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Abstract—In this paper, we discuss several scheduling algo-
rithms to execute independent tasks with voltage overscaling.
Given a frequency to execute the tasks, operating at a voltage
below threshold leads to significant energy savings but alsoin-
duces timing errors. A verification mechanism must be enforced
to detect these errors. Contrarily to fail-stop or silent errors,
timing errors are deterministic (but unpredictable). For each
task, the general strategy is to select a voltage for execution, to
check the result, and to select a higher voltage for re-execution
if a timing error has occurred, and so on until a correct result is
obtained. Switching from one voltage to another incurs a given
cost, so it might be efficient to try and execute several tasksat the
current voltage before switching to another one. Determining the
optimal solution turns out to be unexpectedly difficult. However,
we provide the optimal algorithm for a single task, the optimal
algorithm when there are only two voltages, and the optimal
level algorithm for a set of independent tasks, where a level
algorithm is defined as an algorithm that executes all remaining
tasks when switching to a given voltage. Furthermore, we show
that the optimal level algorithm is in fact globally optimal (among
all possible algorithms) when voltage switching costs are linear.
Finally, we report a comprehensive set of simulations to assess
the potential gain of voltage overscaling algorithms.

Index Terms—HPC, Resilience, Failures, Timing Errors, Volt-
age Overscaling, Energy Efficiency

I. I NTRODUCTION

Energy minimization has become a critical concern in High
Performance Computing (HPC). Many authors have suggested
to useDynamic Voltage and Frequency Scaling (DVFS)to
reduce the energy consumption during the execution of an
application. Reducing the frequency (or speed) at which each
core is operated is the most frequently advocated approach,
and great savings have been demonstrated for a variety of
scientific applications [7], [1], [4], [13]. However, reducing
the voltage for a given speed may lead to even greater savings,
because the total consumed power is proportional to the
square of the voltage. On the contrary, the dynamic power
is linearly proportional to the frequency, and the static power
is independent of it.

Keeping the same frequency and reducing the voltage is
a promising direction which we explore in this paper. There
is no free lunch, though. Given a frequency, there is always
a voltage recommended by the manufacturer, below which
it might be unsafe to operate the core. This voltage always
includes some environmental margin to be on the safe side.
Near-threshold computing is a technique that consists in
reducing the voltage below the recommended value, down
to a threshold voltageVTH (also callednominal voltage) that
is still considered safe. Overscaling algorithms suggest to
further reduce the operating voltage, at the risk of producing
timing errors. Because the voltage is set to a very low value,
the results of some logic gates could be used before their

output signals reach their final values, which could possibly
lead to an incorrect result. The occurrence of a timing error
depends upon many parameters: the voltage and frequency,
and the nature of the target operation: different operations
within the ALU may have different critical-path lengths. But
in addition, for a given operation, different sets of operands
may lead to different critical-path lengths (to see this, take a
simple addition and think of a carry rippling to different gates
depending upon the operands). Timing errors are therefore
very different from usual fail-stop failures or silent errors
that are dealt with in the literature: they are not random but,
instead, they are purely deterministic. Indeed, replayingthe
same operation with the same set of operand under the same
conditions will lead to the same result. Although deterministic,
timing errors are unpredictable, because it is not possibleto
test all possible operands for a given operation. Therefore,
for a given operation1, an error probability is associated with
each voltage and represents the fraction of operands for which
incorrect results will be produced by executing that operation
on these operands at that voltage.

We need to take actions to mitigate timing errors that strike
the application when voltage is aggressively lowered. After
executing a task, we insert a verification mechanism to check
the correctness of the result. In our study, the scheduling
algorithms are agnostic of the nature of this verification
mechanism, which could be anything from (costly) duplica-
tion to (cheap) checksumming and other application-specific
methods. Of course, the cheaper the cost of the verification,
the smaller the overhead.

To execute a given task, scheduling algorithms with voltage
overscaling operate as follows: they are given a (discrete)
set of possible voltages to operate with, and one of them
as an input voltage. The first decision to take is whether to
execute the task at that voltage or to choose another one. In
the latter case, there is aswitching costto pay to change
voltage. Regardless of the decision, the result is verified
after the execution of the task. If the verification mechanism
returns that the result is correct, we are done. If not, we
need to re-execute the task. Remember that timing errors are
deterministic: there is no point in re-executing the task with
the same voltage; we know that we will get the same error. We
need to select a higher voltage that will reduce the probability
of failure, paying a switching cost, and re-execute the task
with this voltage. Because the voltage is higher, the error
probability is reduced, and we have a chance that the second
execution is correct. The higher the second voltage, the better

1and a given frequency: remember that throughout the text, weassume the
frequency to be given.



that chance, but the higher the cost of the execution, so there is
a trade-off to consider. If we are unlucky, we may have to try
several higher and higher voltages, until eventually finishing
the task by using the threshold voltage, which is100% safe
but very costly. In Section IV, we give the optimal scheduling
algorithm for a single task, extending our previous result [3]
to the case where an input voltage is given to the algorithm.

The problem gets more complicated when there are many
tasks to schedule. We assume that these tasks correspond to
the same operation but involve different operands (think of
a collection of matrix products or stencil updates). Given
a voltage, each task has the same probability to fail. In
the absence of switching costs (an unrealistic assumption in
practice), the tasks can be dealt with independently. However,
to amortize the switching cost from a given voltage to a new
one, it might be a good idea to try and execute several tasks
(or even all the remaining tasks) at a given voltage. One key
contribution of this work is to analyzelevel algorithms, which
always execute all the remaining tasks once a voltage has been
selected. We provide a dynamic programming algorithm that
computes the optimal level algorithm as a function of the
voltage costs and error probabilities, and of the number of
tasks to execute.

Level algorithms turn out to be dominant among all possible
algorithms when voltage switching costs are linear. Tech-
nically, if we have three voltagesV1 < V2 < V3, linear
switching costs means thats1,3 = s1,2 + s2,3, where si,j
is the cost to switch fromVi to Vj (or the other way round,
from Vj to Vi). With linear switching costs, we show that the
optimal level algorithm is in fact optimal among all possible
algorithms, not just level algorithms.

