEDULING FOR SEVERAL TASKS

We focus here on the special case where there is only onéve now consider the general case of executing a set of
task to execute. We present an optimal algorithm for thig,cas, independent tasks, where > 2. All tasks correspond to
extending our previous result [3] to the case where an inpile same computational operations, but may have different
voltage is given to the algorithm. We need this extensiafAreshold voltages, because they operate on differenseétga
to prepare for the general case with several tasks: indeg@le problem turns out to be more complicated than expected.
consider a simple algorithm that proceeds task after tase start, in Section V-A, with the introduction of two simple
For the first task, the input voltage is always,;, according scheduling strategiesask-by-taskandlevel before sketching
to Assumption 3. But when the execution of the first taske description of a general scheduling algorithm. Then we
completes, the input voltage for the second task may well BRow how to determine the optimal level algorithm in Sec-
different from Vx,, if for instance the algorithm tried, andtion V-B. Finally, in Section V-C, we prove that the optimal
succeeded with, a lower voltage. level algorithm is in fact globally optimal among all podsib

We first define some notations. LEE,-(V}5,, V) denote the scheduling algorithms when switching costs are linear.
optimal expected energy needed to execute the task starting ] ) )
from voltage V;,, given that the task has previously failed® Scheduling algorithms and strategies
under a sequence of lower voltages, the highest one amonge now provide an informal description of scheduling
which isV;. Let Eg(Ve) and Vg, (V) denote, respectively, algorithms for independent tasks. There are two simple ex-
the optimal expected energy and the optimal voltage needazlition strategies, which we calisk-by-taskandlevel The



task-by-task strategy considers the tasks one after anotiie call the sequence of voltages tried by a level algorithm
waiting for the successful completion of the current taske voltage sequence

before proceeding to the (first) execution of the next onés Th
strategy relies upon the optimal algorithm for a single ta:skI
with a given input voltage described in Section IV. After th
successful execution of the current task, the platformagat
is set at some valug,, which we use as the input voltage fo
applying the optimal single-task algorithm to the exeautid
the next task.

The level strategy guarantees that each voltage will be used
most once, so the voltage will change no more tkan
imes during the execution of the entire task set. We have

rto determine the optimal sequence of voltages to charaeteri
the optimal level algorithm. Before presenting the dynamic

programming algorithm that solves this problem, we need a

. . few notations.
Although optimal for each task, this strategy may end u .
gh ob gy may (i,Vn,Vz) denote the optimal expected energy

. . L . . Let ES
paying a high overall switching cost. For instance, if the SET ) . :
optimal single-task algorithm always starts with some IO&eeded to execube_tasks _startlng at voltage;, provided that
voltage, sayVs, regardless of the input voltadé,, then the these tasks hgve just failed under a lower VQIWQK Vi
task-by-task strategy will have to switch back dowri‘tceach Then, the optimal expected energy to exeiut@sks that
time there is a timing error in the execution of the previOLE,a,‘Ve failed under VO|t?.ng Is given by ES_ET(Z’ Ve) =
task. ming<p<i {se.n + Eer(i, Vi, Vo) }. The following theorem

To minimize the total switching cost, another strategy ghows the optimal solution of a level algorithm.

to execute all tasks at a given voltage, before switching fheorem 2. To execute a set af independent tasks on a

another voltage and execute all remaining tasks at that otRgstem with: voltages, the optimal solution under any level
voltage, and so on. Thisvelstrategy goes voltage-by-voltagealgorithm can be obtained by dynamic programming with
instead of task-by-task, executing all tasks at a giveragealt complexityO(n?k?).

before switching to another one (hence its hame). ] ) )
While very natural, the task-by-task and level strategies & "0°f- Suppose a set aftasks have just failed under voltage

not the only possible algorithms. In fact, a general sctiagul V2 @nd they will be executed at a higher voltdge According
algorithm proceeds as follows. At each step, we are giviy Lémma 1, the probability that any of these tasks will
an input voltage (that of the last execution of a taskygr (@il again atVj, is P(Vi-fail | Vi-fail) = pn/pe. Thus, the
initially) and the list of remaining tasks, together witheth probability that;j tasks W|II remain uncompleted after they
history (the last voltage tried for the execution of eactk ta@'® €xecuted at voltage is

