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Abstract: We consider divisible load scientific applications executing on large-scale
platforms subject to silent errors. While the goal is usually to complete the execution as
fast as possible in expectation, another major concern is energy consumption. The use of
dynamic voltage and frequency scaling (DVFS) can help save energy, but at the price of
performance degradation. Consider the execution model where a set of K different speeds
is given, and whenever a failure occurs, a different re-execution speed may be used. Can
this help? We address the following bi-criteria problem: how to compute the optimal
checkpointing period to minimize energy consumption while bounding the degradation in
performance. We solve this bi-criteria problem by providing a closed-form solution for
the checkpointing period, and demonstrate via a comprehensive set of simulations that a
different re-execution speed can indeed help.
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Une vitesse de ré-exécution différente peut aider

Résumé : Nous considérons des applications scientifiques divisibles s’exécutant sur des
plateformes à grand échelle sujettes à des erreurs silencieuses. Si, en général, le but est
de terminer l’exécution le plus vite possible en moyenne, un autre problème majeur est la
consommation d’énergie, et l’utilisation d’une mise à l’échelle dynamique de la tension et de
la fréquence (DVFS) peut aider à économiser de l’énergie, au prix d’une faible dégradation des
performances. Considérons le modèle d’exécution où un ensemble de K vitesses différentes est
donné, et dès qu’une erreur est détectée, une deuxième vitesse est utilisée pour la ré-exécution.
Est-ce que ce modèle peut être bénéfique? Nous traitons le problème bi-critère: comment
calculer la période de checkpoint optimale afin de minimiser la consommation énergétique
tout en bornant la dégradation des performances. Nous résolvons le problème en donnant
une solution en forme close pour la période de checkpoint, et nous montrons via un ensemble
d’expériences complet qu’il est en effet possible d’améliorer les résultats en utilisant une
deuxième vitesse différente de la première.

Mots-clés : résilience, erreurs silencieuses, vitesses, ré-exécution, checkpoint, vérification.
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1 Introduction

This paper investigates whether changing speed for re-execution, after a silent error has been
detected, can help save energy while matching a prescribed performance bound. We revisit
the well-known formula by Young [23] and Daly [12] to compute the optimal periodic check-
pointing interval. We extend their formula to this bi-criteria energy/performance problem,
where the application can be executed, or re-executed, using a set of K different speeds.

The motivation for this work is twofold. The first concern is that large-scale platforms are
increasingly subject to errors. The frequent striking of silent errors (or SDCs, for Silent Data
Corruptions) has been recently identified as one of the major challenges for exascale [9]. There
are several causes of silent errors, such as cosmic radiation, packaging pollution, among others.
In contrast to a fail-stop error whose detection is immediate, a silent error is identified only
when the corrupted data leads to an unusual application behavior. Such a detection latency
raises a new challenge: if the error struck before the last checkpoint, and is detected after
that checkpoint, then the checkpoint is corrupted and cannot be used for rollback. In order
to avoid corrupted checkpoints, an effective approach consists in employing some verification
mechanism and combining it with checkpointing [6, 5]. This verification mechanism can be
general-purpose (e.g., based on replication [13] or even triplication [15]) or application-specific
(e.g., based on Algorithm-based fault tolerance (ABFT) [8], on approximate re-execution for
ODE and PDE solvers [7], or on orthogonality checks for Krylov-based sparse solvers [11, 21]).

We address silent errors by taking verified checkpoints, which correspond to performing
a verification just before each checkpoint. Note that this approach is agnostic of the nature
of the verification mechanism. If the verification succeeds, then one can safely store the
checkpoint. If the verification fails, it means that a silent error has struck since the last
checkpoint, which was duly verified, and one can safely recover from that checkpoint to resume
the execution of the application. It is not difficult to compute the optimal checkpointing
period T with silent errors and verified checkpoints. For fail-stop errors, the Young/Daly
formula writes T =

√
2C/λ, where C is the time to checkpoint and λ the error rate (hence

the platform MTBF is µ = 1/λ). For silent errors, the formula becomes T =
√

(V + C)/λ,
where V is the time to verify. We simply replace C by V +C in the formula, and the missing
factor 2 can be explained as follows (see Figure 1): fail-stop errors are detected, on average,
at half the period, while silent errors are always detected at the end of the period (by the
verification mechanism). For a given T , the expected re-execution time is T/2 for fail-stop
errors and T for silent errors, so the optimal period is shorter for silent errors (see [14] for
details).