Finally, an important contribution of the paper is to ex-
perimentally assess the usefulness of voltage overscaling
algorithms. We first consider a case study from numerical
linear algebra, where tasks are matrix-products that can be
verified through ABFT checksums. We then envision different
scenarios, where we evaluate the impact of each parameter
(verification cost, voltage cost and error probability, switching
costs). In addition to the gain in energy consumption, we also
investigate the performance degradation: while we keep the
same frequency (thereby avoiding a global slowdown of the
execution as is the case with DVFS), we do have two sources
of performance overhead: (i) the verification mechanism, and
(ii) the time lost due to re-execution(s) and voltage switching
after timing errors.

To the best of our knowledge, this paper (together with
our initial workshop paper [3]) presents the first algorith-
mic approach for voltage overscaling. Previous studies are
hardware oriented and require special hardware mechanisms
to detect timing errors [9], [11], [10], [5]. On the contrary,
we propose scheduling algorithms that can be called by the
operating system of the platform.

The rest of this paper is organized as follows. In Section II,
we introduce a formal model for timing errors. In Section III,
we illustrate several scheduling strategies by considering only
two available voltages. We present the optimal algorithm for a
single task in Section IV, and move to scheduling several tasks
in Section V. We report the results of a comprehensive set of
simulations to assess the impact and benefits of the voltage
overscaling algorithms in Section VI. Finally, we provide

concluding remarks in Section VII.

II. M ODEL

We now present a formal model for timing errors. We
introduce the main notations and assumptions, and investi-
gate the impact of timing errors on the success and failure
probabilities of tasks. Because timing errors are deterministic,
conditional properties are completely different from whatis
usually enforced for the resilience of HPC applications.

A. Timing errors

As already mentioned, we focus on a fixed frequency
environment (this frequency may have been chosen to achieve
a given performance). Then timing errors depend upon the
voltage selected for execution, and we model this with the
following two assumptions:

Assumption 1. Given an operation and an inputI (the set
of operands), there exists athreshold voltageVTH(I): using
any voltageV below the threshold (V < VTH(I)) will always
lead to an incorrect result, while using any voltage above
that threshold (V ≥ VTH(I)) will always lead to a successful
execution. Note that different inputs for the same operation
may have different threshold voltages.

Assumption 2. When an operation is executed under a given
voltage V , there is a probabilitypV that the computation
will fail, i.e., produces at least one error, on a random input.
This failure probability is computed aspV = | If (V )|/| I |,
whereI denotes the set of all possible inputs andIf (V ) ⊆ I
denotes the set of inputs for which the operation will fail at
voltage V . Equivalently,If (V ) is the set of inputs whose
threshold voltages are strictly larger thanV , according to
Assumption 1. For any two voltagesV1 andV2 with V1 ≥ V2,
we haveIf (V1) ⊆ If (V2) (Assumption 1), hencepV1

≤ pV2
.

If a task consists oft identical operations, each executed at
voltageV with error probabilitypV , then the probability of
successful execution of the task is(1 − pV )

t: the larger the
task, the greater the risk. Since timing errors are essentially
silent errors, they do not manifest themselves until the cor-
rupted data has led to an unusual application behavior, which
may be detected long after the error has occurred, wasting
the entire computation done so far. Hence, an error-detection
mechanism (also calledverificationmechanism) is necessary
to ensure timely detection of timing errors after the execution
of each task. In this paper, we assume that this mechanism
is given. All the algorithms presented in Sections IV and V
are fully general and agnostic of the error-detection technique
(checksum, error correcting code, coherence tests, etc.).

B. Notations

We consider a setT = {T1, T2, · · · , Tn} of n tasks to be
executed by the system. There is no precedence constraint
among the tasks so that they areindependent. All tasks
share the same computational weight, including the work
to verify the correctness of the result at the end. Hence,
they have the same execution time and energy consumption
under a fixed voltage. We applyDynamic Voltage Over-
Scaling (DVOS)to tradeoff between energy cost and failure
probability. The platform can choose an operating voltage
among a setV = {V1, V2, · · · , Vk} of k discrete values,



where V1 < V2 < · · · < Vk. Each voltageVℓ has an
energy costper taskcℓ that increases with the voltage, i.e.,
c1 < c2 < · · · < ck. Based on Assumption 2, each voltage
Vℓ also has afailure probability pℓ that decreases with the
voltage, i.e.,p1 > p2 > · · · > pk. We assume that the
highest voltageVk equals thenominalvoltageVTH with failure
probabilitypk = 0, thus guaranteeing error-free execution for
all possible inputs. For convenience, we also use anull voltage
V0 with failure probabilityp0 = 1 and null energy costc0 = 0.
Here is a summary of these notations:

Voltages V0 V1 V2 · · · Vk = VTH

Failure Prob. p0 = 1 p1 p2 . . . pk = 0
Energy cost c0 = 0 c1 c2 . . . ck

We further assume that DVOS is only applied to reduce
energy consumption, and leaving the system at a voltage
below VTH after the execution of the task(s) is not allowed
(because it would not be safe). This is formally stated in the
following assumption.

Assumption 3. The system is initially running at nominal
voltageVTH and its voltage must be reset back toVTH when
all computations are done.

Switching the operating voltage also incurs an energy cost.
Let sℓ,h denote the energy consumed to switch the system’s
operating voltage fromVℓ to Vh. We havesℓ,h = 0 if ℓ = h
and sℓ,h > 0 if ℓ 6= h. Moreover, we make the following
assumptions on the properties of the switching costs, which
are true in many systems in practice.

Assumption 4. The voltage switching costs of the system
satisfy:
• Symmetry:sℓ,h = sh,ℓ for all Vℓ, Vh ∈ V ;
• Dominance:sℓ,h ≥ sℓ,p andsℓ,h ≥ sp,h for Vℓ ≤ Vp ≤ Vh;
• Triangle inequality:sℓ,h ≤ sℓ,p + sp,h for Vℓ ≤ Vp ≤ Vh.

Definition 1 (Linear switching costs). We have linear costs
when the triangle inequality is always an equality:sℓ,h =
sℓ,p + sp,h for all Vℓ ≤ Vp ≤ Vh.

The objective is to minimize the expected total energy
consumption by determining the optimal strategy to execute
the set of tasks.

C. Success and failure probabilities

We now consider the implications of Assumptions 1 and
2 on the success and failure probabilities of executing a task
following a sequence of voltages. For the ease of writing,
we assume that the execution of each task has already failed
under the null voltageV0 (at energy costc0 = 0).