is recorded, withly for initial condition). Then the algorithm . j i—j
selects one task in the list and one voltdgg, higher than P(j tasks remaip= <Z> <@> (1 — @)
the one recorded for this ta&kand executes the task at that pe pe

i

J

voltage. A switching cost is paid ithew is different from for any 0 < j < 4. If no task remains, e.gj = 0, we
the input voltage. If the execution is successful, the task heed to reset the voltage froW back to the nominal voltage
removed from the list, and otherwise, the task stays in the  Otherwise, we need to determine the optimal voltage to

list, and its history is updated to Béew. The algorithm then execute the remaining tasks, hence the dynamic program:
proceeds to the next step, withey as input voltage. The

key decision at each step of the scheduling algorithm is t#€(¢, Vi, Vi) =i - ¢; + P(no task remains sy,
selection of the new task and voltage pair, and this decision

may well depend upon the number and history of the tasksz <]P’(j tasks remain min {spp, + Ed(J, Vp, Vh)})
in the list, the input voltage, and all the problem paranseter j—1 h<psk

(cost and error probability of each voltage, and switching oh i
costs). Altogether, we have a complex decision to make at ¢ cn + (1 - —) Sh,k
) e L De
each step, and it seems very difficult to prove the optimality i -
. . . i 1— ' . '
of a scheduling algorithm in the general case. 'y ((j)(%) (1_%) min, (5t Eier(u Vi, Vh)})
B. Level algorithms i=1 B

In this section, we formally define level algorithms, andor all 1 < i < n and all (/;,, V%) pairs with1p <V, <V}, <
we provide a dynamic programming algorithm to comput.. In particular, wherV}, = Vi, we haveE* (i, Vi, Vi) = i-cx
the optimal level algorithm. for all 1 <1i < n regardless ot,.

The optimal expected energy needed to exetutenaining

Definition 2 (Level algorithms) A level algorithm executes tasks after they have just failed under voltageis therefore

a set of independent tasks as follows:

1) Select the initial voltagé’; B (i,V;) = min {Se,h +E§ET(i,Vh,V4)} )

2) Switch to voltagd” and execute all remaining tasks; E<h<k

3) Remove the successfully completed tasks from the sefij o optimal voltage to execute these taskd/is. (i, V) =

4) If there are still some tasks not successfully complete‘glh,, whereh/ = argming_p <y {50 + Elerli, Vi, Vi) }. The

: . ! - <h< ) SET\ %) ) .

choose the next, higher, voltageto try and go 10 Step 2; ontima| expected energy needed to execute atisks, given

5) If the last voltage used is ndg,;, switch to voltagelk.  hat the initial system voltage is the nominal voltage is

2There would be no point in trying the recorded voltage agaira lower

* . *
one: we know that the execution of the task would fail again. Eger = lg}}gk {Sk,h + Eger(n, Vi, VO)} )



whereV} is the null voltage with failure probabilityy = 1.  Proof. Let us consider an optimal algorithd® and its ex-

The optimal starting voltage to execute the entire séfis = ecution on an instance with tasks denoted by3, ..., T,.

Vi, whereh/ = argming <, <, {sk,h + E(n, Vi, VO)}. We reorder the task executions performed®ysuch that all
The complexity is clearly dominated by the computation afxecutions ofl; are done first, then all executions '6f are

Bl (i,Vp,Vp) foralll <i<nandVy <V, <V, <V, performed, and so on. (Note that we have taken an arbitrary

which takesO(n2k?) time. O ordering of the tasks.) The new execution order has exactly

. h m he previ n witchin
Theorem 2 shows that the optimal voltage to select afterthee same cost as the previous one .because switching .COStS
are null. Also, Assumption 3 has no impact on the solution.

current voltage is used depends on the number of remain :
; : g I¥erefore, the optimal sequence of voltages to execute task
tasks. To demonstrate this point, consider an example w,

three voltages and 10 independent tasks. The energy c<§ég?(;na?\)// 1th_ai s Zl;satf;?nztlasE{J:Snkcel_girzlltjltage; ?j:'r;)id n
of the voltages are; = 0.1, cc = 1 ande¢s = 5, and the . ' ' . o L)y ey T
corresponding error probabilities — 0.8, py — 0.5 and this sequence. Then algorithth being optimal, tried for each

o k thi n f vol in increasing vol 3, un
p3 = 0. The voltage switching costs asg o = s3 3 = 1 and task this sequence of voltages, creasing voltages, unt

