
Competitive Online Adaptive Scheduling for Sets of Parallel Jobs

with Fairness and Efficiency

Hongyang Sun1, Wen-Jing Hsu1, and Yangjie Cao2

1School of Computer Engineering, Nanyang Technological University, Singapore
2School of Software Engineering, Zhengzhou University, China

{sunh0007, hsu}@ntu.edu.sg, caoyj@zzu.edu.cn

Abstract: We study online adaptive scheduling for multiple sets of parallel jobs, where each set may
contain one or more jobs with time-varying parallelism. This two-level scheduling scenario arises naturally
when multiple parallel applications are submitted by different users or user groups in large parallel systems,
where both user-level fairness and system-wide efficiency are of important concerns. To achieve fairness, we
use the well-known equi-partitioning algorithm to distribute the available processors among the active job
sets at any time. For efficiency, we apply a feedback-driven adaptive scheduler that periodically adjusts the
processor allocations within each set by consciously exploiting the jobs’ execution history. We show that
our algorithm achieves asymptotically competitive performance with respect to the set response time, which
incorporates two widely used performance metrics, namely, total response time and makespan, as special cases.
Both theoretical analysis and simulation results demonstrate that our algorithm improves upon an existing
scheduler that provides only fairness but lacks efficiency. Furthermore, we provide a generalized framework for
analyzing a family of scheduling algorithms based on feedback-driven policies with provable efficiency. Finally,
we consider an extended multi-level hierarchical scheduling model and present a fair and efficient solution that
effectively reduces the problem to the two-level model.

Keywords: Adaptive scheduling, parallel jobs, set response time, multiprocessors, online algorithm, com-
petitive analysis, hierarchical scheduling, fairness, efficiency

1 Introduction

1.1 Background

Scheduling parallel jobs on multiprocessor systems has been a fundamental area of research in computer science
for decades [10, 14, 18]. As parallel systems are increasingly deployed to provide high-performance computing
services, such as in cloud computing and the large-scale data centers, efficient scheduling on these platforms
will play a more important role in boosting application performance and increasing system utilization.

Most parallel systems today are shared by multiple users, and a common scenario arises when each user
submits several jobs to the system. A natural objective in this case is to achieve efficient execution of the jobs
while at the same time offering a level of fairness among different users. In this paper, we consider such a
scenario, in which a collection of parallel job sets needs to be scheduled on a multiprocessor system and each
job set corresponds to the set of applications submitted by a particular user or user group. We are interested in
the response time of a job set, which is the duration between when the job set is submitted and when all jobs in
the job set are completed. The objective is to minimize the sum of the response times of all job sets, or the set
response time. As pointed out by Robert and Schabanel [19], the metric of set response time benchmarks both
fairness and efficiency of a scheduling algorithm. In fact, it represents a more general performance measure
that incorporates two widely used metrics, namely, total response time and makespan, as special cases. Suppose
that each job set in the collection contains only a single job, the set response time becomes the total response
time of all jobs in the collection. At the other extreme, if the collection contains only a single job set, the set
response time is simply the makespan of all jobs. To schedule a collection of job sets, an algorithm needs to
allocate processors at two separate levels, namely, the job-set level and the job level. In particular, it needs to
first specify the number of processors allocated to each job set, and then decides the processor allocation for
the jobs within each job set. Such a two-level scheduling model is considerably more challenging compared to
the traditional single-level scheduling [8, 7, 1, 11, 25], where an algorithm only needs to decide the processor

1

allocation for a flat collection of jobs.
We consider parallel jobs with time-varying parallelism profile, which is commonly observed in many ap-

plications that go through different phases in their executions. Each phase of a job is specified by an amount
of work to be done and a speedup function, which we assume in this paper is linear up to a phase-dependent
maximum. (See Section 2.1 for the detailed job model.) Moreover, the parallel jobs are assumed to be malleable
[10] in nature, that is, they can adjust to the changing processor allocations at runtime. Such malleability is
enabled by the more flexible runtime systems [30, 21, 6, 23] that have emerged in the last decade as well as
the state-of-the-art virtual machine (VM) technology [2, 16, 22] that makes adaptive scheduling possible with
little or negligible overhead. In contrast to static scheduling [14], which allocates a fixed set of processors to a
job throughout its execution, adaptive scheduling can benefit from the time-varying characteristic of the jobs’
resource requirements and hence appears to be a more promising approach to scheduling jobs in modern parallel
systems. We adopt the online non-clairvoyant scheduling model [17, 11], which requires an algorithm to make
all scheduling decisions in an online manner without any knowledge of the jobs’ future characteristics, such as
their release time, remaining work and parallelism profile. This is a natural assumption since such information is
generally not available to the operating system schedulers. We measure the performance of an online adaptive
scheduler using the standard competitive analysis [3], which compares its set response time with that of an
optimal offline scheduler.

1.2 Related Work

A well-known online adaptive scheduler is Equi-partitioning (Equi) [29], which at any time divides the total
number of processors evenly among all active jobs in the system. This algorithm, although simple, is able
to ensure fairness by automatically adjusting the processor allocations whenever a new job is admitted into
the system or an existing job is completed and leaves the system. In fact, such a simple notion of fairness is
sufficient to guarantee satisfying performance when each user submits only one job. In particular, Edmonds
et al. [8] showed that Equi is (2 +

√
3)-competitive with respect to the total response time of all jobs if they

are released at the same time. Using resource augmentation analysis [13], Edmonds [7] also showed that Equi
is (2 + 4/ǫ)-competitive for arbitrary released jobs with processors whose speed is 2 + ǫ times faster than the
optimal, for any ǫ > 0.1 However, despite its good performance for the total response time, Equi fares poorly
in terms of the makespan, which to a certain extent reflects the system efficiency when there is only one user
in the system. Since Equi does not consider how efficiently each job is able to utilize the allocated processors,
it may under-utilize the resources especially when different jobs can have very different processor requirements.
Specifically, Robert and Schabanel [19] showed that Equi is Θ(lnn

ln lnn
)-competitive with respect to the makespan

even if all jobs are batch released, where n is the total number of jobs submitted to the system.
It turns out that both user-level fairness and system-wide efficiency are critical when minimizing the set

response time for a collection of job sets. In [19], Robert and Schabanel applied Equi to both levels by equally
dividing the total number of processors among the active job sets and within each job set equally dividing
the allocated processors among its active jobs. They showed that the resulting algorithm Equi◦Equi has a
competitive ratio of (2 +

√
3 + o(1)) lnn

ln lnn
with respect to the set response time when all job sets are batch

released, where n is the maximum number of jobs in any job set. The result suggests that the set response time
ratio of a scheduling algorithm actually encompasses the total response time ratio and the makespan ratio of
the corresponding algorithms at the job-set level and the job level, respectively. Hence, it is important to retain
both fairness and efficiency in order to achieve satisfying performance for this general scheduling metric.

To improve the system efficiency, feedback-driven adaptive schedulers [1, 11, 25] were recently proposed.
Unlike Equi, which obliviously allocates processors to the jobs regardless of their actual resource requirements,
feedback-driven algorithms periodically adjust processors among the jobs by consciously exploiting the jobs’ ex-
ecution history. In particular, Agrawal et al. [1] introduced the A-Greedy scheduler that periodically collects
the resource utilization of each job, and based on this information estimates the job’s future processor require-
ment. It has been shown that A-Greedy wastes at most a constant fraction of a job’s allocated processors,
and thus achieves efficient processor utilization [1]. Furthermore, by combining A-Greedy with a conservative
resource allocator, such as Dynamic Equi-partitioning (Deq) [15], He et al. [11] showed that the feedback-driven
algorithm Agdeq is asymptotically O(1)-competitive with respect to the makespan regardless of the number
of jobs in the system. Recently, Sun et al. [25] proposed another feedback-driven adaptive scheduler Acdeq,
which uses a control-theoretic approach to estimate the jobs’ processor requirements and it has been shown to
have better feedback stability and system efficiency.

1Edmonds and Pruhs [9] recently proposed a variant of the Equi scheduler, called Latest Arrival Processor Sharing (Laps),
which at any time shares the total number of processors evenly among the β fraction of the active jobs with the latest release time,
for any 0 < β ≤ 1. They showed that by varying the parameter β, Laps provides a tradeoff between the augmented processor speed
s = 1 + β + ǫ and the competitive ratio 4s/(βǫ), for any ǫ > 0.