The second concern is energy consumption. The power requirement of current petas-
cale platforms is that of a small town, hence measures must be taken to reduce the energy
consumption of future platforms [9]. A popular technique is dynamic voltage and frequency
scaling (DVFS): modern processors can run at different speeds, and lower speeds induce bigger
savings in energy consumption. In a nutshell, this is because the dynamic power consumed
when computing at speed σ is proportional to σ3 [22, 3], while execution time is proportional
to 1/σ. As a result, computing energy (which is the product of time and power) is propor-
tional to σ2. However, static power must also be accounted for, and it is paid throughout
the duration of the execution, which calls for a shorter execution (at higher speeds). Overall,
there are trade-offs to be found, but in most practical settings, using lower speeds reduces
the global energy consumption. Unfortunately, using lower speeds also increases execution
time, and a realistic approach calls for minimizing energy while guaranteeing a performance
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Figure 1: A periodic checkpointing pattern (highlighted in red) first executed at speed σ1
and re-executed at speed σ2 = 2σ1 in case of error. The first figure shows the execution
without any error, so only the first speed is used. The second figure shows that the execution
is stopped immediately when a fail-stop error strikes, in which case the pattern is re-executed
at speed σ2 after a recovery. The third figure shows that the execution continues after a silent
error strikes, and it is detected by the verification at the end of the pattern. In this case, the
pattern is also re-executed at speed σ2 after a recovery.

bound.
Altogether, we face a challenging problem: given a platform subject to silent errors striking

at rate λ, given the cost C of a checkpoint and the cost V of a verification, and given a set
S = {s1, s2, . . . , sK} of K possible speeds, what is the optimal length of the execution period
T? More precisely, because we allow the use of different speeds, what is the optimal amount
of work W within a pattern, and what are the optimal speeds σ1, σ2 ∈ S to use? Here, we
allow the first execution at a speed σ1 and all following possible re-executions (in case of
error) at speed σ2. As mentioned above, optimality is defined as minimizing energy subject
to a performance bound ρ, thus the target optimization problem BiCrit is formally stated
as

Minimize
E(W,σ1, σ2)

W
s.t.

T (W,σ1, σ2)

W
≤ ρ, (1)

where E(W,σ1, σ2) is the expected energy consumed to execute W units of work at speed

σ1, with eventual re-executions at speed σ2, thus E(W,σ1,σ2)W is the expectation of the energy

consumed per work unit. Similarly, T (W,σ1,σ2)W is the expected execution time per work unit,
and ρ is a performance bound, or admissible degradation factor.

The main contribution of this paper is to solve this difficult optimization problem. We are
able to extend the Young/Daly formula and to provide a closed-form analytical expression for
the optimal solution, up to first-order approximation. We show that using different speeds
can indeed induce significant savings in energy, both through theoretical analysis and via a
comprehensive set of simulations conducted with realistic parameters. Finally, we explore
how to extend this work to deal with both fail-stop and silent errors by reporting our prelim-
inary findings. An interesting particular case is the following: when the platform is subject
to fail-stop errors only, and the re-execution speed is twice the initial speed, the optimal
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checkpointing period is not in the order of the square root of platform MTBF, a striking
novelty!

The rest of the paper is organized as follows. Section 2 introduces the model and notations.
Section 3 presents our main contributions and shows how to determine the optimal pattern.
Simulation results are provided in Section 4. We consider extensions (with fail-stop errors)
in Section 5. Section 6 briefly discusses related work. Finally, Section 7 provides concluding
remarks and future directions.

2 Model

We consider a divisible load application executing on a platform subject to silent errors. The
execution is partitioned into periodic patterns that repeat over time. Each pattern consists
of a computational chunk of W units of work followed by a verification and a checkpoint (see
Figure 1). The size of the chunk W can be freely determined (this is what we mean by a
divisible load application; we can insert verifications and checkpoints at any time step during
the computation).

2.1 Parameters

The application executes on a large scale platform with the following parameters:

� Silent errors follow an exponential distribution of parameter λ, hence the platform
MTBF is µ = 1/λ. The probability of an error striking during T time units is then
p(T ) = 1− e−λT .

� The platform can be operated under a set S = {s1, s2, . . . , sK} of K possible speeds
(each speed is the aggregated speed of all processors in the platform).

� Without errors, the time to execute W units of work at speed σ ∈ S is W
σ , and the

energy consumed is W
σ (Pidle + Pcpu(σ)). Here, Pidle is the static power consumed when

the platform is on (even idle), and Pcpu(σ) = κσ3 is the dynamic power spent by
operating the platform at speed σ [22, 3].

� The time to checkpoint is C and the time to recover is R. The corresponding energy
consumptions are C(Pidle + Pio) and R(Pidle + Pio), where Pio is the dynamic power
spent by I/O transfers.

� The time to perform a verification at speed σ is V
σ and the corresponding energy con-

sumption is V
σ (Pidle + Pcpu(σ)).

We assume that all speeds in S are within normal operational range (i.e., without over-
scaling or underscaling), so the error rate λ is not affected by the choice of the speed.

2.2 Execution model

We consider the following execution model:

� The first execution is done at speed σ1, which is freely chosen from S.