: i . We finally reorder, on inatn h k
s1,3 = 1.1. According to Theorem 2, the optimal voltage tosuccess € finally reorder, once again at no cost, the tas

. executions performed by algorith@: first all the execution
start executing the tasks can be shown td’beNow, suppose xecutions p y algorith@: firs xecutions

. . at voltageV; ), that is, the execution of all tasks &, (;);
Vi has been used. We consider the following two cases. then all executions at voltadé; »), that is, the execution of all

o There is_, only 1 task_left. In this case, switching first t?emaining tasks at voltage; ;); and so on. We have, hence,
V2 and in case of failure then t; incurs an expected gefined a level algorithm following the voltage sequence
cost Ofsy 2 +ca+ 22 (s23+¢3) + (1 - %) s2,3 =6.125.  defined for a single task, and whose expected energy cost
On the other hand, switching directly i@ incurs a total is the same as that of the optimal algoritkn O
cost ofsy 3+ c3 = 6.1. Hence, the better strategy in this . o .
case is to switch directly t®%. Theorem 3. With linear switching costs, level algorithms are

« There are 9 tasks left. Then, switching first tp and dominant.

then to‘gé incurs an expected cost 01‘1,92 + 9c2 +  Proof. Let us consider any optimal algorithr® and an
(1 - p_z) P ) (9) p2) (1 _ 2}’ (s2.3 + instance withn tasks. LetV; be the lowest voltage used
9 ]: ’

;. 03)”1: 39.125. On thejothglr hand sz\)/t/itching directlyby algorithm © during the entire execution. Then, the total
t0 Vi incurs a total cost of; 5 +9¢s — 46.1. Hence, the VOltage switching cost incurred b@ is S > sy + sex.

better strategy in this case is to try voltageg first and (Note that we use;, ¢+ s, for clarity here, to emphasize that
then Vs we switch down tol;, and back toV, = V4, but remember

that s; o = s¢, by Assumption 4.)

Let us consider any level algorithi that starts by switch-
Wg to voltageV,. Then, whatever the voltages it uses among
the voltages/y, Vi1, ..., Vi, it incurs a total switching cost
exactly equal toS* = sk, +se., because switching costs are
C. Optimality result linear. Therefore, we can assume without loss of generality
mat algorithm/£ switches to all the voltages,, V11, ..., Vi
aybe without executing any task at some of those levels).

Intuitively, using the intermediate voltagé pays off only
when there are many tasks left, in which case the ex
switching overheads( 2 + s2,3 — s1,3 = 0.9) diminishes with
respect to the potential energy gained from task execution

In this section we prove that level algorithms are domina

when switching costs are linear. The analysis so far h o - :
assumed that the voltage switching cost follows triangl en, the optimization problem of determining at which next

inequality. However, under the special case of linear cosYF.?Itage should the remaining tasks be executed is exactly

ie. sen = sip + Spp We can show that there existst e same as if there were no switching costs (there is no

a level algorithm (satisfying Definition 2) that is optimal.penalty incurred when an intermediate voltage is used)n;The

Furthermore, the optimal voltage sequence has a much sn'm[hgmm;‘ 2 tells ut? TOt lonlyt\;]vhta_ttl_s thetpptllmal level a}:gor}tr;m
structure, which helps reduce significantly the complegity N such a case but, aiso, that it 1S optimal among afl existing
the optimal algorithm. algonthms, hence the optimality a among all a}lgorlthms

We first prove a simple result: when the switching cos‘t’g’mg V(I)Itagtis amor(ljy_g, V‘J{.I’ "I" Vi BecausdID ('js oneéf
are zero, the optimal algorithm for a single task defines ese algorithms and 1S optimal, we can conciude.