2

1.3 Our Contributions

Aiming at both user-level fairness and system-wide efficiency, we bring together the benefit of the Equi algorithm
[29] and that of the feedback-driven scheduler Agdeq [11], and propose a both fair and efficient online adaptive
algorithm Equi◦Agdeq for scheduling any collection of job sets. We show that the set response time ratio of
our algorithm indeed combines the total response time and the makespan ratios of the respective algorithms in
a non-trivial manner. Our first contribution is to bound the asymptotic competitive ratio (see Section 2.2 for
the detailed definition) of Equi◦Agdeq, which is summarized in the following.

• Equi◦Agdeq is O(1)-competitive in the asymptotic sense with respect to the set response time when all
job sets are batch released. The exact ratio depends on the constant parameters of the Agdeq algorithm,
and it is formally stated in Theorem 1 (Section 4.2). This result improves the competitive ratio of Θ(lnn

ln lnn
)

achieved by the Equi◦Equi algorithm [19] for sufficiently large jobs, where n is the maximum number
of jobs in any job set. The improvement is a direct result that Equi◦Agdeq exhibits both fairness and
efficiency while Equi◦Equi provides only fairness but lacks efficiency.

• Equi◦Agdeq is O(1)-competitive in the asymptotic sense with respect to the set response time for ar-
bitrary released job sets if it is augmented with processors whose speed is O(1) times faster than that of
the optimal.2 Again, the competitive ratio and the augmented speed depend on the constant parameters
of the Agdeq algorithm, and they are formally stated in Theorem 2 (Section 4.3). This result extends a
similar performance bound obtained in [20] from jobs with specific parallelism structure, i.e., a sequential
phase followed by a fully-parallelizable phase, to sufficiently large jobs with any parallelism profile.

Our second contribution is a generalized framework for analyzing the Equi◦Xy family of algorithms, which
uses Equi to distribute the processors among the job sets and any feedback-driven algorithm Xy to schedule
the jobs within each set. The performance of Equi◦Xy is then obtained by bounding the efficiency of the Xy

algorithm. We demonstrate the generality of the framework by applying it to the Acdeq algorithm [25] as well
as an algorithm that provides feedbacks based on the exact parallelism of the jobs at any time, assuming that
such information can be made accessible to the online scheduler.

Furthermore, we consider a multi-level hierarchical scheduling problem, where arbitrary tree structures may
exist between the source of the processors and the job sets as well as within each job set. Our third contribution
is a fair and efficient solution to this problem using effective desire aggregation and processor allocation schemes.
The solution reduces the multi-level scheduling problem to the two-level scheduling model. The reduced problem
can then be solved by using our proposed algorithms with provable efficiency.

Finally, our last contribution is a simulation study that empirically evaluates the performance of the
Equi◦Agdeq algorithm using synthetic parallel jobs with internal parallelism variations [4]. The simulation
also compares Equi◦Agdeq with Equi◦Equi and the Equi◦Acdeq algorithm, which combines Equi with
the feedback-driven scheduler Acdeq [25]. The results confirm that the algorithms based on feedback-driven
schedulers indeed achieve better system efficiency and exhibit superior performance in terms of the set response
time.

1.4 Organization of the Paper

The rest of this paper is organized as follows. Section 2 formally defines the two-level scheduling problem.
Section 3 describes the Equi◦Agdeq algorithm, followed by its performance analysis for both batched and
arbitrary released job sets in Section 4. Section 5 provides a generalized analysis framework and demonstrates
its application. Section 6 extends the two-level scheduling model to a multi-level hierarchical scheduling problem
and presents our solution. Section 7 presents some simulation results, and finally, Section 8 concludes the paper.

2 Problem Formulation

2.1 Job Model and Scheduling Model

We adopt the model in [24, 25, 26] to represent a parallel job that consists of a series of phases with differ-
ent degrees of parallelism. Specifically, we consider a collection J = {J1,J2, · · · ,Jm} of m job sets, which
correspond to m different users. Each job set Ji = {Ji1, Ji2, · · · , Jini

} contains ni jobs, which correspond to

the applications submitted by the i-th user. Each job Jij = 〈J1
ij , J

2
ij , · · · , J

kij

ij 〉 contains kij phases, where each

2It is straightforward to observe that the Laps scheduler proposed in [9] can be used at the job-set level to replace Equi.
The resulting algorithm will provide a similar tradeoff as in [9] between the achieved competitive ratio and the required speed
augmentation.

3

phase Jk
ij has an amount of work wk

ij > 0 and a maximum parallelism hk
ij ≥ 1. Suppose that at time t job Jij is

in its k-th phase and is allocated akij processors. Then its effective speedup is linear up to the phase’s maximum

parallelism, and is given by Γk
ij(t) = min{akij , hk

ij}. Hence, on processors of speed s for any s > 0, the execution

rate of the job at time t is given by s ·Γk
ij(t). The span lkij of phase Jk

ij , which represents the amount of time to

execute the phase with hk
ij or more processors of unit speed, is therefore lkij = wk

ij/h
k
ij . The work w(Jij) of job

Jij is given by w(Jij) =
∑kij

k=1 w
k
ij , and the span l(Jij) of the job is l(Jij) =

∑kij

k=1 l
k
ij . Moreover, for each job

set Ji, we define its set work to be w(Ji) =
∑ni

j=1 w(Jij) and define its set span to be l(Ji) = maxj=1···ni
l(Jij).

Given a total number P of processors, a scheduling algorithm needs to decide at any time t the processor
allocation a(Ji, t) for each job set Ji as well as the processor allocation a(Jij , t) for each job Jij within the job
set. We require that the total processor allocation cannot exceed the total number of available processors, i.e.,
∑m

i=1

∑ni

j=1 a(Jij , t) ≤ P . Let rij denote the release time of job Jij , which is the time when the job is submitted,
and let ri denote the release time of job set Ji. In this paper, we assume that all jobs in a job set are submitted
at the same time, i.e., rij = ri for all 1 ≤ j ≤ ni. Moreover, if all job sets are submitted in a single batch, their
release times are equal to 0. Otherwise, we can assume without loss of generality that the first submitted job

set arrives at time 0. Let ckij denote the completion time of the k-th phase of job Jij , and let cij = c
kij

ij denote
the completion time of job Jij . The completion time ci of job set Ji is given by ci = maxj=1...ni

cij . We also
require that a valid schedule cannot begin to execute a phase of a job unless it has completed all its previous
phases. To simplify analysis as in many previous work [7, 8, 11, 19, 20, 24, 25], we allow the processor allocation
of a job to be fractional, and the processors can be reallocated among the sets and the jobs at any time without
penalty. This can be achieved by the more flexible runtime systems [30, 21, 6, 23] and/or the state-of-the-art
virtual machine technology [2, 16, 22].

2.2 Objective Function

The response time or flow time fij of job Jij is the duration between the completion time and the release
time of the job, i.e., fij = cij − rij , and the response time fi of job set Ji is given by fi = ci − ri. The
total response time F (J) of all jobs in J is F (J) =

∑m
i=1

∑ni

j=1 fij and the makespan M(J) of the jobs is
M(J) = maxi=1···m,j=1···ni

cij . Our objective is to minimize the total response time of all job sets, or the set
response time H(J), which is given by H(J) =

∑m
i=1 fi. A job Jij is said to be active at time t if it has been

released but not completed at t, i.e., rij ≤ t ≤ cij . A job set Ji is said to be active at time t if it contains
at least one active job. An alternative expression for the set response time is thus given by H(J) =

∫∞

0 mtdt,
where mt denotes the number of active job sets at time t. As pointed out in [19], the set response time of a
job set collection J has the following interesting property: if J = {J1} contains a single job set, then the set
response time is simply the makespan of all jobs in J ; if J = {J1,J2, · · · ,Jm} contains a collection of singleton
job sets, where for each i = 1 · · ·m, we have Ji = {Ji1}, then the set response time is the total response time
of all jobs in J . Hence, the objective of set response time represents a more general performance metric that
incorporates both makespan and total response time as special cases.

We use competitive analysis [3] to compare the set response time of an online algorithm with that of an
optimal offline scheduler. An online algorithm is said to be c-competitive if there exists a finite constant b such
that the algorithm’s set response time satisfies H(J) ≤ c ·H∗(J)+ b for any job set collection J , where H∗(J)
denotes the set response time of J under an optimal offline scheduler. Since an online algorithm does not
have any prior knowledge about the jobs while the optimal offline scheduler knows everything in advance, it is
generally not possible to get reasonably good competitive ratios when the job sets can have arbitrary release
time [7, 20]. In this case, we use the resource augmentation analysis [13], which gives the online algorithm
extra resources and in a sense limits the power of the adversary. An online algorithm is then said to be s-speed
c-competitive if there exists a finite constant b such that the algorithm’s set response time Hs(J) on processors
of speed s, where s > 1, satisfies Hs(J) ≤ c ·H∗1 (J) + b for any job set collection J , where H∗1 (J) denotes the
set response time of J under an optimal offline scheduler using unit-speed processors. In both types of analysis,
the competitive ratio c is said to be strong if b = 0. Otherwise, the competitive ratio is said to be achieved in
the asymptotic sense.