Lemma 1. Consider a sequence〈V1, V2, · · · , Vm〉 of m
voltages, whereV1 < V2 < · · · < Vm, under which a given
task is executed. For any voltageVℓ, where1 ≤ ℓ ≤ m, given
that the execution of the task on a certain input has already
failed under voltagesV0, V1, · · · , Vℓ−1, the probabilities that
the task execution will fail and succeed respectively under
voltageVℓ on the same input are given by

P(Vℓ-fail | V0V1 · · ·Vℓ−1-fail) =
pℓ

pℓ−1
,

P(Vℓ-succ| V0V1 · · ·Vℓ−1-fail) = 1−
pℓ

pℓ−1
.

Proof. We prove the claimed probabilities using Assump-
tions 1 and 2. The task under study is the execution of some
computation on some inputI. Since this task execution has
failed under voltagesV0, V1, · · · , Vℓ−1, we know that inputI
satisfiesI ∈

⋂ℓ−1
h=0 If (Vh) = If (Vℓ−1) (recall thatIf (Vh) is

the set of inputs on which the computation fails under voltage
Vh). Then, the task execution will fail again under voltageVℓ

if the input satisfiesI ∈ If (Vℓ) ⊆ If (Vℓ−1). Otherwise, the
task execution will succeed. Given that the input is randomly
chosen (we have no a priori knowledge on it), the failure
probability is

P(Vℓ-fail | V0V1 · · ·Vℓ−1-fail)

=
| If (Vℓ)|

| If (Vℓ−1)|
=

| If (Vℓ)|/| I |

| If (Vℓ−1)|/| I |
=

pℓ
pℓ−1

,

and the success probability is

P(Vℓ-succ| V0V1 · · ·Vℓ−1-fail)

=
| If (Vℓ−1)\ If (Vℓ)|

| If (Vℓ−1)|
= 1−

| If (Vℓ)|

| If (Vℓ−1)|
= 1−

pℓ
pℓ−1

.

III. C ASE WITH TWO VOLTAGES

In this section, we focus on the special case where there are
only two available voltages (i.e.,k = 2). In the first study, for
the sake of illustration, we assume that Assumption 3 does
not hold and that the system is originally at voltageV1. In the
second study, we derive the optimal policy, for two voltages,
assuming that Assumption 3 does hold (which will always be
the case in the following sections).

A. Two voltages without Assumption 3

The system is initially at voltageV1. We assume that there
are only two tasks to execute. It is twice as expensive energy-
wise to execute a task atV2 than atV1 (c1 = 1 andc2 = 2),
the failure probability atV1 is 80% (p1 = 0.8), and switching
voltage fromV1 to V2 is as expensive as executing 20 tasks
at V1 (s1,2 = 20). If there were no switching costs (s1,2 = 0),
no task would be executed at voltageV1. Indeed, executing a
task at voltageV2 costsc2 = 2, whereas the expected cost of
executing a task atV1 is c1 + p1 · c2 = 1 + 0.8 · 2 = 2.6. If
we could switch voltages for free, we would always switch to
the nominal voltage to execute tasks. However, the switching
cost is expensive here, and the system is initially at voltage
V1. We can envision three policies:

• Switch directly toV2 to execute both tasks. This costs
s1,2 + 2 · c2 = 24.

• Execute both tasks atV1. If both executions succeed,
which happens with probability(1− p1)

2, we are done.
Otherwise, switch toV2 and re-execute the failed task(s).
The expected cost is2·c1+(1−(1−p1)

2)s1,2+2·p1·c2 =
24.4.

• Execute the first task atV1 and switch toV2 if and only
if its execution failed. The rationale is as follows. If the
execution of the first task fails, whatever the result of the
execution of the second task, we will have to switch toV2

to re-execute the first task. Moreover, we have shown that
executing a task atV2 is cheaper than trying to execute
it at V1 and then re-executing it atV2 in case of failure.



Therefore, we save energy by not attempting to execute
the second task atV1. If the execution of the first task was
successful, we remain atV1 in (the unlikely) case that the
execution of the second case will also succeed and that
we will never have to switch toV2 (thus saving the huge
switching cost). The expected cost of this policy is then
c1+p1(s1,2+2·c2)+(1−p1)(c1+p1(s1,2+c2)) = 23.92.

The third policy is the optimal in this case. This example
illustrates two important facts: (i) the optimal policy maybe
dynamic, that is, the decision at which voltage the next task
should be executed depends on the success or failure ofother
tasks; (ii) switching costs can have a significant impact on the
shape of the optimal solution.

B. Two voltages under Assumption 3

We now assume that we haven tasks to process, and that
Assumption 3 holds (as it should). We have two cases to
consider, depending on whetherV1 is used or not.

• V1 is not used. The cost is thenn · c2.
• V1 is used. Then, whatever the policy, the two switching

costss1,2 and s2,1 will be payed. Executing a task at
voltageV2 costsc2. Executing a task first at voltageV1

costs:c1+p1 · c2. Therefore, it may only be worth using
V1 if c1+p1 ·c2 ≤ c2 ⇔ c1 ≤ (1−p1)c2. In this case, an
optimal solution is to first executeall tasks atV1, then
the voltage must be switched back toV2, and finally
the failed tasks must be re-executed. Indeed, whatever
happens, both switching costs are paid, and the solution
is the same as if switching costs were zero. The expected
cost is then2s1,2+n · c1 +n · p1 · c2. This is better than
the first policy if and only if:

n·c2 ≥ 2s1,2+n·c1+n·p1·c2 ⇔ n ≥

⌈

2s1,2
c2(1− p1)− c1

⌉

.

The optimal strategy is thus: ifc1 ≤ (1 − p1)c2 and
n ≥ ⌈

2s1,2
c2(1−p1)−c1

⌉, then switch toV1, execute all tasks at
V1, switch to V2 and re-execute all failed tasks; otherwise,
stay atV2 and execute all tasks at that voltage. Hence, the
shape of the optimal strategy depends on the number of tasks
to execute. Note that thanks to Assumption 3, the shape of
the solution is simpler than in the previous study.