level algorithm that is also optimal for an arbitrary numbér Theorem 4. To execute a set af independent tasks on a

tasks. Intuitively, we can transform any task-by-task atgon  system withi: voltages and linear switching costs, the optimal
into a level algorithm with the same cost, because there is &§lution can be obtained with complexiBy(k?).
overhead to switch voltages. _
Proof. According to Theorem 3, we only need to focus on
Lemma 2. On a system without voltage switching costs, thefgyel| algorithms to obtain the optimal solution.
exists an optimal algorithm, which is a level algorithm, suc  Syppose that a level algorithm starts executing the tasks at
that after each voltage: voltage V;,. Then, the total switching cost paid by the algo-
» The optimal voltage to execute the remaining tasks doghm during the entire execution is given by ,+ s &, which
not depend on the number of remaining tasks, and it iis fixed and does not depend on the sequence of voltages used.
the same as the optimal voltage to execute a single taskremains to find the optimal expected energy consumption
« The optimal expected energy consumption is proportionia execute the tasks froj, without considering the voltage
to the number of remaining tasks. switching costs. When there are no voltage switching costs,



let EZ..(i, Vi, Vo) and Eone(Vi, Vi) denote, respectively, the B. Case study: Matrix multiplication on FPGA
optimal expected energy to executetasks and one task
by starting from voltagel;,, given that all of them have
previously failed under voltag®,. According to Lemma 2,
we haveE: . (n, Vi, Vo) = n- Eje(Vi, Vo). We can then try
all possible starting voltages to get the optimal expeobéa t
energy consumption as follows:

In the first evaluation scenario, we consider a concrete
application (matrix multiplication) executed on a specific
platform, where error probabilities are known from real mea
surements.

1) Platform setting: We adopt the set of voltages and
error probabilities measured by Ernst et al. [5] on an FPGA
multiplier block. Figure 1 shows the error probabiljiy) of
each available voltag€; when performing aingle operation
with random inputs. We take theero marginl1.54V as the
) "~ nominal voltage and consider teavironmental margii.69V
arg min, << {sk,n + Sk +n - ESNEW’“VO)}' as the base operating voltage. As in [3], we scale the error

Lemma 2 also shows that the optimal sequence of voltagggpapilities down by a factor of 10 to account for the citeui
to follow is the same as the optimal sequence to execute Q86| error recovery technique [5]. Since the dynamic power
task without considering voltage switching costs. Accogdi ¢onsumption is a quadratic function of the operating vatag
to Theorem 1, this can be computed by [2], [12], for a given voltageV;, the energy consumed to
execute a task (one matrix product) is modeledsas V2w,
wherew denotes the total number of operations in the task.
~ ~ The energy to switch the operating voltage is assumed to be
and Vge(Ve) = Vi with b' = argmin,, <, Egwe(Va, V2).  linear (thus following triangle equality), and it is modele
The CompleXity is determined by the Computation Oés Sep = B - %fvh‘, Whereﬁ captures the relative cost of

Ei .= min {5 +spr4+n-ELe(V V}
SET 1<h<k k,h h,k ONE( hs O) 3

and the optimal starting voltage is therefdrg, whereh’ =

EéNE(w) = €I<r}zir<1k EéNE(Vh7W) )

1 _ A
E&ve(Va, Vi) for all 0 < Vi < Vi, < V4, which takesO(k?)  voltage switching in comparison to computation.

time. 0 2) Application modeling:We consider the computation of
a set of matrix products of the same size, which forms a
In the general case, we may have triangle inequality bgét of independent tasks of the same computational cost.
not triangle equality. We have not been able to designgach product consist of.3 multiply-add operations, where
counter-example to the optimality of level algorithms ireth,, denotes the size of the matrices. To detect errors we
general case. We therefore conjecture the dominance df Iegﬁ]pby Algorithm-Based Fault Tolerance (ABFT) [8], which

algorithms even in the case of triangle inequality. uses checksums to detect, locate and even correct errors
in many linear algebra kernels. Specifically, by adding one
VI. SIMULATIONS (column or row) checksum to each of the input matrices,

In thi . | h ; fth ?@ technigue enables to detect and correct up to one error
n this section, we evaluate the performance ofthe propos ing the computation of a matrix product with an overhead

algorithms using simulations. We instantiate the perforoea f O(m?) additional operations. This is almost negligible
model with two scenarios. The first scenario is based on t 8mpared to theO(m?) operations incurred by the raw
available data about timing error probabilities on a S’|°‘ECif}:omputation for reasonable matrix sizes. In the simulation

hardware [5], and we consider a set of matrix products usiw9 fix the matrix size to ben — 64. so the ABET version
ABFT as the verification mechanism. In the second scenarjQ,.,  _ m(m + 1)2 = 64 x 652 oberations incurring an

we use sy.n.the_tic data to assess the im pact O.f di.ﬁ‘erent Parerhead of abouw%. With the ability to correct one error, the

eters (verification cost, error probability, switching fjosn probability of having an incorrect product using voltaigeis

alternative hardware and applications. ] 1\ * e
thus given byp, = 1—(1 —py ) —(1) (1 —py ) Py