2.3 Lower Bounds for Set Response Time

For any job set collection J , we define its total span to be l(J) =
∑m

i=1 l(Ji), and define its squashed work
to be ŵ(J) = 1

P

∑m
i=1 i · w(Jπ(i)), where π(·) denotes a permutation of the job sets sorted in non-increasing

order of work, i.e., w(Jπ(1)) ≥ w(Jπ(2)) ≥ · · · ≥ w(Jπ(m)). Lemma 1 below states that the total span and the
squashed work can be used as two lower bounds for the set response time of any job set collection, where the

4

latter only applies to batched job sets. In fact, these two lower bounds resemble the well-known lower bounds
for the total response time of a single job set [8, 7, 11].

Lemma 1 To schedule a collection J of job sets on P processors of unit speed, the optimal set response time is
at least the total span of J , i.e., H∗1 (J) ≥ l(J), and if all job sets are batch released, the optimal set response
time also satisfies H∗1 (J) ≥ ŵ(J), where ŵ(J) is the squashed work of J .

Proof. It takes at least the span of job Jij , that is l(Jij) time, to complete the job on unit-speed processors.
According to the definition of set span (Section 2.1), completing job set Ji then takes at least l(Ji) time after its
release. Thus, the optimal set response time of any job set collection J satisfies H∗1 (J) ≥

∑m
i=1 l(Ji) = l(J),

regardless of the release times of its job sets.
When all job sets in J are batch released, completing any k sets of jobs, where 1 ≤ k ≤ m, takes at least

1
P

∑m
i=m−k+1 w(Jπ(i)) time on P processors of unit-speed. This is because no other schedule can produce a

better completion time than executing k job sets that have the least amount of work without wasting any
processor resources. The optimal set response time therefore satisfies H∗1 (J) ≥ 1

P

∑m
k=1

∑m
i=m−k+1 w(Jπ(i)) =

1
P

∑m
i=1 i · w(Jπ(i)) = ŵ(J).

3 The EQUI◦AGDEQ Algorithm

In this section, we introduce a fair and efficient online adaptive scheduling algorithm, called Equi◦Agdeq.
Specifically, Equi◦Agdeq uses the simple algorithm Equi [29] to achieve fairness among the competing job
sets, and it uses the feedback-driven algorithm Agdeq [11] to achieve efficient execution of the jobs within each
job set.

3.1 EQUI Algorithm

The Equi (Equi-partitioning) algorithm [29] simply divides the total number of processors evenly among all
active job sets at any time. Suppose that at time t there are mt active job sets. Then each active job set Ji
receives an allocation a(Ji, t) = P/mt of processors. Hence, Equi only reallocates the processors whenever a
new job set is released or an existing job set is completed. Although simple, this algorithm is able to ensure
the basic notion of fairness among the competing job sets by giving each of them the same share of processor
resource.

3.2 AGDEQ Algorithm

Within each job set, the efficiency of the allocated processors are guaranteed by consciously exploiting the
jobs’ execution history and periodically adjusting the processor allocations among them. This is realized by
the feedback-driven algorithm Agdeq [11], which works based on the interaction between the A-Greedy

[1] scheduler and the Deq [15] allocator after each scheduling quantum. Specifically, A-Greedy collects the
execution statistics of a job in each quantum, based on which it calculates the job’s processor desire, that is,
how many processors the job requires, for the next quantum. The Deq allocator then decides a processor
allocation for each job in the next quantum according to the processor desires of all the jobs. As this process
only involves the execution history of the jobs but not their future characteristics, Agdeq is indeed a non-
clairvoyant algorithm [17, 11]. In the following, we will describe the desire calculation strategy of A-Greedy

and the processor allocation policy of Deq, separately.

A-GREEDY Scheduler

The A-Greedy scheduler [1] calculates the processor desires of a job using a simple multiplicative-increase
multiplicative-decrease strategy. For each job Jij in a scheduling quantum q, let d(Jij , q) and a(Jij , q) denote
its processor desire and processor allocation, respectively. We say that job Jij is satisfied in quantum q if
its processor allocation is at least its processor desire, i.e., a(Jij , q) ≥ d(Jij , q). Otherwise, the job is said
to be deprived if a(Jij , q) < d(Jij , q). Let tq denote the time when quantum q starts and let L denote the
duration of the quantum. A-Greedy collects the amount of work w(Jij , q) completed for job Jij in quantum

q, i.e., w(Jij , q) =
∫ tq+L

tq
s · Γkt

ij (t)dt, where kt is the phase job Jij is executing at time t and s is the processor

speed. Given that the total allocated processor cycles for job Jij in quantum q is a(Jij , q)sL, job Jij is
said to be efficient if its completed work is at least δ fraction of the total allocated processor cycles, i.e.,
w(Jij , q) ≥ δ · a(Jij , q)sL, where δ ≤ 1 is called the utilization parameter. Otherwise, the job is said to be
inefficient if w(Jij , q) < δ · a(Jij , q)sL. The processor desire d(Jij , q + 1) of job Jij in the next quantum q + 1

5

Jobs

Processor

desires

Figure 1: The DEQ allocator viewed as a water-filling algorithm.

is then calculated based on whether the job is satisfied or deprived and whether it is efficient or inefficient in
quantum q as shown below:

d(Jij , q + 1) =







d(Jij , q) · ρ if Jij is efficient and satisfied in q,
d(Jij , q)/ρ if Jij is inefficient in q,
d(Jij , q) if Jij is efficient and deprived in q,

where ρ > 1 is called the responsiveness parameter.
The rationale behind A-Greedy’s desire calculation strategy is as follows [1]: If the allocated processors

in a quantum are not utilized efficiently, then the parallelism of the job may not be as high. Therefore, the
processor desire will be reduced by a factor of ρ in the next quantum. If the allocated processors are utilized
efficiently and the processor desire is satisfied, then the parallelism of the job could be even higher. To exploit
any potential parallelism, the processor desire will be increased by a factor of ρ in the next quantum. Lastly,
if the allocated processors are utilized efficiently but the desire is deprived, then it is not known whether the
processors could have been efficiently utilized had the desire been satisfied. Therefore, the processor desire is
unchanged in the next quantum. The initial desire of the job when it first enters the system is simply set as 1
to start with.

DEQ Allocator

The Deq (Dynamic Equi-partitioning) allocator [15] distributes the processors among the active jobs within a
job set based on the processor desires of all jobs in the set. Similarly to Equi, Deq attempts to ensure fairness
among the active jobs by giving each of them an equal share of processor resource. However, Deq is more
efficient in the sense that it never allocates more processors to a job than what the job desires, otherwise the
extra processors will likely to be wasted in the following quantum assuming that the processor desires of the
jobs can reasonably reflect the jobs’ actual parallelism. The surplus processors will instead be shared among
the other jobs with higher desires. Informally, Deq can be viewed as a water-filling algorithm as shown in
Figure 1, where the height of each vertical bar represents the processor desire of the corresponding job and the
total amount of water represents the total number of processors possessed by the job set. After pouring the
water into the bars, the level of filled water in each bar will turn out to be the number of processors allocated
to the respective job. As we can see, Deq tends to satisfy those jobs with low processor desires while the jobs
with high desires are likely to be deprived and share an equal processor allocation.

Algorithm 1 presents the pseudocode of the Deq allocator. First, the algorithm initializes the processor
allocation a(Jij , q) = 0 for each active job Jij ∈ Ji (Lines 1-3). Suppose a job set Ji receives a(Ji, q) processors
from Equi in quantum q. It finds the minimum processor desire dmin among all active jobs in Ji (Line 5). If
the intended equal processor share a(Ji, q)/ |Ji| does not exceed the minimum desire, the remaining processors
will be equally divided among the active jobs (Lines 6-10). Otherwise, the algorithm adds dmin processors to
the allocations of all active jobs and updates their remaining desires accordingly (Lines 11-15). The process is
then repeated by excluding the processors already allocated and the jobs already satisfied (Lines 16-18). The
algorithm terminates when all active jobs in Ji are satisfied or the initial a(Ji, q) processors are all distributed
to the active jobs (Line 4).