IV. SCHEDULING FOR A SINGLE TASK

We focus here on the special case where there is only one
task to execute. We present an optimal algorithm for this case,
extending our previous result [3] to the case where an input
voltage is given to the algorithm. We need this extension
to prepare for the general case with several tasks: indeed,
consider a simple algorithm that proceeds task after task.
For the first task, the input voltage is alwaysVTH , according
to Assumption 3. But when the execution of the first task
completes, the input voltage for the second task may well be
different from VTH , if for instance the algorithm tried, and
succeeded with, a lower voltage.

We first define some notations. LetE∗
ONE(Vh, Vℓ) denote the

optimal expected energy needed to execute the task starting
from voltageVh, given that the task has previously failed
under a sequence of lower voltages, the highest one among
which isVℓ. Let E∗

ONE(Vℓ) andV ∗
ONE(Vℓ) denote, respectively,

the optimal expected energy and the optimal voltage needed

to execute the task after it has just failed under voltageVℓ.
The following theorem shows the optimal solution.

Theorem 1. To execute a single task on a system withk
voltages, the optimal expected energy consumption as well as
the optimal sequence of voltages can be obtained by dynamic
programming with complexityO(k2).

Proof. Suppose the task has just failed under voltageVℓ and it
is about to be executed at a higher voltageVh > Vℓ. According
to Lemma 1, the probability that the tasks will fail again under
Vh is given byP(Vh-fail | Vℓ-fail) = ph/pℓ. If the task is
successfully completed atVh, we can just reset the voltage
from Vh back to the nominal voltageVk. Otherwise, we
need to determine the optimal voltageV ∗

ONE(Vh) to continue
executing the task until successful completion. Thus, for any
pair (Vh, Vℓ) of voltages with V0 ≤ Vℓ < Vh ≤ Vk,
we can computeE∗

ONE(Vh, Vℓ) by the following dynamic
programming formulation:

E∗
ONE(Vh, Vℓ) = ch +

(

1−
ph
pℓ

)

sh,k

+
ph
pℓ

· min
h<p≤k

{

sh,p + E∗
ONE(Vp, Vh)

}

. (1)

The table is initialized withE∗
ONE(Vk, Vℓ) = ck regardless of

Vℓ, and the entire table can be computed inO(k2) time.
The optimal expected energy to execute the task after it has

just failed under voltageVℓ is therefore

E∗
ONE(Vℓ) = min

ℓ<h≤k

{

sℓ,h + E∗
ONE(Vh, Vℓ)

}

, (2)

and the optimal voltage to execute the task in this case
is V ∗

ONE(Vℓ) = Vh′ , where h′ = argminℓ<h≤k

{

sℓ,h +
E∗

ONE(Vh, Vℓ)
}

. Again, computingE∗
ONE(Vℓ) andV ∗

ONE(Vℓ) for
all 1 ≤ ℓ ≤ k takesO(k2) time. The optimal expected energy
to execute the task from the initial nominal voltageVk is thus:

E∗
ONE = min

1≤h≤k

{

sk,h + E∗
ONE(Vh, V0)

}

,

whereV0 is the null voltage with failure probabilityp0 = 1.
The optimal starting voltage to execute the task isV ∗

ONE = Vh′ ,
whereh′ = argmin1≤h≤k

{

sk,h + E∗
ONE(Vh, V0)

}

. This can
be computed inO(k) time.

V. SCHEDULING FOR SEVERAL TASKS

We now consider the general case of executing a set of
n independent tasks, wheren ≥ 2. All tasks correspond to
the same computational operations, but may have different
threshold voltages, because they operate on different datasets.
The problem turns out to be more complicated than expected.
We start, in Section V-A, with the introduction of two simple
scheduling strategies,task-by-taskand level, before sketching
the description of a general scheduling algorithm. Then we
show how to determine the optimal level algorithm in Sec-
tion V-B. Finally, in Section V-C, we prove that the optimal
level algorithm is in fact globally optimal among all possible
scheduling algorithms when switching costs are linear.

A. Scheduling algorithms and strategies

We now provide an informal description of scheduling
algorithms for independent tasks. There are two simple ex-
ecution strategies, which we calltask-by-taskand level. The



task-by-task strategy considers the tasks one after another,
waiting for the successful completion of the current task
before proceeding to the (first) execution of the next one. This
strategy relies upon the optimal algorithm for a single task
with a given input voltage described in Section IV. After the
successful execution of the current task, the platform voltage
is set at some valueVh, which we use as the input voltage for
applying the optimal single-task algorithm to the execution of
the next task.

Although optimal for each task, this strategy may end up
paying a high overall switching cost. For instance, if the
optimal single-task algorithm always starts with some low
voltage, sayVs, regardless of the input voltageVh, then the
task-by-task strategy will have to switch back down toVs each
time there is a timing error in the execution of the previous
task.

To minimize the total switching cost, another strategy is
to execute all tasks at a given voltage, before switching to
another voltage and execute all remaining tasks at that other
voltage, and so on. Thislevelstrategy goes voltage-by-voltage
instead of task-by-task, executing all tasks at a given voltage
before switching to another one (hence its name).

While very natural, the task-by-task and level strategies are
not the only possible algorithms. In fact, a general scheduling
algorithm proceeds as follows. At each step, we are given
an input voltage (that of the last execution of a task, orVTH

initially) and the list of remaining tasks, together with their
history (the last voltage tried for the execution of each task
is recorded, withV0 for initial condition). Then the algorithm
selects one task in the list and one voltageVnew higher than
the one recorded for this task2, and executes the task at that
voltage. A switching cost is paid ifVnew is different from
the input voltage. If the execution is successful, the task is
removed from the list, and otherwise, the task stays in the
list, and its history is updated to beVnew. The algorithm then
proceeds to the next step, withVnew as input voltage. The
key decision at each step of the scheduling algorithm is the
selection of the new task and voltage pair, and this decision
may well depend upon the number and history of the tasks
in the list, the input voltage, and all the problem parameters
(cost and error probability of each voltage, and switching
costs). Altogether, we have a complex decision to make at
each step, and it seems very difficult to prove the optimality
of a scheduling algorithm in the general case.

B. Level algorithms

In this section, we formally define level algorithms, and
we provide a dynamic programming algorithm to compute
the optimal level algorithm.

Definition 2 (Level algorithms). A level algorithm executes
a set of independent tasks as follows:

1) Select the initial voltageV ;
2) Switch to voltageV and execute all remaining tasks;
3) Remove the successfully completed tasks from the set;
4) If there are still some tasks not successfully completed,

choose the next, higher, voltageV to try and go to Step 2;
5) If the last voltage used is notVk, switch to voltageVk.