A. Comparing algorithms 3) Results:Figure 2 presents the impact of the number of
tasksn on the expected energy consumption when the voltage
We compare our dynamic programming algorithm designegyitching cost3 is set to be equivalent to multiplying two
for a set of independent tasks, which we denot®Byindep  matrices of sizé4 x 64, which is almost the cost of executing
to the following algorithms in the evaluation. one task. When the number of tasks is small (e.g., less than 7)
« Baseline& Threshold These two are static algorithmsthe switching cost can not be amortized and the best choice
that use theenvironmental margirvoltage andnominal s to stay at nominal voltage. Additionally, the cost of the
voltage, respectively, to execute the tasks. The formggrification mechanism (ABFT) whem = 64 reaches3%
does not make use of any voltage scaling techniqusy, the total work and bottDP-single and DP-indep remain
and the latter scales the voltage down to achieve negjorse than executing all tasks at nominal voltage and withou
threshold computing. Both algorithms do not incur timany verification mechanism. However, when the number of
ing errors and hence do not require verification and regsks is large enough (e.g., more than DR-indep quickly
execution. outperformsDP-single which only focuses on one task at
+ DP-single This algorithm uses the dynamic programg time and is thus unable to lower the voltage if it is not
ming solution for a single task and applies the optimglorth it for one task. On the contra@P-indepis paying the
sequence of voltages to execute all tasks in the set ofigitching cost only once, which can be easily amortized over
after another, using the output voltage of the last task gfe execution of the entire set of tasks. In particular, when
the input voltage for the current task. the number of tasks reaches= 32, DP-indepprovides 5%



of energy savings compared to tihresholdalgorithm, and the number of task decreases, the size of the tasks increases
it saves more than 20% of energy compared toBlaseline and the probability of success to execute one task drops
algorithm. considerably. As a result, we have to use higher voltages,

Figure 3 shows the impact of the switching cgston which consumes more energy.
the expected energy consumptionP-singleand DP-indep The value ofc determines the range of voltages that can be
under different switching costs when the number of tasks used safely, i.e., with low probability of failure, as shown
fixed to 32. Again, we model the switching cogt to be by Figure 4(a) and it has a huge impact on the expected
equivalent to multiplying two matrices of sizex z. Thex energy consumption. With a small the algorithm can yield
axis shows the corresponding matrix size. When the swigchiimportant energy savings comparedThreshold(more than
cost is small (e.g.z = 20), both DP-singleand DP-indep 40% for 10 tasks withc = 4), while with a largec (e.g.,
yield the same expected energy consumption. In fact, they ar = 128) the algorithm will not be able to do better than
both able to amortize the switching cost with one task ang th&hreshold
use the same sequence of voltages. But as the switching costinally, Figure 4(c) evaluates the impact of the verificatio
increasesPP-singlequickly shows its limits whileDP-indep cost on the expected energy consumptionDd-indep In
manages to better amortize the overhead and remains betigs experiment, we vary the verification cost with respect t
than Thresholdeven when the switching cost is more thamhe cost of one task froi% (no verification cost) tal00%
three times the cost of one task (e.g.,= 96). Note that (the verification cost is equivalent to the cost of one task).
when the switching cost is high enough (eg> 116), both When the cost of the verification increases, so does the total
algorithms are unable to perform better thEmreshold overhead of the computation. Consider the case where the

Overall, when the number of tasks is large enough, or d¢bst of the verification is half the cost of one task (i.e.alkot
the switching cost is smalDP-indepis always better and it work including verifications is now.5W = 15000). In this
saves up t@3% of the expected energy comparedBaseline case, executing56 tasks is40% more energy-efficient than
and up to7% compared torhresholdin this configuration.  Threshold whereas under the same configuration, executing

) ) . only 32 tasks for the same amount of work is orilj more
C. Evaluations with synthetic data energy-efficient. Overall, the execution of many small $ask