6

Algorithm 1 Deq Allocator

Input: Processor allocation a(Ji, q) of job set Ji, and processor desire d(Jij , q) of each job Jij ∈ Ji in quantum
q.

Output: Processor allocation a(Jij , q) for each job Jij ∈ Ji in quantum q.
1: for each Jij ∈ Ji do
2: a(Jij , q) = 0
3: end for

4: while Ji 6= ∅ and a(Ji, q) > 0 do

5: dmin = minJij∈Ji
d(Jij , q)

6: if dmin ≥ a(Ji, q)/ |Ji| then
7: for each Jij ∈ Ji do
8: a(Jij , q) = a(Jij , q) + a(Ji, q)/ |Ji|
9: end for

10: a(Ji, q) = 0
11: else

12: for each Jij ∈ Ji do
13: a(Jij , q) = a(Jij , q) + dmin

14: d(Jij , q) = d(Jij , q)− dmin

15: end for

16: a(Ji, q) = a(Ji, q)− dmin · |Ji|
17: JB

i = {Jij ∈ Ji |d(Jij , q) = 0}
18: Ji = Ji \JB

i

19: end if

20: end while

3.3 Simplifying Assumption

To ease analysis, we assume that any job set is released or completed at the boundary of two consecutive
scheduling quanta. Since Equi is not quantum-based and only reallocates the processors based on the release
and the completion of job sets, the assumption ensures that the scheduling decisions made by Equi at the job-set
level and the decisions by Agdeq at the job level are well synchronized. This assumption can be easily justified
as most computation-intensive workloads take much longer to execute compared to any realistic quantum size,
which is normally in the order of milliseconds. Hence, a couple of extra quanta on the overall execution time of
a job set can be practically ignored.

4 Performance Analysis of EQUI◦AGDEQ

4.1 Preliminaries

To analyze the performance of Equi◦Agdeq, we need to define some preliminary concepts and notations. First
of all, we extend the notions of “satisfied” and “deprived” from quantum to time as follows: a job is said to
be satisfied (or deprived) at time t if t is within a satisfied (or deprived) quantum for the job. In addition, we
extend these notions from an individual job to a job set as follows: a job set Ji is said to be satisfied at time
t if all jobs in Ji are satisfied at t; otherwise, Ji is said to be deprived if it contains at least one deprived job
at t. Let Ji(t) denote job set Ji at time t, and let J (t) denote the set of all active job sets at t. Moreover,
let JA(t) and JB(t) denote the set of deprived job sets and the set of satisfied job sets in J (t), respectively.
Throughout the execution of job set Ji, we define aA(Ji) to be the amount of processor allocation Ji receives
when it is deprived, or its deprived processor allocation, i.e., aA(Ji) =

∫∞

0
a(Ji, t)s · [Ji(t) ∈ JA(t)]dt, and

define tB(Ji) to be the amount of processor time for Ji when it is satisfied, or its satisfied processor time, i.e.,
tB(Ji) =

∫∞

0 s · [Ji(t) ∈ JB(t)]dt, where s is the speed of the processors used by Equi◦Agdeq, and [x] is 1 if
proposition x is true and 0 otherwise. To simplify notations, let mA

t = |JA(t)| and mB
t = |JB(t)| denote the

number of deprived job sets and the number of satisfied job sets at time t, respectively. Since an active job set
is either satisfied or deprived, we have mA

t +mB
t = mt, where mt = |J (t)| is the total number of active job sets

at t.
We now introduce the concepts of squashed deprived processor allocation âA(J) and total satisfied processor

7

time tB(J) for the entire job set collection J as follows:

âA(J) =
1

P

m
∑

i=1

i · aA(Jγ(i)), (1)

tB(J) =

m
∑

i=1

tB(Ji), (2)

where γ(·) denotes a permutation of the job sets sorted in non-increasing order of deprived processor allocation,
i.e., aA(Jγ(1)) ≥ aA(Jγ(2)) ≥ · · · ≥ aA(Jγ(m)). It is not difficult to see that γ(·), among all permutations of the
job sets, gives the minimum value for the squashed formulation, i.e.,

∑m
i=1 i · aA(Jγ(i)) ≤

∑m
i=1 i · aA(Jπ(i)) for

any permutation π(·) of the job sets. The following lemma derives the upper bounds for the squashed deprived
processor allocation and the total satisfied processor time in terms of the squashed work and the total span of
a job set collection (defined in Section 2.3), respectively. These bounds will be used later in the analysis.

Lemma 2 Suppose that Equi◦Agdeq schedules a collection J of m job sets on P processors of speed s, where
s > 0. Then the squashed deprived processor allocation âA(J) and the total satisfied processor time tB(J) for
the job set collection J satisfy

âA(J) ≤ 1 + ρ

δ
· ŵ(J), (3)

tB(J) ≤ 2

1− δ
· l(J) +msL(logρ P + 1), (4)

where ŵ(J) and l(J) denote the squashed work and the total span of J , δ and ρ denote A-Greedy’s utilization
and responsiveness parameters, and L is the quantum length.

Proof. For any job Jij scheduled by Agdeq, we define a(Jij) to be its total processor allocation, i.e.,
a(Jij) =

∫∞

0
a(Jij , t)sdt, and define tB(Jij) to be its satisfied processor time, i.e., tB(Jij) =

∫∞

0
s · [Jij(t) ∈

J B
i (t)]dt, where JB

i (t) denotes the set of satisfied jobs in job set Ji at time t. The results in [1, 11] show
that on P processors of speed s, where s > 0, the A-Greedy scheduler achieves a(Jij) ≤ 1+ρ

δ
· w(Jij) and

tB(Jij) ≤ 2
1−δ · l(Jij) + sL(logρ P + 1), if the job never receives more processors than what it desires, which is

obviously satisfied by the Deq allocator.
According to definition, the satisfied processor time for job set Ji is then given by tB(Ji) ≤ maxj=1···ni

tB(Jij) ≤
2

1−δ maxj=1···ni
l(Jij)+sL(logρ P+1) = 2

1−δ ·l(Ji)+sL(logρ P+1). When job set Ji is deprived, which means that
at least one job within Ji is deprived, according to theDeq allocator, all the processors allocated to Ji must have
been distributed to its jobs. Hence, the deprived processor allocation for Ji satisfies aA(Ji) ≤

∑ni

j=1 a(Jij) ≤
1+ρ
δ

∑ni

j=1 w(Jij) =
1+ρ
δ
· w(Ji). The squashed deprived processor allocation for the entire job set collection J

is then given by âA(J) = 1
P

∑m
i=1 i · aA(Jγ(i)) ≤ 1

P

∑m
i=1 i · aA(Jπ(i)) ≤ 1

P

∑m
i=1 i · 1+ρ

δ
·w(Jπ(i)) = 1+ρ

δ
· ŵ(J).

The total satisfied processor time for J can be obtained by summing up the satisfied processor time over all
job sets.

Finally, we introduce the notions of t-prefix and t-suffix. For Equi◦Agdeq, we define the t-prefix Ji(
←−
t)

for job set Ji to be the portion of the job set executed before and at time t, and define its t-suffix Ji(
−→
t) to be

the portion executed after time t. We then extend the notions of t-prefix and t-suffix to the job set collection
as follows: the t-prefix of job set collection J is defined to be J (←−t) = {Ji(

←−
t) : Ji ∈ J and ri ≤ t} and the

t-suffix of J is J (−→t) = {Ji(
−→
t) : Ji ∈ J and ri ≤ t}. Note that both t-prefix and t-suffix are defined for job

sets that have been released by time t, i.e., ri ≤ t. Similarly, we define J ∗(←−t) and J ∗(−→t) to be the t-prefix
and the t-suffix for the job set collection J executed by the optimal offline scheduler.

4.2 Analysis for Batched Job Sets

We first analyze the set response time of the Equi◦Agdeq algorithm when all job sets are batch released. The
analysis relies on the local competitiveness argument [18], which bounds the performance of an online algorithm
at any time in terms of the optimal offline scheduler, or in this case its two lower bounds presented in Section 2.3.