RR n° 8888
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� At the end of the pattern, we verify the result. If it is correct, we can safely checkpoint.
Otherwise, if the verification detects an error, we recover from the last checkpoint (or
from the initial data for the first pattern), and re-execute the pattern. This re-execution,
and all the subsequent re-executions if needed till success, are all done at speed σ2, which
is also freely chosen from S.

For a pattern of size W , let T (W,σ1, σ2) be the expected time to execute the pattern in
this model, and let E(W,σ1, σ2) be the corresponding expected energy consumption.

2.3 Optimization problem BiCrit

Let Wbase denote the total amount of work of the application. Also, let Ttotal and Etotal denote,
respectively, the expected makespan and expected energy consumption of the application
when executed using periodic patterns. For a pattern size W , there are approximately Wbase

W
patterns (for a long-lasting application), with each pattern having an expected execution time

of T (W,σ1, σ2). Hence, we have Ttotal ≈ T (W,σ1,σ2)W ·Wbase and Etotal ≈ E(W,σ1,σ2)W ·Wbase.
Minimizing the expected makespan of the application is therefore equivalent to minimizing

the time overhead T (W,σ1,σ2)W of a single pattern and, similarly, minimizing the expected energy

consumption is equivalent to minimizing the energy overhead E(W,σ1,σ2)
W . The optimization

problem BiCrit is to minimize the expected energy consumption (or equivalently the energy
overhead) of the application subject to a bound on the expected makespan (or equivalently
the makespan overhead), as presented formally in Equation (1).

3 Optimal pattern size and speeds

In this section, we compute the optimal pattern size W and speed pair (σ1, σ2) for the BiCrit
problem. We first compute T (W,σ, σ), i.e., the expected time to execute the pattern with a
single speed σ.

Proposition 1. For the BiCrit problem with a single speed,

T (W,σ, σ) = C + e
λW
σ

(
W + V

σ

)
+
(
e
λW
σ − 1

)
R.

Proof. The recursive equation to compute T (W,σ, σ) writes:

T (W,σ, σ) =
W + V

σ
+ p(W/σ) (R+ T (W,σ, σ))

+ (1− p(W/σ))C,

where p(W/σ) = 1− e−
λW
σ . The reasoning is as follows:

� We always execute W units of work followed by the verification, in time W+V
σ ;

� With probability p(W/σ), a silent error occurred and is detected, in which case we
recover and start anew;

� Otherwise, with probability 1− p(W/σ), we simply checkpoint after a successful execu-
tion.
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Solving this equation leads to the expected execution time.

We are now ready to compute T (W,σ1, σ2), the expected time to execute the pattern with
two speeds.

Proposition 2. For the BiCrit problem,

T (W,σ1, σ2) = C +
W + V

σ1
+
(

1− e−
λW
σ1

)
e
λW
σ2

(
R+

W + V

σ2

)
.

Proof. With a similar reasoning as in the preceding proof, the recursive equation to compute
T (W,σ1, σ2) writes:

T (W,σ1, σ2) =
W + V

σ1
+ p(W/σ1) (R+ T (W,σ2, σ2))

+ (1− p(W/σ1))C,

where p(W/σ1) = 1−e−
λW
σ1 . Plugging back the expression of T (W,σ2, σ2) from Proposition 2

and rearranging terms, we readily obtain the expression of T (W,σ1, σ2) as claimed.

The following shows the expected energy consumption to execute the pattern with two
speeds.

Proposition 3. For the BiCrit problem,

E(W,σ1, σ2) =
(
C +

(
1− e−

λW
σ1

)
e
λW
σ2 R

)
(Pio + Pidle)

+
W + V

σ1
(κσ31 + Pidle)

+
W + V

σ2
(1− e−

λW
σ1 )e

λW
σ2 (κσ32 + Pidle).

Proof. The power spent during checkpoint or recovery is Pio + Pidle, and that spent dur-
ing computation and verification at speed σ is Pcpu(σ) + Pidle = κσ3 + Pidle. Hence, from
Proposition 2, we get the expression of E(W,σ1, σ2).

Formally, the BiCrit problem writes:

min
σ1,σ2

min
W

E(W,σ1, σ2)

W
s.t.
T (W,σ1, σ2)

W
≤ ρ.

In order to get a closed-form expression for the optimal value ofW , we first derive the following
first-order approximation formulas, using Taylor expansion eλW = 1 + λW +O(λ2W 2):

T (W,σ1, σ2)

W
=

1

σ1
+
λW

σ1σ2
+
λR

σ1
+

λV

σ1σ2

+
C + V/σ1

W
+O(λ2W ). (2)

E(W,σ1, σ2)

W
=
κσ31 + Pidle

σ1
+
λW

σ1σ2
(κσ32 + Pidle)

+
λR

σ1
(Pio + Pidle) +

λV

σ1σ2
(κσ31 + Pidle)

+
C(Pio + Pidle) + V (κσ31 + Pidle)/σ1

W
+O(λ2W ). (3)
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Both Equations (2) and (3) are of the form x + y
W + zW + O(λ2W ), where x, y and

z are positive constants. Such an expression is minimized when W =
√

y
z = Θ(λ−1/2),

a result similar to the Young/Daly formula and which shows the accuracy of the first-order
approximation via Taylor expansion, since λW = Θ(λ1/2) tends to 0 with λ. Here, because we
consider Equations (2) and (3) simultaneously, we have to resort to a case study to determine
the optimal solution.