2There would be no point in trying the recorded voltage again,or a lower
one: we know that the execution of the task would fail again.

We call the sequence of voltages tried by a level algorithm
the voltage sequence.

The level strategy guarantees that each voltage will be used
at most once, so the voltage will change no more thank
times during the execution of the entire task set. We have
to determine the optimal sequence of voltages to characterize
the optimal level algorithm. Before presenting the dynamic
programming algorithm that solves this problem, we need a
few notations.

Let E∗
SET(i, Vh, Vℓ) denote the optimal expected energy

needed to executei tasks starting at voltageVh, provided that
these tasks have just failed under a lower voltageVℓ < Vh.
Then, the optimal expected energy to executei tasks that
have failed under voltageVℓ is given by E∗

SET(i, Vℓ) =
minℓ<h≤k

{

sℓ,h + E∗
SET(i, Vh, Vℓ)

}

. The following theorem
shows the optimal solution of a level algorithm.

Theorem 2. To execute a set ofn independent tasks on a
system withk voltages, the optimal solution under any level
algorithm can be obtained by dynamic programming with
complexityO(n2k2).

Proof. Suppose a set ofi tasks have just failed under voltage
Vℓ and they will be executed at a higher voltageVh. According
to Lemma 1, the probability that any of these tasks will
fail again atVh is P(Vh-fail | Vℓ-fail) = ph/pℓ. Thus, the
probability thatj tasks will remain uncompleted after they
are executed at voltageVℓ is

P(j tasks remain) =

(

i

j

)(

ph
pℓ

)j (

1−
ph
pℓ

)i−j

,

for any 0 ≤ j ≤ i. If no task remains, e.g.,j = 0, we
need to reset the voltage fromVh back to the nominal voltage
Vk. Otherwise, we need to determine the optimal voltage to
execute the remainingj tasks, hence the dynamic program:

E∗
SET(i, Vh, Vℓ) = i · ch + P(no task remains) · sh,k

+

i
∑

j=1

(

P(j tasks remain) min
h<p≤k

{sh,p + E∗
SET(j, Vp, Vh)}

)

= i · ch +

(

1−
ph
pℓ

)i

sh,k

+

i
∑

j=1

(

(

i

j

)(

ph
pℓ

)j(

1−
ph
pℓ

)i−j

· min
h<p≤k

{sh,p+E∗
SET(j, Vp, Vh)}

)

for all 1 ≤ i ≤ n and all (Vh, Vℓ) pairs withV0 ≤ Vℓ < Vh ≤
Vk. In particular, whenVh = Vk, we haveE∗(i, Vk, Vℓ) = i·ck
for all 1 ≤ i ≤ n regardless ofVℓ.

The optimal expected energy needed to executei remaining
tasks after they have just failed under voltageVℓ is therefore

E∗
SET(i, Vℓ) = min

ℓ<h≤k

{

sℓ,h + E∗
SET(i, Vh, Vℓ)

}

. (3)

The optimal voltage to execute these tasks isV ∗
SET(i, Vℓ) =

Vh′ , whereh′ = argminℓ<h≤k

{

sℓ,h + E∗
SET(i, Vh, Vℓ)

}

. The
optimal expected energy needed to execute alln tasks, given
that the initial system voltage is the nominal voltageVk, is

E∗
SET = min

1≤h≤k

{

sk,h + E∗
SET(n, Vh, V0)

}

,



whereV0 is the null voltage with failure probabilityp0 = 1.
The optimal starting voltage to execute the entire set isV ∗

SET =
Vh′ , whereh′ = argmin1≤h≤k

{

sk,h + E∗
SET(n, Vh, V0)

}

.
The complexity is clearly dominated by the computation of

E∗
SET(i, Vh, Vℓ) for all 1 ≤ i ≤ n andV0 ≤ Vℓ < Vh ≤ Vk,

which takesO(n2k2) time.

Theorem 2 shows that the optimal voltage to select after the
current voltage is used depends on the number of remaining
tasks. To demonstrate this point, consider an example with
three voltages and 10 independent tasks. The energy costs
of the voltages arec1 = 0.1, c2 = 1 and c3 = 5, and the
corresponding error probabilities arep1 = 0.8, p2 = 0.5 and
p3 = 0. The voltage switching costs ares1,2 = s2,3 = 1 and
s1,3 = 1.1. According to Theorem 2, the optimal voltage to
start executing the tasks can be shown to beV1. Now, suppose
V1 has been used. We consider the following two cases.

• There is only 1 task left. In this case, switching first to
V2 and in case of failure then toV3 incurs an expected
cost ofs1,2+c2+

p2

p1

(s2,3+c3)+
(

1− p2

p1

)

s2,3 = 6.125.
On the other hand, switching directly toV3 incurs a total
cost ofs1,3+ c3 = 6.1. Hence, the better strategy in this
case is to switch directly toV3.

• There are 9 tasks left. Then, switching first toV2 and
then to V3 incurs an expected cost ofs1,2 + 9c2 +
(

1− p2

p1

)9

s2,3 +
∑9

j=1

(

9
j

)

(

p2

p1

)j (

1− p2

p1

)9−j

(s2,3 +

j · c3) = 39.125. On the other hand, switching directly
to V3 incurs a total cost ofs1,3+9c3 = 46.1. Hence, the
better strategy in this case is to try voltageV2 first and
thenV3.

Intuitively, using the intermediate voltageV2 pays off only
when there are many tasks left, in which case the extra
switching overhead (s1,2+ s2,3− s1,3 = 0.9) diminishes with
respect to the potential energy gained from task execution.

C. Optimality result

In this section we prove that level algorithms are dominant
when switching costs are linear. The analysis so far has
assumed that the voltage switching cost follows triangle
inequality. However, under the special case of linear costs,
i.e., sℓ,h = sℓ,p + sp,h, we can show that there exists
a level algorithm (satisfying Definition 2) that is optimal.
Furthermore, the optimal voltage sequence has a much simpler
structure, which helps reduce significantly the complexityof
the optimal algorithm.

We first prove a simple result: when the switching costs
are zero, the optimal algorithm for a single task defines a
level algorithm that is also optimal for an arbitrary numberof
tasks. Intuitively, we can transform any task-by-task algorithm
into a level algorithm with the same cost, because there is no
overhead to switch voltages.