For any job set collection J , we focus on its t-prefix J (←−t), which according to definition always contains

m sets of jobs for any t > 0. Recall that the squashed deprived processor allocation for J (←−t) is given by

âA(J (←−t)) = 1
P

∑m
i=1 i · aA(Jγ(i)(

←−
t)), where γ(·) denotes a permutation of the job sets in J (←−t) sorted in non-

increasing order of deprived processor allocation. At any time t, let mt(z) denote the number of job sets in J (←−t)
whose deprived processor allocation is at least z under Equi◦Agdeq, i.e., mt(z) =

∑

Ji(
←−
t)∈J (

←−
t)
[aA(Ji(

←−
t)) ≥

8

Figure 2: (a) An example of mt(z) at a particular time t. (b) The changes of mt(z) in an infinitesimal interval
∆t in the worst case.

z]. Apparently, mt(z) is a staircase-like decreasing function of z, and Figure 2(a) shows an example of mt(z)
at a particular time t. From the definition of squashed deprived processor allocation, an alternative expression
for âA(J (←−t)) is given by

âA(J (←−t)) =
1

P

∫ ∞

0





mt(z)
∑

i=1

i



 dz, (5)

which is a more convenient representation of âA(J (←−t)) for analyzing batched job sets. Note that the expression
presented in Eq. (5) gives a much simpler perspective for the squashed deprived processor allocation than the
one conceived in [11], hence it can be applied to simplify the batched response time analysis therein. For our
analysis on set response time, we give both Equi◦Agdeq and the optimal scheduler P processors of unit speed.
The local performance of Equi◦Agdeq is shown in the following lemma.

Lemma 3 Suppose that Equi◦Agdeq schedules a collection J of batched job sets on P processors of unit
speed. Then the execution of the job sets satisfies the following

• Running condition: mt ≤ 2
(

dâA(J (t))
dt

+mB
t

)

,

where dâA(J (t))
dt

= âA(J (
←−−−
t+∆t))−âA(J (

←−
t))

∆t
denotes the rate of change for the squashed deprived processor allocation

in an infinitesimal interval ∆t during which no job set completes.

Proof. According to the Equi algorithm, each of the mt active job sets gets P/mt processors at time t. In the
worst case, the mA

t deprived job sets have the most deprived processor allocation so far among the mt active
job sets. As a result, in an infinitesimal interval ∆t during which no job set completes, each of the bottom mA

t

horizontal stripes from mt(z) grows by P
mt

∆t, as shown in Figure 2(b). The rate of change for the squashed
deprived processor allocation can then be bounded by

dâA(J (t))
dt

=
1

P∆t

∫ ∞

0









mt+∆t(z)
∑

i=1

i



−





mt(z)
∑

i=1

i







 dz

≥ 1

P∆t
· m

A
t (m

A
t + 1)

2
· P
mt

∆t ≥ x2
t

2
mt, (6)

where xt = mA
t /mt, and obviously 0 ≤ xt ≤ 1. Since a job set is either satisfied or deprived, we have

mB
t = (1 − xt)mt. It can be easily verified that the running condition holds for all values of xt by substituting

Inequality (6) into it.

We can now combine the results of Lemmas 2 and 3 to get the set response time of Equi◦Agdeq in the
batched scenario.

Theorem 1 Suppose that Equi◦Agdeq schedules a collection J of m batched job sets on P processors of unit
speed. Then its set response time satisfies

H1(J) ≤
2(1 + ρ+ δ − ρδ)

δ(1 − δ)
H∗1 (J) + 2mL(logρ P + 1),

where H∗1 (J) denotes the set response time of J under the optimal offline scheduler on unit-speed processors,
δ and ρ denote A-Greedy’s utilization and responsiveness parameters, and L is the quantum length.

9

Figure 3: (a) An example of mt(z) and m∗t (z) at a particular time t. (b) The changes of mt(z) and m∗t (z) after
a new job set with work w′ and deprived processor allocation a′A arrives. (c) The changes of mt(z) and m∗t (z)
in an infinitesimal interval ∆t in the worst case.

Proof. As mentioned in Section 2.2, the set response time of a job set collection J scheduled by Equi ◦
Agdeq can be expressed as H1(J) =

∫∞

0
mtdt. Similarly, the total satisfied processor time of J under

Equi◦Agdeq is given by tB(J) =
∫∞

0
mB

t dt. Integrating the running condition in Lemma 3, we have H1(J) ≤
2 (âA(J) + tB(J)). Substituting the bounds of âA(J) and tB(J) from Lemma 2 into the above inequality, we

get H1(J) ≤ 2
(

1+ρ
δ
· ŵ(J) + 2

1−δ · l(J) +mL(logρ P + 1)
)

. Based on Lemma 1, both squashed work ŵ(J)
and total span l(J) are lower bounds on the set response time of job set collection J . The performance of

Equi◦Agdeq thus satisfiesH1(J) ≤ 2
(

1+ρ
δ
·H∗1 (J) + 2

1−δ ·H∗1 (J) +mL(logρ P + 1)
)

= 2(1+ρ+δ−ρδ)
δ(1−δ) H∗1 (J)+

2mL(logρ P + 1).

4.3 Analysis for Arbitrary Released Job Sets

We now analyze the set response time of Equi◦Agdeq when the job sets can have arbitrary release time. Note
that the squashed work is no longer a lower bound for the set response time in this scenario. Hence, the analysis
uses the amortized local competitiveness argument [18], which bounds the performance of an online algorithm
at any time in terms of the optimal offline scheduler with the help of a potential function.

We adopt the potential function in [24] designed for the response time analysis ofAgdeq. However, compared
to the previous potential function, where only processor allocations of deprived jobs are considered, the one used
here needs to incorporate the whole job set collection instead of a single job set. Hence, for each deprived job
set at any time, the potential function considers its entire processor allocation, including those from satisfied
jobs. In particular, we focus on the t-suffix J (−→t) of job set collection J , and define mt(z) to be the number

of job sets in J (−→t) whose deprived processor allocation is at least 1+ρ
δ
· z at time t under Equi◦Agdeq, i.e.,

mt(z) =
∑

Ji(
−→
t)∈J (

−→
t)[aA(Ji(

−→
t)) ≥ 1+ρ

δ
· z]. Moreover, let m∗t (z) denote the number of job sets in J ∗(−→t)

whose work is at least z under the optimal, i.e., m∗t (z) =
∑

J ∗
i (
−→
t)∈J ∗(

−→
t)[w(J ∗i (

−→
t)) ≥ z]. Hence, both mt(z)

and m∗t (z) are staircase-like decreasing functions of z, and Figure 3(a) shows an example of mt(z) and m∗t (z)

at a particular time t. We give the Equi◦Agdeq algorithm P processors of speed s, where s = 2(1+ρ)
δ

+ ǫ for
any ǫ > 0, while the optimal scheduler uses unit-speed processors. The potential function is defined as

Φ(t) = η

∫ ∞

0









mt(z)
∑

i=1

i



−mt(z)m
∗
t (z)



 dz, (7)

where η = 2(1+ρ)
δǫP

. We now prove the amortized local performance of Equi◦Agdeq in the following lemma.

Lemma 4 Suppose that Equi◦Agdeq schedules a collection J of job sets on P processors of speed s, where

s = 2(1+ρ)
δ

+ ǫ for any ǫ > 0. Then with the potential function defined in Eq. (7), the execution of the job sets
satisfies the following

10

• Boundary condition: Φ(0) = 0 and Φ(∞) = 0;

• Arrival condition: Φ(t) does not increase when a new job set arrives;

• Running condition: mt +
dΦ(t)
dt
≤ 2s

ǫ

(

m∗t +mB
t

)

,

where dΦ(t)
dt

= Φ(t+∆t)−Φ(t)
∆t

denotes the rate of change for the potential function in an infinitesimal interval ∆t
during which no job set arrives or completes under either Equi◦Agdeq or the optimal offline scheduler.

Proof. We check each condition in the following.
- Boundary condition: at time 0, no job set exists in the system. Therefore, we have Φ(0) = 0. At time ∞,

all job sets have completed execution, so again we have Φ(∞) = 0.
- Arrival condition: suppose that a new job set with work w′ arrives at time t. Let t− and t+ denote the

time instances right before and after the job set arrives. Hence, we have m∗
t+
(z) = m∗

t−
(z) + 1 for z ≤ w′

and m∗
t+
(z) = m∗

t−
(z) for z > w′. Similarly, mt+(z) = mt−(z) + 1 for z ≤ δ

1+ρ
· a′A and mt+(z) = mt−(z) for

z > δ
1+ρ
· a′A, where a′A is the deprived processor allocation for the job set. Figure 3(b) illustrates the changes

of mt(z) and m∗t (z) in this case. Note that δ
1+ρ
· a′A ≤ w′ from the proof of Lemma 2. For convenience, we

define φt(z) =
(

∑mt(z)
i=1 i

)

−mt(z)m
∗
t (z). It is obvious that for z > w′, we have φt+(z) = φt−(z). For z ≤ w′,

we consider two cases.
Case 1: for z ≤ δ

1+ρ
· a′A, we have φt+(z) − φt−(z) =

(

∑m
t−

(z)+1
i=1 i

)

− (mt−(z) + 1)
(

m∗
t−
(z) + 1

)

−
(

∑m
t−

(z)
i=1 i

)

+mt−(z)m
∗
t−
(z) = −m∗

t−
(z) ≤ 0.