Theorem 1. Given σ1, σ2 and ρ, consider the equation aW 2 + bW + c = 0, where a = λ
σ1σ2

,

b = 1
σ1

+ λ
(
R
σ1

+ V
σ1σ2

)
− ρ and c = C + V

σ1
.

� If there is no positive solution to the equation, i.e., b > −2
√
ac, then BiCrit has no

solution.

� Otherwise, let W1 and W2 be the two solutions of the equation with W1 ≤ W2 (at least
W2 is positive and possibly W1 = W2). Then, the optimal pattern size is

Wopt = min(max(W1,We),W2), (4)

where

We =

√√√√C(Pio + Pidle) + V
σ1

(κσ31 + Pidle)
λ

σ1σ2
(κσ32 + Pidle)

. (5)

Proof. Neglecting lower-order terms, Equation (3) is minimized when W = We given by
Equation (5). However, this minimum value may well lead to a time overhead exceeding ρ.

Enforcing T (W,σ1,σ2)W ≤ ρ is equivalent to having aW 2 +bW +c ≤ 0, where a, b and c are given
in Theorem 1. Either this latter expression has no positive solution, in which case BiCrit has

no solution, or W must lie within the interval
[
W1 = −b−

√
b2−4ac
2a ;W2 = −b+

√
b2−4ac
2a

]
(where

at least W2 is positive). Because the energy overhead is a convex function of W , we deduce
that Wopt = min(max(W1,We),W2)).

For any speed pair (si, sj), we define ρi,j to be the minimum performance bound for which
the BiCrit problem admits a solution. From the analysis of Theorem 1, we get that ρi,j is
obtained when b = −2

√
ac, which leads to

ρi,j =
1

si
+ 2

√(
C +

V

si

)
λ

sisj
+ λ

(
R

si
+

V

sisj

)
. (6)

Hence, to solve the BiCrit problem for any given performance bound ρ, we can use the
following simple procedure:

1. For each speed pair (si, sj), compute ρi,j from Equation (6), and discard those pairs
with ρ < ρi,j ;

2. For each remaining speed pair (σ1, σ2), compute Wopt from Equation (4), and the energy

overhead
E(Wopt,σ1,σ2)

Wopt
from Equation (3).

3. Select the best speed pair (σ∗1, σ
∗
2) that minimizes the energy overhead above.

This procedure takes O(K2) time to run, where K is the total number of available speeds.
Since K is usually small (e.g., 5) and can be considered as a constant, the optimal solution
to the BiCrit problem can be computed in constant time.
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4 Simulations

In this section, we conduct simulations to evaluate our model. Section 4.1 describes the param-
eters used in the simulations. Section 4.2 investigates whether using a different re-execution
speed can indeed help save energy. Section 4.3 shows the impact of different parameters on
the optimal solution and the associated energy overhead.

4.1 Simulation setup

This section describes the parameters used in the simulations. First, the recovery time is
set to be the same as the checkpointing time, i.e., R = C, which is reasonable because
a read operation (i.e., recovery) takes the same amount of time as a write operation (i.e.,
checkpointing) [19]. Also, the verification time at full speed is set to be the same as the cost
of a local checkpoint (i.e., memory copy), as a complete verification checks all the data in
memory. The parameters λ, C and V are set according to the real values of four platforms [18],
which are reported in Table 1. The power parameters Pcpu, Pio, Pidle, as well as the set S of
available speeds, are determined by the processor used. Table 2 gives the values of these
parameters for two processors reported in [20]. Simulations are then conducted based on
eight virtual configurations, each of which combines one platform and one processor type.
In the simulations, the default value of Pio is set to be equivalent to the power used when
the CPU runs at the lowest speed, and the performance bound is set as ρ = 3. All of these
parameters as well as the values of C, V and λ will be varied in the simulations to evaluate
their impact on performance.

Table 1: Platform parameters (verification time is w.r.t. full speed).

Platform λ (error/second) C (second) V (second)

Hera 3.38e-6 300 15.4
Atlas 7.78e-6 439 9.1

Coastal 2.01e-6 1051 4.5
Coastal SSD 2.01e-6 2500 180.0

Table 2: Processor parameters.