Lemma 2. On a system without voltage switching costs, there
exists an optimal algorithm, which is a level algorithm, such
that after each voltage:

• The optimal voltage to execute the remaining tasks does
not depend on the number of remaining tasks, and it is
the same as the optimal voltage to execute a single task;

• The optimal expected energy consumption is proportional
to the number of remaining tasks.

Proof. Let us consider an optimal algorithmO and its ex-
ecution on an instance withn tasks denoted byT1, ..., Tn.
We reorder the task executions performed byO such that all
executions ofT1 are done first, then all executions ofT2 are
performed, and so on. (Note that we have taken an arbitrary
ordering of the tasks.) The new execution order has exactly
the same cost as the previous one because switching costs
are null. Also, Assumption 3 has no impact on the solution.
Therefore, the optimal sequence of voltages to execute task
Ti (for any1 ≤ i ≤ n) is the sequence of voltages defined in
Section IV, that is, for a single task. LetVπ(1), ..., Vπ(m) be
this sequence. Then algorithmO, being optimal, tried for each
task this sequence of voltages, in increasing voltages, until
success. We finally reorder, once again at no cost, the task
executions performed by algorithmO: first all the executions
at voltageVπ(1), that is, the execution of all tasks atVπ(1);
then all executions at voltageVπ(2), that is, the execution of all
remaining tasks at voltageVπ(2); and so on. We have, hence,
defined a level algorithm following the voltage sequence
defined for a single task, and whose expected energy cost
is the same as that of the optimal algorithmO.

Theorem 3. With linear switching costs, level algorithms are
dominant.

Proof. Let us consider any optimal algorithmO and an
instance withn tasks. LetVℓ be the lowest voltage used
by algorithmO during the entire execution. Then, the total
voltage switching cost incurred byO is SO ≥ sk,ℓ + sℓ,k.
(Note that we usesk,ℓ+sℓ,k for clarity here, to emphasize that
we switch down toVℓ and back toVk = VTH , but remember
that sk,ℓ = sℓ,k by Assumption 4.)

Let us consider any level algorithmL that starts by switch-
ing to voltageVℓ. Then, whatever the voltages it uses among
the voltagesVℓ, Vℓ+1, ..., Vk, it incurs a total switching cost
exactly equal toSL = sk,ℓ+sℓ,k, because switching costs are
linear. Therefore, we can assume without loss of generality
that algorithmL switches to all the voltagesVℓ, Vℓ+1, ..., Vk

(maybe without executing any task at some of those levels).
Then, the optimization problem of determining at which next
voltage should the remaining tasks be executed is exactly
the same as if there were no switching costs (there is no
penalty incurred when an intermediate voltage is used). Then,
Lemma 2 tells us not only what is the optimal level algorithm
in such a case but, also, that it is optimal among all existing
algorithms, hence the optimality ofL among all algorithms
using voltages amongVℓ, Vℓ+1, ..., Vk. BecauseO is one of
these algorithms and is optimal, we can conclude.

Theorem 4. To execute a set ofn independent tasks on a
system withk voltages and linear switching costs, the optimal
solution can be obtained with complexityO(k2).

Proof. According to Theorem 3, we only need to focus on
level algorithms to obtain the optimal solution.

Suppose that a level algorithm starts executing the tasks at
voltageVh. Then, the total switching cost paid by the algo-
rithm during the entire execution is given bysk,h+sh,k, which
is fixed and does not depend on the sequence of voltages used.
It remains to find the optimal expected energy consumption
to execute the tasks fromVh without considering the voltage
switching costs. When there are no voltage switching costs,



let Ē∗
SET(i, Vh, Vℓ) and ĒONE(Vh, Vℓ) denote, respectively, the

optimal expected energy to executei tasks and one task
by starting from voltageVh, given that all of them have
previously failed under voltageVℓ. According to Lemma 2,
we haveĒ∗

SET(n, Vh, V0) = n · Ē∗
ONE(Vh, V0). We can then try

all possible starting voltages to get the optimal expected total
energy consumption as follows:

E∗
SET = min

1≤h≤k

{

sk,h + sh,k + n · Ē∗
ONE(Vh, V0)

}

,

and the optimal starting voltage is thereforeVh′ , whereh′ =
argmin1≤h≤k

{

sk,h + sh,k + n · Ē∗
ONE(Vh, V0)

}

.
Lemma 2 also shows that the optimal sequence of voltages

to follow is the same as the optimal sequence to execute one
task without considering voltage switching costs. According
to Theorem 1, this can be computed by

Ē∗
ONE(Vℓ) = min

ℓ<h≤k
Ē∗

ONE(Vh, Vℓ) ,

and V̄ ∗
ONE(Vℓ) = Vh′ with h′ = argminℓ<h≤k Ē

∗
ONE(Vh, Vℓ).

The complexity is determined by the computation of
Ē∗

ONE(Vh, Vℓ) for all 0 ≤ Vℓ < Vh ≤ Vk, which takesO(k2)
time.

In the general case, we may have triangle inequality but
not triangle equality. We have not been able to design a
counter-example to the optimality of level algorithms in the
general case. We therefore conjecture the dominance of level
algorithms even in the case of triangle inequality.

VI. SIMULATIONS

In this section, we evaluate the performance of the proposed
algorithms using simulations. We instantiate the performance
model with two scenarios. The first scenario is based on the
available data about timing error probabilities on a specific
hardware [5], and we consider a set of matrix products using
ABFT as the verification mechanism. In the second scenario,
we use synthetic data to assess the impact of different param-
eters (verification cost, error probability, switching cost) on
alternative hardware and applications.

A. Comparing algorithms

We compare our dynamic programming algorithm designed
for a set of independent tasks, which we denote byDP-indep,
to the following algorithms in the evaluation.

• Baseline& Threshold: These two are static algorithms
that use theenvironmental marginvoltage andnominal
voltage, respectively, to execute the tasks. The former
does not make use of any voltage scaling technique,
and the latter scales the voltage down to achieve near-
threshold computing. Both algorithms do not incur tim-
ing errors and hence do not require verification and re-
execution.

• DP-single: This algorithm uses the dynamic program-
ming solution for a single task and applies the optimal
sequence of voltages to execute all tasks in the set one
after another, using the output voltage of the last task as
the input voltage for the current task.