Case 2: for δ
1+ρ
·a′A ≤ z ≤ w′, we have φt+(z)−φt−(z) =

(

∑m
t−

(z)
i=1 i

)

−mt−(z)
(

m∗
t−
(z) + 1

)

−
(

∑m
t−

(z)
i=1 i

)

+

mt−(z)m
∗
t−
(z) = −mt−(z) ≤ 0.

Thus, Φ(t+) = η
∫∞

0
φt+(z)dz ≤ η

∫∞

0
φt−(z)dz = Φ(t−).

- Running condition: Each of the mt active job sets gets P/mt processors according to Equi. In the worst
case, the mA

t deprived job sets have the most remaining deprived processor allocation, while the optimal uses all
P processors. Hence, in an infinitesimal interval ∆t where no job set arrives or completes, each of the bottom
mA

t horizontal stripes from mt(z) shrinks by
δsP

(1+ρ)mt
∆t, and the horizontal stripes from m∗t (z) shrinks by P∆t

totally, as shown in Figure 3(c). The rate of change for the potential function can then be bounded by

dΦ(t)

dt
=

η

∆t

∫ ∞

0









mt+∆t(z)
∑

i=1

i



−mt+∆t(z)m
∗
t+∆t(z)−





mt(z)
∑

i=1

i



+mt(z)m
∗
t (z)



 dz

≤ 2(1 + ρ)

δǫP∆t

(

−mA
t (m

A
t + 1)

2
· δsP

(1 + ρ)mt

∆t+mtP∆t+m∗t
δsP

(1 + ρ)mt

∆t ·mA
t

)

≤ 2(1 + ρ)

δǫ

(

1− δsx2
t

2(1 + ρ)

)

mt +
2s

ǫ
m∗t , (8)

where xt = mA
t /mt, and 0 ≤ xt ≤ 1. Since a job set is either satisfied or deprived, we have mB

t = (1 − xt)mt.
We can again verify that the running condition holds for all values of xt by substituting Inequality (8) into it.

The following theorem gives the set response time of Equi◦Agdeq for arbitrary released job sets.

Theorem 2 Suppose that Equi◦Agdeq schedules a collection J of m job sets on P processors of speed s,

where s = 2(1+ρ)
δ

+ ǫ for any ǫ > 0. Then its set response time satisfies

Hs(J) ≤
(

2 +
4(1 + ρ− ρδ)

δ(1− δ)ǫ

)

H∗1 (J) +
2msL

ǫ
(logρ P + 1),

where H∗1 (J) denotes the set response time of J under the optimal scheduler on unit-speed processors, δ and ρ
denote A-Greedy’s utilization and responsiveness parameters, and L is the quantum length.

Proof. As the set response time of Equi◦Agdeq is given by Hs(J) =
∫∞

0 mtdt, and the set response time

of the optimal is H∗1 (J) =
∫∞

0 m∗t dt, integrating the running condition in Lemma 4 over time and applying

the boundary and arrival conditions, we have Hs(J) ≤ 2s
ǫ
· H∗1 (J) + 2

ǫ
· tB(J), where tB(J) =

∫∞

0
s ·mB

t dt
is the total satisfied processor time for J under Equi◦Agdeq. From Lemma 2, the total satisfied processor
time for J is also given by tB(J) ≤ 2

1−δ · l(J) +msL(logρ P + 1). The set response time of J scheduled by

Equi◦Agdeq thus satisfies Hs(J) ≤ 2s
ǫ
·H∗1 (J) + 4

(1−δ)ǫ · l(J) + 2msL
ǫ

(logρ P + 1). Since the total span l(J)
is a lower bound for the set response time of J on unit-speed processors, the theorem is directly implied.

11

4.4 Discussions

In the preceding two subsections, we have analyzed the set response time of the Equi◦Agdeq algorithm for
both batched and arbitrary released job sets. As Theorem 1 shows, when all job sets are batch released,
Equi◦Agdeq is O(1)-competitive, since both ρ and δ can be considered as constants. In particular, when
δ = 0.5 and ρ approaches 1, the competitive ratio approaches the minimum value 16. This result improves
upon the O(lnn

ln lnn
)-competitiveness of Equi◦Equi obtained in [19] for large values of n, where n denotes the

maximum number of jobs in a set. For arbitrary released job sets, Theorem 2 shows that Equi◦Agdeq is O(1)-
speed O(1)-competitive. When δ ≈ 0.586 and ρ approaches 1 in this case, the competitive ratio approaches
the minimum value 2 + 23.32/ǫ with (6.83 + ǫ)-speed processors, for any ǫ > 0. This result extends a similar
performance bound of the Equi◦A algorithm obtained in [20] from jobs with specific parallelism structure,
namely, a sequential phase followed by a fully-parallelizable phase, to jobs with any parallelism profile.

Note that, for jobs with arbitrary sizes, any non-clairvoyant algorithm has been shown to be ω(1)-competitive
in the strong sense with respect to the set response time even when the job sets are batch released [19]. Hence,
the competitive ratios of Equi◦Agdeq derived in this paper are actually achieved in the asymptotic sense.
Assuming that the jobs under consideration are sufficiently large, the optimal set response time will dominate
the additive factors shown in the inequalities of Theorems 1 and 2. As a result, the strong competitive ratios
will increase by at most an additive constant from the corresponding asymptotic ones. For instance, when job
sets are batch released and the optimal set response time is much larger than 2mL(logρ P +2), the performance

of Equi◦Agdeq as shown in Theorem 1 then becomes H1(J) ≤
(

2(1+ρ+δ−ρδ)
δ(1−δ) + o(1)

)

H∗1 (J) = O(1) ·H∗1 (J).
While both Equi◦Agdeq and Equi◦Equi use the Equi algorithm at the job-set level to ensure fairness,

the performance improvement of Equi◦Agdeq for sufficiently large jobs is essentially because the processors
are utilized more efficiently by the Agdeq algorithm at the job level. On the other hand, Equi lacks efficiency
by obliviously allocating processors to the jobs, which will inevitably incur a large waste of resources when
the jobs’ parallelism can vary with time. This shows the importance of both fairness among the job sets and
efficiency within each job set when scheduling a job set collection for the objective of set response time.

5 A Generalized Analysis Framework for EQUI◦XY

In this section, we extend the performance analysis of the Equi◦Agdeq algorithm shown in the preceding section
and present a generalized analysis framework for the Equi◦Xy family of algorithms. In particular, Equi◦Xy

uses Equi to allocate processors among the job sets and any feedback-driven algorithm Xy to schedule the jobs
within each job set. The performance of Equi◦Xy then relies on bounding the efficiency of the Xy algorithm.
We show the generality of this framework by applying it to two other choices of Xy with provable efficiency.

5.1 Generalized Analysis

It was shown in [20] that, for arbitrary released job sets, the Equi◦A family of algorithms is O(1)-speed
O(1)-competitive with respect to the set response time when all jobs have special parallelism structures, i.e., a
sequential phase followed by a fully-parallelizable phase. The result holds independent of the choice of algorithm
A, as long as A distributes all processors allocated to a job set to its active jobs at all time, i.e., A never idles
its received processors. In contrast, our generalized analysis for the Equi◦Xy algorithm family can be applied
to both batched and arbitrary released job sets, and moreover it allows the jobs to have arbitrary parallelism
profile. While Equi ensures fairness of processor allocations among the job sets, the key to the generalized
analysis essentially relies on establishing the efficiency of the feedback-driven algorithm Xy, which uses the
scheduler X to calculate the processor desire for each individual job and the allocator Y to distribute the
processors based on the desires of the jobs.

In the generalized analysis, the efficiency of Xy is expressed by two conditions, which need to be satisfied
by the scheduler X and the allocator Y, respectively. First, for the scheduler X, we need to bound the total
processor allocation of any individual job scheduled by it in terms of the job’s work, and bound the overall
satisfied processor time of the job in terms of the job’s span. Specifically, for any job Jij scheduled by X on
processors of speed s, where s > 0, let a(Jij) =

∫∞

0 a(Jij , t)sdt denote the job’s total processor allocation and

let tB(Jij) =
∫∞

0
s · [Jij(t) ∈ J B

i (t)]dt denote its satisfied processor time. The following condition states the
performance of scheduler X.