Processor Normalized speeds P (σ) (mW)

Intel Xscale 0.15, 0.4, 0.6, 0.8, 1 1550σ3 + 60

Transmeta Crusoe 0.45, 0.6, 0.8, 0.9, 1 5756σ3 + 4.4

4.2 A different re-execution speed does help

Does using two different speeds indeed help reduce the energy overhead compared to using
one speed alone? This section provides affirmative answer to the question above with concrete
examples. Specifically, the following tables present the results for the Hera/XScale configu-
ration (similar results are also observed on other platform/processor configurations), with a
different bound ρ for every table. For each initial speed σ1, the best second speed σ2 that gives
the smallest energy overhead while satisfying the bound ρ is reported, with the corresponding
Wopt and energy overhead. The overall best speed pair is highlighted in bold.
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σ1 Best σ2 Wopt
E(Wopt,σ1,σ2)

Wopt

0.15 0.4 1711 466
0.4 0.4 2764 416
0.6 0.4 3639 674
0.8 0.4 4627 1082
1 0.4 5742 1625

ρ = 8

σ1 Best σ2 Wopt
E(Wopt,σ1,σ2)

Wopt

0.15 - - -
0.4 0.4 2764 416
0.6 0.4 3639 674
0.8 0.4 4627 1082
1 0.4 5742 1625

ρ = 3

σ1 Best σ2 Wopt
E(Wopt,σ1,σ2)

Wopt

0.15 - - -
0.4 - - -
0.6 0.8 4251 690
0.8 0.4 4627 1082
1 0.4 5742 1625

ρ = 1.775

σ1 Best σ2 Wopt
E(Wopt,σ1,σ2)

Wopt

0.15 - - -
0.4 - - -
0.6 - - -
0.8 0.4 4627 1082
1 0.4 5742 1625

ρ = 1.4

From these tables, we see that in many cases the best solution is composed of two different
speeds. In fact, it is possible, for a well-chosen ρ, to have almost any speed pair as the optimal
solution (except the pairs with very low speeds). This is because, as ρ decreases, the number of
speed pairs that satisfy the performance bound also decreases. Hence, if the energy increases
with (σ1, σ2), then for any speed pair we could find values of ρ such that it gives the best
solution. However, as the speed becomes too slow, the energy will increase as we are likely
to have more errors and hence re-executions. This is shown in the first table, where ρ is
big enough such that the pair (0.15, 0.15) gives a feasible solution but has a higher energy
overhead than (0.4, 0.4), which is the optimal speed pair. It turns out, in this configuration,
that all speed pairs except the ones containing 0.15 can be the optimal solution, depending
on the value of ρ specified. This is confirmed by the simulations shown in the next section.
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Figure 2: The optimal solution (speed pair, pattern size, and energy overhead) as a function
of the checkpointing time C in Atlas/Crusoe configuration.
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Figure 3: The optimal solution (speed pair, pattern size, and energy overhead) as a function
of the verification time V in Atlas/Crusoe configuration.

4.3 Impact of various parameters

This section evaluates the impact of various parameters on the behaviors of the optimal
pattern and the associated energy overhead. We start by focusing on the Atlas/Crusoe
configuration, whose results are shown in Figures 2-7. We then briefly discuss the results for
the other configurations.

4.3.1 Impact of C and V

Figure 2 shows that, as the checkpointing time C is increased, the optimal pattern size W also
increases till it is constrained by the performance bound, in which case the execution speeds
are adapted (first σ2 and then σ1) to prevent the energy overhead (as well as the pattern size)
from growing too fast. In this configuration, the optimal speed pair starts at (0.45, 0.45) when
C is small and reaches (0.45, 0.8) when C is increased to 5000 seconds. Compared to the
optimal solution that uses only one speed (shown in dotted line), using two speeds achieves
up to 35% improvement in the energy overhead. Similar savings are also observed when the
verification time V (with respect to the maximum speed) is varied, and the results are shown
in Figure 3. In this case, the optimal speed pair stabilizes at (0.6, 0.45) when V is increased
to 5000 seconds.

4.3.2 Impact of λ and ρ

Figure 4 shows the evolution of the optimal solution as a function of the error rate λ. The
optimal pattern size W reduces with increasing λ while the execution speeds increase (first
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Figure 4: The optimal solution (speed pair, pattern size, and energy overhead) as a function
of the error rate λ in Atlas/Crusoe configuration.
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Figure 5: The optimal solution (speed pair, pattern size, and energy overhead) as a function
of the performance bound ρ in Atlas/Crusoe configuration.

σ2 and then σ1 till both reach the maximum value), so that errors can be detected earlier
(due to decreased W ) and sooner (due to increased speeds) in the computation. To satisfy a
stricter performance bound, i.e., as ρ is reduced, the speeds increase in a similar fashion, as
shown in Figure 5. However, for a fixed error rate λ, the optimal pattern size increases with
increased σ1 and decreases with σ2, as dictated by Equation (5). In both experiments, we
can see that using two execution speeds allows the application to checkpoint less frequently
while providing significant energy savings over its one-speed counterpart.