B. Case study: Matrix multiplication on FPGA

In the first evaluation scenario, we consider a concrete
application (matrix multiplication) executed on a specific
platform, where error probabilities are known from real mea-
surements.

1) Platform setting: We adopt the set of voltages and
error probabilities measured by Ernst et al. [5] on an FPGA
multiplier block. Figure 1 shows the error probabilityp(1)ℓ of
each available voltageVℓ when performing asingleoperation
with random inputs. We take thezero margin1.54V as the
nominal voltage and consider theenvironmental margin1.69V
as the base operating voltage. As in [3], we scale the error
probabilities down by a factor of 10 to account for the circuit-
level error recovery technique [5]. Since the dynamic power
consumption is a quadratic function of the operating voltage
[2], [12], for a given voltageVℓ, the energy consumed to
execute a task (one matrix product) is modeled ascℓ = V 2

ℓ w,
wherew denotes the total number of operations in the task.
The energy to switch the operating voltage is assumed to be
linear (thus following triangle equality), and it is modeled
as sℓ,h = β · |Vℓ−Vh|

Vk−V1

, whereβ captures the relative cost of
voltage switching in comparison to computation.

2) Application modeling:We consider the computation of
a set of matrix products of the same size, which forms a
set of independent tasks of the same computational cost.
Each product consist ofm3 multiply-add operations, where
m denotes the size of the matrices. To detect errors we
employ Algorithm-Based Fault Tolerance (ABFT) [8], which
uses checksums to detect, locate and even correct errors
in many linear algebra kernels. Specifically, by adding one
(column or row) checksum to each of the input matrices,
the technique enables to detect and correct up to one error
during the computation of a matrix product with an overhead
of O(m2) additional operations. This is almost negligible
compared to theO(m3) operations incurred by the raw
computation for reasonable matrix sizes. In the simulation,
we fix the matrix size to bem = 64, so the ABFT version
hasw = m(m + 1)2 = 64 × 652 operations, incurring an
overhead of about3%. With the ability to correct one error, the
probability of having an incorrect product using voltageVℓ is

thus given bypℓ = 1−
(

1− p
(1)
ℓ

)w

−
(

w
1

)

(

1− p
(1)
ℓ

)w−1

p
(1)
ℓ .

3) Results:Figure 2 presents the impact of the number of
tasksn on the expected energy consumption when the voltage
switching costβ is set to be equivalent to multiplying two
matrices of size64×64, which is almost the cost of executing
one task. When the number of tasks is small (e.g., less than 7),
the switching cost can not be amortized and the best choice
is to stay at nominal voltage. Additionally, the cost of the
verification mechanism (ABFT) whenm = 64 reaches3%
of the total work and bothDP-singleand DP-indep remain
worse than executing all tasks at nominal voltage and without
any verification mechanism. However, when the number of
tasks is large enough (e.g., more than 7),DP-indepquickly
outperformsDP-single, which only focuses on one task at
a time and is thus unable to lower the voltage if it is not
worth it for one task. On the contrary,DP-indepis paying the
switching cost only once, which can be easily amortized over
the execution of the entire set of tasks. In particular, when
the number of tasks reachesn = 32, DP-indepprovides 5%



of energy savings compared to theThresholdalgorithm, and
it saves more than 20% of energy compared to theBaseline
algorithm.

Figure 3 shows the impact of the switching costβ on
the expected energy consumption ofDP-singleandDP-indep
under different switching costs when the number of tasks is
fixed to 32. Again, we model the switching costβ to be
equivalent to multiplying two matrices of sizex × x. Thex
axis shows the corresponding matrix size. When the switching
cost is small (e.g.,x = 20), both DP-single and DP-indep
yield the same expected energy consumption. In fact, they are
both able to amortize the switching cost with one task and they
use the same sequence of voltages. But as the switching cost
increases,DP-singlequickly shows its limits whileDP-indep
manages to better amortize the overhead and remains better
than Thresholdeven when the switching cost is more than
three times the cost of one task (e.g.,x = 96). Note that
when the switching cost is high enough (e.g.,x > 116), both
algorithms are unable to perform better thanThreshold.

Overall, when the number of tasks is large enough, or if
the switching cost is small,DP-indepis always better and it
saves up to23% of the expected energy compared toBaseline
and up to7% compared toThresholdin this configuration.

C. Evaluations with synthetic data

We now consider synthetic input data in order to evaluate
the algorithms on different hardware and applications. We
envision platforms with normalized voltages falling in [0.5,
1], where 1 represents the nominal voltageVk. Following the
characteristics of soft errors [6], we model the error probabil-
ity of a computation of lengthw executed using voltageVℓ to
bepℓ = 1−e−λℓw, whereλℓ = λ0e

−c(Vℓ−Vk)−λ0 represents
the error rate andc denotes the failure rate coefficient that
depends on the hardware. The model also specifies the base
error rateλ0, which is usually very small. In the experiments,
λ0 is fixed to be10−5 error per second, which corresponds
to less than one error per day. The energy consumption to
execute the tasks and the voltage switching costs follow the
same model as in the previous scenario.

1) Results:For all experiments, the total work is fixed to
beW = 10000 operations and the number of tasks is fixed at
n = 32, so that each task has aboutw = W

n
≈ 312 operations.

Figure 4(a) shows, given a voltage, the probabilities of
failure for one task under different failure rate coefficients
c. This factor determines howfast the probability of failure
increases when the voltage is lowered below threshold. A
small value ofc gives a very optimistic configuration, where
lowering the voltage below threshold is possible while keeping
low probabilities of failure. Such a configuration is ideal and
allows us to choose amongst a wide range of voltages, thus
giving the opportunity to save energy. Higher values ofc show
more realistic, and also more pessimistic configurations. For
example, whenc reaches128, as soon as we lower the voltage,
the probability of failure increases dramatically and the chance
of success drops close to zero. In that case,DP-indephas no
other choice but to stay at nominal voltage.

Figure 4(b) presents the impact of the number of tasks
on the normalized expected energy consumption ofDP-indep
with respect toThresholdunder different values ofc. Re-
member that the total workW is fixed to be10000, so when

the number of task decreases, the size of the tasks increases
and the probability of success to execute one task drops
considerably. As a result, we have to use higher voltages,
which consumes more energy.