Condition 1 For any job Jij scheduled by X on processors of speed s, where s > 0, assuming that the job never

12

receives more processors than its desire, the execution of the job should satisfy

a(Jij) ≤ α · w(Jij), (9)

tB(Jij) ≤ β · l(Jij), (10)

where w(Jij) and l(Jij) denote the work and span of job Jij, respectively.

The coefficients α and β measure the efficiency of the scheduler X, and they should be bounded as minimally
as possible in order to achieve the best competitive ratio. For job set Ji, we say that it is satisfied at time t if
all jobs in Ji are satisfied. Otherwise, Ji is said to be deprived if it contains at least one deprived job at time
t. In order for our analysis to hold, it is also required that the allocator Y satisfies the following condition.

Condition 2 At any time t, the allocator Y should be

1. Conservative: Y never allocates more processors to a job than what the job desires.

2. Non-idle: When a job set is deprived, Y never idles processors, that is, all the processors allocated to the
job set must be distributed to the active jobs in the set.

While Condition 2.1 is required to bound the total processor allocation of a job derived in Inequality (9),
Condition 2.2 is necessary to bound the squashed processor allocation to be shown in Theorem 3. Apparently,
the Deq allocator satisfies both conditions.

For any scheduler X satisfying Condition 1 and any allocator Y satisfying Condition 2, we can follow the
analysis in Section 4 and show the performance of the Equi◦Xy algorithm. The following theorem gives the
generalized results.

Theorem 3 Suppose that Equi◦Xy schedules a collection J of job sets. If the scheduler X satisfies the per-
formance stated in Condition 1 for any individual job and the allocator Y satisfies Condition 2, then Equi◦Xy

is

• 2(α+ β)-competitive for batched job sets;

• (2α+ ǫ)-speed (2 + 2(2α+ β)/ǫ)-competitive for arbitrary released job sets, where ǫ > 0,

with respect to the set response time of the job set collection J .

Proof sketch. As in Section 4.1, we can define the squashed deprived processor allocation âA(J) and the total
satisfied processor time tB(J) for the entire job set collection J . Then based on the derivations of Lemma 2 and
the two conditions stated for scheduler X and allocator Y above, they can be shown to satisfy âA(J) ≤ α · ŵ(J)
and tB(J) ≤ β ·l(J), where ŵ(J) and l(J) denote the squashed work and the total span of the job set collection

J , respectively. The claim can then be proved by following the analysis in Sections 4.2 and 4.3.

As with the analysis of Equi◦Agdeq, if the inequalities in Condition 1 contain any additive constant, the
competitive ratios of Equi◦Xy stated in Theorem 3 will hold in the asymptotic sense, under the assumption
that the jobs under consideration are sufficiently large.

5.2 Application of the Framework

The preceding subsection outlines an analysis framework, which can be seen to encompass the results of the
Equi◦Agdeq algorithm with α = (1 + ρ)/δ and β = 2/(1 − δ). We now demonstrate the generality of the
framework by applying it to two other choices of X with different desire calculation schemes and an alternative
allocator Y. First, observe that the analysis framework can be applied to any online algorithm Equi◦Xy, where
the scheduler X does not necessarily need to be non-clairvoyant when calculating the processor desires. One
particular algorithm (Igcp) we present in this subsection is in fact IP-clairvoyant [27], that is, the algorithm
knows the instantaneous parallelism (IP) of the job at any time but not the job’s future parallelism and remaining
work. Not surprisingly, such information does help the algorithm achieve better efficiency and hence stronger
performance bounds.

13

Table 1: Performance of Equi◦Agdeq, Equi◦Acdeq and Equi◦Igcp for both batched job sets and arbitrary
released job sets, obtained using the generalized analysis framework.

α β Batched job sets Arbitrary released job sets

Equi◦Agdeq
1+ρ
δ

2
1−δ

2(1+ρ+δ−ρδ)
δ(1−δ) -comp.

(

2(1+ρ)
δ

+ ǫ
)

-speed
(

2 + 4(1+ρ−ρδ)
δ(1−δ)ǫ

)

-comp.

Equi◦Acdeq c+ 1 c+ 1 4(c+ 1)-comp. (2(c+ 1) + ǫ)-speed
(

2 + 6(c+1)
ǫ

)

-comp.

Equi◦Igcp 1 1 4-comp. (2 + ǫ)-speed (2 + 6/ǫ)-comp.

EQUI◦ACDEQ Algorithm

As with Agdeq, the Acdeq algorithm also uses the Deq allocator to distribute processors among the jobs
in a job set, but it uses a more stable desire calculation strategy, namely, the A-Control scheduler [28, 25],
to calculate the processor desires. Specifically, A-Control estimates the average parallelism of a job in each
scheduling quantum and then directly sets the processor desire of the job in the next quantum to be the current
average parallelism. Such strategy makes the processor desire more representative of the job’s immediate
average processor requirement. Moreover, its feedback over time has been shown to possess desirable transient
and steady-state behaviors through formal control-theoretic arguments [25].

To apply the generalized analysis to Equi◦Acdeq, the results in [25] show that the total processor allocation
a(Jij) and the satisfied processor time tB(Jij) for any job Jij scheduled by A-Control can be bounded in terms
of the transition factor c of the job, and they are given by a(Jij) ≤ (c+1) ·w(Jij) and tB(Jij) ≤ (c+1) · l(Jij).
The transition factor captures the job’s maximum parallelism change between any two consecutive quanta, and
to a certain extent, it reflects the degree of difficulty to schedule the job in a non-clairvoyant manner. For jobs
with smooth parallelism variations, c can generally be considered as a constant.

EQUI◦IGCP Algorithm

Unlike the non-clairvoyant algorithms Agdeq and Acdeq, the Igcp algorithm is IP-clairvoyant, which means
that it is aware of the instantaneous parallelism of the job at any time. In many parallel systems, instantaneous
parallelism can be obtained by simply counting the number of available tasks in the queue or the number of
ready threads in the pool, which is information practically accessible by the scheduler. In this case, Igcp

uses the I-Greedy scheduler [12] to directly report the instantaneous parallelism of a job at any time as its
processor desire, and this has been shown to provide the strong result of α = β = 1, that is, the total processor
allocation a(Jij) and the satisfied processor time tB(Jij) for job Jij can be bounded as a(Jij) ≤ w(Jij) and
tB(Jij) ≤ l(Jij) [12].

Igcp then applies the Cp (Capped Proportional) allocator to distribute the a(Ji, t) processors received
by the job set Ji at any time t to its active jobs proportionally based on their desires, or the instantaneous
parallelism in this case. However, when all jobs in the set can be satisfied, Cp ensures that the allocations are
capped at the corresponding desires of the jobs. The following gives the detailed allocation policy:

a(Jij , t) =

{

d(Jij , t)∑
Jik∈Ji

d(Jik, t)
· a(Ji, t) if

∑

Jik∈Ji
d(Jik, t) > a(Ji, t),

d(Jij , t) if
∑

Jik∈Ji
d(Jik, t) ≤ a(Ji, t),

where a(Jij , t) and d(Jij , t) denote the processor allocation and processor desire of job Jij at time t, respectively.
Apparently, Cp also satisfies both conditions stated in Condition 2. What distinguishes it from Deq is that all
jobs will be deprived if their total desire is more than the number of available processors, whereas in Deq some
jobs with small desire may still be satisfied.

Table 1 summarizes the performance of the three algorithms shown in this paper using the generalized
analysis framework. Note that as both allocators Deq and Cp satisfy Condition 2, the three schedulers (A-

Greedy, A-Control and I-Greedy) can in fact be coupled with any of the two allocators to achieve essentially
the same performance as stated in the table.

6 Multi-level Hierarchical Scheduling and a Fair and Efficient Solu-

tion

In this section, we extend the two-level scheduling model to a multi-level hierarchical scheduling problem. We
propose a fair and efficient solution for allocating resources in this hierarchical model, and show that it achieves
the same performance bounds as in the two-level case.

14

(a) (b)

Figure 4: (a) An example of the multi-level hierarchical scheduling problem with five job groups. (b) The
reduced two-level scheduling instance using the Fair◦Efficient solution.