4.3.3 Impact of Pidle and Pio

Figures 6 and 7 show, respectively, the impact of the idle power Pidle and dynamic I/O power
Pio on the performance of the optimal solution. In both cases, the optimal energy overhead
as well as the pattern size increase with the power consumption. However, the execution
speeds increase (σ1 first and then σ2) with Pidle but are not affected by Pio. This is because
increasing the speeds helps counterbalance the increase in energy overhead as Pidle becomes
larger (see Equation (3)), which is not true for the I/O power since its dominating term does
not contain Pio. Furthermore, since the optimal re-execution speed σ2 is (almost always) the
same as the initial speed σ1, the same performance can be achieved by using one speed alone.

4.3.4 Results for other configurations

Figures 8-14 show the impact of various parameters on the optimal solution for the other
platform/processor configurations. In general, similar behaviors can be observed with different
configurations, but the sensitivity of the optimal solution does depend on the combination
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Figure 6: The optimal solution (speed pair, pattern size, and energy overhead) as a function
of the idle power Pidle in Atlas/Crusoe configuration.
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Figure 7: The optimal solution (speed pair, pattern size, and energy overhead) as a function
of the I/O power Pio in Atlas/Crusoe configuration.

of different parameters, as characterized by the checkpointing and verification costs, the
power consumptions and error rate. For instance, the optimal speed pair (0.45, 0.45) remains
unchanged as the checkpointing cost increases up to 5000 seconds when the Crusoe processor is
coupled with platforms other than Atlas, which have smaller error rates. As another example,
increasing the dynamic I/O power does affect the optimal speed pair (and the pattern size)
on the Coastal SSD/XScale configuration, which can be attributed to the combination of a
larger checkpointing cost and a smaller dynamic CPU power.

4.3.5 Summary

Overall, the simulations presented in this section demonstrate the benefit of using two execu-
tion speeds for the BiCrit problem. The results show that, under various parameter settings,
up to 35% of the energy consumption can be saved by using a different re-execution speed
while meeting a prescribed performance constraint.

5 Extensions

In this section, we show how to compute T (W,σ1, σ2) and E(W,σ1, σ2) when the platform
is subject to both fail-stop and silent errors. Unfortunately, the first-order approximation is
valid only when σ2 is not too large with respect to σ1, and we are no longer able to provide
a general closed-form solution to the BiCrit problem.
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5.1 Dealing with fail-stop and silent errors

Suppose that the platform is subject to two (independent) error sources: in addition to silent
errors, whose rate is now denoted as λs, there are also fail-stop errors (such as process crashes)
striking with rate λf . The probability of having a fail-stop error during T units of time is
pf (T ) = 1 − e−λfT (and that of a silent error remains ps(T ) = 1 − e−λsT ). We assume that
fail-stop errors can occur during computation and verification, but not during checkpointing
and recovery. Also, a fail-stop error is detected immediately after striking, so that the time
lost since the last checkpoint when executing at speed σ gets smaller on average than W+V

σ
(see Figure 1(b)). In fact, we can compute its expectation, as shown in the proposition below,
which derives T (W,σ1, σ2) with two error sources.

Proposition 4. With fail-stop and silent errors,

T (W,σ1, σ2) = C +

(
1− e−

λf (W+V )+λsW
σ1

)
e
λf (W+V )+λsW

σ2 R

+

(
1− e−

λf (W+V )+λsW
σ1

)
e
λsW
σ2

V

σ2
+

1

λf

(
1− e−

λf (W+V )
σ1

)
+

1

λf

(
1− e−

λf (W+V )+λsW
σ1

)
e
λsW
σ2

(
e
λf (W+V )

σ2 − 1

)
. (7)

Proof. The analysis becomes more involved with two error sources. The following gives the
recursive equation for computing the expected execution time T (W,σ1, σ2):

T (W,σ1, σ2) = pf (
W + V

σ1
)
(
Tlost(W + V, σ1) +R+ T (W,σ2, σ2)

)
+

(
1− pf (

W + V

σ1
)

)(
W + V

σ1
+ ps(

W

σ1
)(R+ T (W,σ2, σ2))

+

(
1− ps(W

σ1
)

)
C

)
. (8)

Here is the case analysis:

� If a fail-stop error occurs, we lose in expectation Tlost(W+V, σ1) time. Then, we recover
and re-execute at speed σ2.

� Otherwise, we retrieve the former case analysis with silent errors only (see Propositions
1 and 2).

From [14], we get that Tlost(W+V, σ) = 1
λf
− (W+V )/σ

eλ
f (W+V )/σ−1

. Solving Equation (8) and rear-

ranging terms lead to the expression of T (W,σ1, σ2) as claimed.