We now consider synthetic input data in order to evaluaie preferred over the execution of a few big tasks.
the algorithms on different hardware and applications. We 2) Optimal solution with two voltagesiVe now consider a
envision platforms with normalized voltages falling in §0. set of scenarios where only two voltages are available, hame
1], where 1 represents the nominal voltdge Following the 147 andV, = Vz,. As shown previously, the only decision to
characteristics of soft errors [6], we model the error plsba make is whether to switch to the lower voltaljg, in which
ity of a computation of lengthv executed using voltagl, to case a cost ofsy ; is incurred due to voltage switching, or
bep, = 1—e~*¢%, wherel, = e~ °(V2=V%) — \( represents to directly use the nominal voltagé, for executing the tasks.
the error rate and denotes the failure rate coefficient thaFigure 5 shows the energy savings achieved by the optimal
depends on the hardware. The model also specifies the balg@rithm OP-indep for this scenario. Naturally, more energy
error rate)q, which is usually very small. In the experimentsis saved wher/; has a smaller execution cost or a lower error
Xo is fixed to be10~° error per second, which correspondgrobability. For any given cost and probability, the savétgp
to less than one error per day. The energy consumptionitgreases with the number of tasks, because the cost ofyeolta
execute the tasks and the voltage switching costs follow tb@itching can be better amortized. For the case with 10 tasks
same model as in the previous scenario. andsy 1 = 5¢q, and when the error probability of voltagé

1) Results:For all experiments, the total work is fixed tois around 0.5DP-indepstarts to save energy when the cost
be W = 10000 operations and the number of tasks is fixed at drops belowc /3, and it is able to save at least 40% of
n = 32, so that each task has abaut= % ~ 312 operations. the energy with a cost lower than /10.

Figure 4(a) shows, given a voltage, the probabilities of For the same case (10 tasks a#nd, = 5¢1), Figure 6
failure for one task under different failure rate coefficgen shows the performance degradation (expected executi@n tim
c. This factor determines hovast the probability of failure overhead) due to verifications and re-executions. Since the
increases when the voltage is lowered below threshold. rAsults are obtained by tHeP-indepalgorithm, which targets
small value ofc gives a very optimistic configuration, whereenergy minimization, they do not represent the best passibl
lowering the voltage below threshold is possible while kegp performance. Indeed, the overhead is minimum (0%) when
low probabilities of failure. Such a configuration is idealda the algorithm does not switch tb;, which means that no
allows us to choose amongst a wide range of voltages, tharsergy is saved at all. Once the algorithm has decided to make
giving the opportunity to save energy. Higher values show the switch in order to save energy, the expected performance
more realistic, and also more pessimistic configurations. Fstarts to degrade. For any fixed cost ratig/c;, a lower
example, whem reached 28, as soon as we lower the voltageerror probability enables the algorithm to both save energy
the probability of failure increases dramatically and tharace and improve performance, because the tasks enjoy a higher
of success drops close to zero. In that c&@#esindephas no chance of success &t. Finally, as verification and/or voltage
other choice but to stay at nominal voltage. switching times increase, the performance degrades furthe

Figure 4(b) presents the impact of the number of task®r instance, whem; = 0.5 and c¢;/c; = 10, and when
on the normalized expected energy consumptiob®findep verification takes 5% of the task execution time and voltage
with respect toThresholdunder different values of. Re- switching takes the same time as task execution, the dhgorit
member that the total world” is fixed to bel0000, so when achieves 40% of the energy saving at the expense of about
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70% degradation in performance.

VIl. CONCLUSION

In this paper, we have used voltage overscaling to desigd
a purely software-based approach for reducing the energy
consumption of HPC applications. This approach aggréssive[4]
lowers the supply voltage below the nominal voltage, in-
troducing timing errors. Based on a formal model of tim-g
ing errors, we have provided an optimal level algorithm to
schedule a set of independent tasks, and we have provg?
its global optimality when switching costs are linear. The
evaluation results obtained both for matrix multiplication
FPGA and for synthetic data demonstrate that our approa¢fl
indeed leads to significant energy savings compared to the
standard algorithm that always operates at (or above) th#
nominal voltage. Given the promising results, we plan t
extend this approach to more complex application workflow:

in the future.
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Figure 5: Impact of the switching cost and of the number dfd¢amn the percentage of energy saving when only two voltages
are available. Black means no saving, and yellow means 1008aergy is saved.
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Figure 6: Percentage of (expected) execution time overlasaa function of the probability of failure and of the ratio of
energy costs. The results are based on 10 tasks and a swgit@ghof5¢;. The unit used to express verification and switching
times is the execution time of a task at voltage