The value ofc determines the range of voltages that can be
used safely, i.e., with low probability of failure, as shown
by Figure 4(a) and it has a huge impact on the expected
energy consumption. With a smallc, the algorithm can yield
important energy savings compared toThreshold(more than
40% for 10 tasks withc = 4), while with a largec (e.g.,
c = 128) the algorithm will not be able to do better than
Threshold.

Finally, Figure 4(c) evaluates the impact of the verification
cost on the expected energy consumption ofDP-indep. In
this experiment, we vary the verification cost with respect to
the cost of one task from0% (no verification cost) to100%
(the verification cost is equivalent to the cost of one task).
When the cost of the verification increases, so does the total
overhead of the computation. Consider the case where the
cost of the verification is half the cost of one task (i.e., total
work including verifications is now1.5W = 15000). In this
case, executing256 tasks is40% more energy-efficient than
Threshold, whereas under the same configuration, executing
only 32 tasks for the same amount of work is only5% more
energy-efficient. Overall, the execution of many small tasks
is preferred over the execution of a few big tasks.

2) Optimal solution with two voltages:We now consider a
set of scenarios where only two voltages are available, namely,
V1 andVk = VTH . As shown previously, the only decision to
make is whether to switch to the lower voltageV1, in which
case a cost of2sk,1 is incurred due to voltage switching, or
to directly use the nominal voltageVk for executing the tasks.
Figure 5 shows the energy savings achieved by the optimal
algorithm (DP-indep) for this scenario. Naturally, more energy
is saved whenV1 has a smaller execution cost or a lower error
probability. For any given cost and probability, the savingalso
increases with the number of tasks, because the cost of voltage
switching can be better amortized. For the case with 10 tasks
andsk,1 = 5c1, and when the error probability of voltageV1

is around 0.5,DP-indepstarts to save energy when the cost
c1 drops belowck/3, and it is able to save at least 40% of
the energy with a cost lower thanck/10.

For the same case (10 tasks andsk,1 = 5c1), Figure 6
shows the performance degradation (expected execution time
overhead) due to verifications and re-executions. Since the
results are obtained by theDP-indepalgorithm, which targets
energy minimization, they do not represent the best possible
performance. Indeed, the overhead is minimum (0%) when
the algorithm does not switch toV1, which means that no
energy is saved at all. Once the algorithm has decided to make
the switch in order to save energy, the expected performance
starts to degrade. For any fixed cost ratiock/c1, a lower
error probability enables the algorithm to both save energy
and improve performance, because the tasks enjoy a higher
chance of success atV1. Finally, as verification and/or voltage
switching times increase, the performance degrades further.
For instance, whenp1 = 0.5 and ck/c1 = 10, and when
verification takes 5% of the task execution time and voltage
switching takes the same time as task execution, the algorithm
achieves 40% of the energy saving at the expense of about



Voltage Vℓ

1.14 1.18 1.22 1.26 1.3 1.34 1.38 1.42 1.46 1.5 1.54 1.58 1.62

E
rr
or

P
ro
b
ab

il
it
y
p
(1
)

ℓ

0     

1e-09 

1e-08 

1e-07 

1e-06 

1e-05 

0.0001

0.001 

0.01  

0.1   

1     

Figure 1: Error probabilities of avail-
able voltages measured on an FPGA
multiplier block for a single operation
with random inputs [5].

0 5 10 15 20 25 30
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Tasks

N
or

m
al

iz
ed

 E
xp

ec
te

d 
E

ne
rg

y

 

 

Baseline
Threshold
DP−single
DP−indep

Figure 2: Impact of the number of
tasksn on the energy consumption of
the algorithms.

0 20 40 60 80 100 120
0.7

0.75

0.8

0.85

0.9

0.95

1

Voltage Switching Cost

N
or

m
al

iz
ed

 E
xp

ec
te

d 
E

ne
rg

y

 

 

Baseline
Threshold
DP−single
DP−indep

Figure 3: Impact of the voltage
switching costβ on the energy con-
sumption of the algorithms.

Voltage
0.5 0.6 0.7 0.8 0.9 1

F
ai

lu
re

 P
ro

ba
bi

lit
y 

of
 O

ne
 T

as
k

0

0.2

0.4

0.6

0.8

1

c=4
c=8
c=16
c=32
c=64
c=128

(a)

0 10 20 30 40 50 60
0.2

0.4

0.6

0.8

1

Number of Tasks

N
or

m
al

iz
ed

 E
xp

ec
te

d 
E

ne
rg

y

 

 

Threshold
DP−indep (c=4)
DP−indep (c=8)
DP−indep (c=16)
DP−indep (c=32)
DP−indep (c=64)
DP−indep (c=128)

(b)

0% 20% 40% 60% 80% 100%
0.2

0.4

0.6

0.8

1

1.2

1.4

Verification Cost / Task Cost

N
or

m
al

iz
ed

 E
xp

ec
te

d 
E

ne
rg

y

 

 

Threshold
DP−indep (n=16)
DP−indep (n=32)
DP−indep (n=64)
DP−indep (n=128)
DP−indep (n=256)

(c)

Figure 4: Impact of failure rate coefficientc on the failure probability of one task (a), and on the expected energy consumption
(b). Impact of the verification cost on the expected energy consumption (c).

70% degradation in performance.

VII. C ONCLUSION

In this paper, we have used voltage overscaling to design
a purely software-based approach for reducing the energy
consumption of HPC applications. This approach aggressively
lowers the supply voltage below the nominal voltage, in-
troducing timing errors. Based on a formal model of tim-
ing errors, we have provided an optimal level algorithm to
schedule a set of independent tasks, and we have proven
its global optimality when switching costs are linear. The
evaluation results obtained both for matrix multiplication on
FPGA and for synthetic data demonstrate that our approach
indeed leads to significant energy savings compared to the
standard algorithm that always operates at (or above) the
nominal voltage. Given the promising results, we plan to
extend this approach to more complex application workflows
in the future.
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Figure 5: Impact of the switching cost and of the number of tasks on the percentage of energy saving when only two voltages
are available. Black means no saving, and yellow means 100% of energy is saved.
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Figure 6: Percentage of (expected) execution time overheadas a function of the probability of failure and of the ratio of
energy costs. The results are based on 10 tasks and a switching cost of5c1. The unit used to express verification and switching
times is the execution time of a task at voltageVk.