The following proposition shows the expected energy consumption E(W,σ1, σ2) with two
error sources. The proof is similar to that of Proposition 4 and is omitted.
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Proposition 5. With fail-stop and silent errors,

E(W,σ1, σ2) = C(Pio + Pidle)

+

(
1− e−

λf (W+V )+λsW
σ1

)
e
λf (W+V )+λsW

σ2 R(Pio + Pidle)

+

(
1− e−

λf (W+V )+λsW
σ1

)
e
λsW
σ2

V

σ2
(κσ32 + Pidle)

+
1

λf

(
1− e−

λf (W+V )+λsW
σ1

)
e
λsW
σ2

(
e
λf (W+V )

σ2 − 1

)(
κσ32 + Pidle

)
+

1

λf

(
1− e−

λf (W+V )
σ1

)(
κσ31 + Pidle

)
.

5.2 Limits of the first-order approximation

Let λ = 1/µ denote the total error rate when accounting from both error sources, and
suppose f fraction of the total number of errors are fail-stop and the remaining s = 1 − f
fraction are silent. Then, the arrival rates of fail-stop and silent errors are λf = fλ and
λs = sλ, respectively. After some tedious manipulations, we can derive, from Propositions 4
and 5, first-order approximations for the time and energy overheads, as shown in the following
proposition.

Proposition 6. With fail-stop and silent errors,

T (W,σ1, σ2)

W
=
C + V/σ1

W
+

(
(f + s)

σ1σ2
− f

2σ21

)
λW

+
(f + s)λ(R+ V/σ2) + 1− fλV/σ1

σ1
+O(λ2W ). (9)

E(W,σ1, σ2)

W
=
C(Pio + Pidle) + V (κσ31 + Pidle)/σ1

W

+

(
(f + s)(κσ32 + Pidle)

σ1σ2
− f(κσ31 + Pidle)

2σ21

)
λW

+
(f + s)λ

(
R(Pio + Pidle) + V (κσ32 + Pidle)/σ2

)
σ1

+
(1− fλV/σ1)(κσ31 + Pidle)

σ1
+O(λ2W ). (10)

Consider Equation (9) and compare it to Equation (2): it still is of the form x+ y
W +zW +

O(λ2W ), where x and y are positive constants, but now the sign of z = (f+s)λ
σ1σ2

− fλ
2σ2

1
depends

on the ratio σ2
σ1

. If σ2
σ1

< 2(1 + s
f ), then z is positive and Equation (9) is minimized when

W =
√

y
z = Θ(λ−1/2), just as with silent errors only. But if σ2

σ1
> 2(1 + s

f ), then z becomes

negative and the time overhead is a strictly decreasing function of W . The minimum would
then be achieved for arbitrarily large pattern size W . This is not allowed because, for the
Taylor expansion to be valid, we need λW = ε(λ) where ε is a function s.t. limλ→0 ε(λ) = 0.
There is an interesting case limit when σ2

σ1
= 2(1 + s

f ), which we will discuss in Section 5.3.
Looking at Equation (10), we get a similar result: the first-order approximation leads to

a valid solution only when z > 0, which leads to the constraint σ2
σ1
< 2(1 + s

f )
κσ3

2+Pidle

κσ3
1+Pidle

. For
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the sake of simplification, assume that Pidle = 0. The latter condition then translates into
σ2
σ1
>
(
2(1 + s

f )
)−1/2

. Altogether, the first-order approximation will lead to a solution to the
BiCrit problem if and only if(

2(1 +
s

f
)
)−1/2

<
σ2
σ1

< 2(1 +
s

f
).

While the interval defined by the above condition is never empty, it bounds the ratio σ2
σ1

,
thereby limiting the applicability of the first-order approximation.

5.3 Second-order approximation

Since the first-order approximation has shown its limits, we could envision resorting to the
second-order approximation. Unfortunately, despite all our efforts, the second-order approx-
imation cannot help solve the BiCrit problem in the general case. However, the approach
enables us to derive the optimal checkpointing period when σ2 = 2σ1 with the optimization
of expected execution time.

As the issue is caused by fail-stop errors, for the sake of simplification, we assume that
s = 0 (hence f = 1, which means no silent errors, only fail-stop errors).

Theorem 2. When considering only fail-stop errors with rate λ, the optimal pattern size W
to minimize the time overhead T (W,σ,2σ)W is

Wopt =
3

√
12C

λ2
σ.

This result is really striking: it is the first resilience framework (to the best of our
knowledge) in which the optimal checkpointing size Wopt is not in the order of the square
root of MTBF; instead of having Wopt = Θ(λ−1/2) as in Young/Daly’s formula, we have
Wopt = Θ(λ−2/3) when we re-execute twice faster. We stress that this result is not directly
related to the BiCrit problem, but applies to the classical optimization problem of finding
the best checkpointing period to minimize the expected execution time.

Proof. We start by deriving the second-order expression of the time overhead given below:

Proposition 7. With fail-stop errors only,

T (W,σ1, σ2)

W
=

1

σ1
+
C

W
+

(
1

σ1σ2
− 1

2σ21

)
λW +

λR

σ1

+

(
1

6σ31
− 1

2σ21σ2
+

1

2σ1σ22

)
λ2W 2 +O(λ3W 2). (11)

The proof of Proposition 7 is straightforward. We use it with σ1 = σ and σ2 = 2σ. The
coefficient of W becomes zero in Equation (11), and we derive T (W,σ,2σ)W = 1

σ + C
W + λ2W 2

24σ3 + λR
σ

while neglecting low-order terms. When differentiating, we easily see that this expression is

minimized for Wopt = 3

√
12C
λ2
σ.
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6 Related work

Given the checkpointing cost and the platform MTBF, classical formulas due to Young [23]
and Daly [12] are well known to determine the optimal checkpointing intervals in the presence
of fail-stop errors, where the goal is to minimize the execution time. Extensions have been
proposed to deal with silent errors by coupling checkpointing with verification: the idea of
interleaving p checkpoints and q verifications has been explored in [6] to achieve optimized
computing patterns. These results have been further extended to obtain a pattern using
partial verifications, i.e., verifications that do not detect all errors but that come at a lower
cost [4, 10], and for a multi-level checkpointing setting with both in-memory checkpoints to
deal with silent errors, and classical disk checkpoints [5].

These approaches focused on performance optimization and did not consider energy min-
imization. Meneses, Sarood and Kalé [17] gave formulas to compute both the time-optimal
and energy-optimal periods, hence dealing with the energy minimization problem, but without
using dynamic voltage frequency scaling (DVFS) and hence focusing only on a mono-criterion
optimization problem. In the same line of work, a formula for the optimal period that min-
imizes the energy consumption was provided in [1] for non-blocking checkpointing that can
be partially overlapped with computations.

The bi-criteria problem that we target has been largely motivated [16], as both power
management and error handling result in delaying the completion time of tasks. Solutions
were provided in [2] in the context of real-time applications, where success was assumed after
the first re-execution, and hence second and further re-executions were not accounted for. The
performance bound was then expressed as a deadline (either soft or hard). In the context of
high performance applications, it is mandatory to account for several re-executions.

To the best of our knowledge, this paper is the first to consider the bi-criteria problem
of minimizing the energy consumption given a bound on the overhead of the execution time,
for divisible load applications subject to failures, considering periodic patterns using different
speeds, and not restricting to a single re-execution.

7 Conclusion

Silent errors and energy consumption are two major challenges towards exascale computing.
In this paper, we have shown that using two different speeds (one for the first execution,
and one for re-executions due to errors) can lead to significant energy savings while satis-
fying a performance constraint. For silent errors, we have extended the classical formula of
Young/Daly for a divisible load application; by deriving a first-order approximation of the
expected execution time and energy consumption, we have obtained a general, closed-form
solution to get both the optimal speed pair and the associated optimal checkpointing period.
Extensive simulations confirm that having a second speed can indeed help, with up to 35%
savings in energy, and that many speed pairs can be potential candidates for the optimal solu-
tion, depending on the tightness of the performance bound. All these results shed a new light
on the optimal checkpointing period for platforms whose processor speeds can be adjusted
through DVFS.

Further work will aim at complementing our initial study for both silent and fail-stop
errors. With both error sources, the first-order approximation is valid only when the second
speed is not too large with respect to the first one, otherwise we are no longer able to provide
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a general closed-form solution. In particular, we have derived a striking result with fail-stop
errors when re-execution is twice faster: in this case, the optimal checkpointing period is
(surprisingly) in the order of Θ(λ−2/3) instead of Θ(λ−1/2) as in the Young/Daly formula. It
seems that new methods are needed to capture the general case with two error sources and
arbitrary speed pairs.
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Figure 8: Optimal solution (speed pair, pattern size, and energy overhead) as a function of
various parameters (C, V , λ, ρ, Pidle and Pcpu) in Hera/XScale configuration.
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Figure 9: Optimal solution (speed pair, pattern size, and energy overhead) as a function of
various parameters (C, V , λ, ρ, Pidle and Pcpu) in Atlas/XScale configuration.
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Figure 10: Optimal solution (speed pair, pattern size, and energy overhead) as a function of
various parameters (C, V , λ, ρ, Pidle and Pcpu) in Coastal/XScale configuration.
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Figure 11: Optimal solution (speed pair, pattern size, and energy overhead) as a function of
various parameters (C, V , λ, ρ, Pidle and Pcpu) in Coastal SSD/XScale configuration.
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Figure 12: Optimal solution (speed pair, pattern size, and energy overhead) as a function of
various parameters (C, V , λ, ρ, Pidle and Pcpu) in Hera/Crusoe configuration.
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Figure 13: Optimal solution (speed pair, pattern size, and energy overhead) as a function of
various parameters (C, V , λ, ρ, Pidle and Pcpu) in Coastal/Crusoe configuration.
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Figure 14: Optimal solution (speed pair, pattern size, and energy overhead) as a function of
various parameters (C, V , λ, ρ, Pidle and Pcpu) in Coastal SSD/Crusoe configuration.
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