6.1 Multi-level Hierarchical Scheduling

In the multi-level hierarchical scheduling model, we have a collection G = {G1,G2, · · · ,Gm} of m job groups,
where each group Gi = {Ji1, Ji2, · · · , Jini

} contains ni jobs. Unlike the two-level model with simple flat struc-
tures, the job groups here form the leaf nodes of an arbitrary tree structure T0. A total number P of processors
need to be distributed from the root of the tree to the job groups by going through all the internal nodes of T0.
Similarly, the jobs within each group Gi are also given as the leaf nodes of an arbitrary tree structure Ti, and
the processors allocated to Gi need to be distributed to the jobs through the internal nodes of Ti. Figure 4(a)
shows an example of such a multi-level hierarchy, where five job groups are organized as a tree with height 3
and the groups have their own tree hierarchies with possibly different heights. The objective is to minimize the
total response time of all job groups, or the group response time H(G) =

∑m
i=1(ci − ri), where ri denotes the

release time of group Gi and ci denotes its completion time. Again, we assume that all jobs in a job group are
released at the same time and a group is considered completed when all jobs in the group are completed.

Compared to the two-level scheduling model, this multi-level model places arbitrary tree structures between
the source of the processors and the job groups as well as within each job group. Such an extension makes the
hierarchical scheduling model applicable to an even wider range of resource management problems. Furthermore,
the resources in these problems need not be limited to processor or computing resources, but can also refer to
financial, inventory, or production resources, which need to be deployed through an organizational hierarchy
to several groups or divisions, each one of which may in turn have its own internal hierarchy to distribute the
resources. To minimize the makespan of all jobs in this hierarchical model, an O(1)-competitive algorithm was
proposed in [5] based on a feedback-driven adaptive policy. In the next subsection, we will present a both fair
and efficient solution for the more general objective of group response time by extending our previous results.

6.2 The FAIR◦EFFICIENT Solution

Our solution for the multi-level hierarchical scheduling model consists of two algorithms, namely, Fair and
Efficient, which are responsible for guaranteeing the fairness among the job groups and the efficiency within
each job group, respectively. We call the composite solution Fair◦Efficient.

FAIR Algorithm

The Fair algorithm distributes the P processors to all active job groups at any time t, and as with Equi, it
gives each active job group an equal share, i.e., P/mt processors, where mt denotes the number of active job
groups at time t. To achieve this in the presence of a tree hierarchy, Fair first aggregates the number of active
job groups through all the internal nodes of T0 up the tree and then distributes the processors proportionally
down the tree based on the active group count in each subtree.

Specifically, any active job group Gi at time t reports a desire of 1 to its parent node, i.e., d(Gi, t) = 1, and

15

the desire d(v, t) of an internal node v ∈ T0 of the tree at time t is calculated by

d(v, t) =
∑

u∈Cv

d(u, t), (11)

where Cv denotes the set of immediate children of node v. Apparently, d(v, t) represents the number of active
job groups under node v at time t. After node v receives its processor allocation a(v, t) from its parent, the
share to be passed down to any of its child w ∈ Cv is then based proportionally on the number of active groups
in w, i.e.,

a(w, t) =
d(w, t)

∑

u∈Cv
d(u, t)

· a(v, t). (12)

According to the above proportional allocation policy, it is straightforward to see by induction that the

number of processors allocated to each node v ∈ T0 is given by a(v, t) = P · d(v,t)
mt

. Hence, each active job group
Gi (or leaf node of T0) with d(Gi, t) = 1 will get exactly a(Gi, t) = P/mt processors, making Fair equivalent to
Equi in terms of the processor allocation among the active job groups. Similarly to Equi, Fair only reallocates
the processors whenever a new job group enters the system or an existing job group completes and leaves the
system.

EFFICIENT Algorithm

The Efficient algorithm is responsible for distributing the a(Gi, t) processors received by any active job group

Gi among its active jobs. To interact directly with the jobs in Gi, Efficient can use any auxiliary scheduler
X with provable efficiency to calculate the jobs’ processor desires. As stated in Condition 1, the efficiency of
X is then established by Inequalities (9) and (10) in terms of scheduling each individual job. To distribute the
processors to the jobs, Efficient first aggregates the jobs’ processor desires computed by X up the tree Ti

through its internal nodes according to Eq. (11). Then, any allocator Y that satisfies Condition 2, such as Deq

or Cp, can be used to allocate the processors at each internal node of the tree according to the desires of its
children. Under such a policy, any job (or node) will be guaranteed not to receive more processors than what it
desires according to the conservative property of Condition 2. In addition, if any job (or node) is deprived, then
the parent node must have distributed all of its processors according to the non-idle property of Condition 2.
This implies that the parent and all the ancestors of the job must also be deprived, and hence all the a(Gi, t)
processors received by the job group must be distributed to the active jobs, i.e., none of the processors is left
idle.

Therefore, our solution Fair◦Efficient with a probably-efficient scheduler X and a conservative and non-
idle allocator Y effectively reduces the multi-level hierarchical scheduling problem to the simple two-level
scheduling problem. The solution for the two-level problem is an Equi◦Xy’ algorithm, where the allocator
Y’ also satisfies both properties given in Condition 2 like Y does.3 Figure 4(b) shows the reduced instance for
the example shown in Figure 4(a), where the scheduling hierarchy is flattened by the desire aggregation and
processor allocation schemes of the Fair◦Efficient solution.

7 Empirical Evaluations

In this section, we conduct simulations to empirically evaluate the performance of three non-clairvoyant algo-
rithms we described in this paper for the two-level scheduling model, and they are Equi◦Agdeq, Equi◦Equi
and Equi◦Acdeq. The objective is to verify our theoretical analysis, and to show that feedback-driven algo-
rithms indeed achieve superior set response time and have better system efficiency.

7.1 Simulation Setup

We simulate a system with 64 processors, and the workload is generated based on a malleable job model [4],
which creates synthetic parallel jobs with various internal parallelism structures. (See [4] for more details on
the workload generation.) Taking a generated job sequence, we group consecutively released jobs together to
form job sets. Both number of job sets and number of jobs in a job set are varied from 5 to 100 at an increment
of 5 each time, so the total number of jobs in the system ranges from 25 to 10000. To make sure that all
jobs in a job set are batch released, we adjust the release time of each job that belongs to a job set to when
the first job of the set is released. Following the empirical advice in [1, 11], the utilization and responsiveness

3However, Y’ may behave differently from Y in terms of the number of processors allocated to each active job for the two-level
scheduling problem.

16

10 20 30 40 50 60 70 80 90 100
−10%

0

10%

20%

30%

40%

S
et

 R
es

po
ns

e
T

im
e

Im
pr

ov
em

en
t

Number of job sets

EQUI°AGDEQ
EQUI°ACDEQ

(a)

10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

P
ro

ce
ss

or
 U

til
iz

at
io

n
R

at
io

Number of job sets

EQUI°AGDEQ
EQUI°ACDEQ

(b)

Figure 5: (a) Improvement of set response time by Equi◦Agdeq and Equi◦Acdeq over Equi◦Equi; (b)
Normalized processor utilization of Equi◦Agdeq and Equi◦Acdeq relative to Equi◦Equi.

parameters of the A-Greedy scheduler are set to be δ = 0.8 and ρ = 2, respectively. The overhead incurred in
the reallocation of the processors is ignored in the simulation.

7.2 Simulation Results

Figure 5(a) shows the improvements of the two feedback-driven algorithms over Equi◦Equi in terms of the set
response time. First, we observe that when the number of job sets is fixed, the relative set response time is
closely related to the number of jobs within each set. In particular, Equi◦Agdeq and Equi◦Acdeq outperform
Equi◦Equi when there is a moderate to large number of jobs in each set, which is due to the better efficiency
of the feedback-driven algorithms. Only when each job set contains a small number of jobs, the performance of
Equi becomes better, since the load in each job set is light in this case and nearly all jobs could be easily satisfied
even by the oblivious strategy of Equi at the job level. We can see that the advantage of the feedback-driven
algorithms is more obvious when the overall load of the system (number of job sets) increases. The reason
is because as each job set receives fewer processors, it is more important to be able to efficiently allocate the
processors at the job level, especially when the load within each job set also increases. The results show that
the peak performance improvements range from 10-30% compared to Equi◦Equi, depending on the load in our
simulation. In addition, the performance of Equi◦Acdeq is slightly better than that of Equi◦Agdeq due to
the more stable desire calculation strategy of the A-Control scheduler [25].

Figure 5(b) shows the normalized processor utilizations of the two feedback-driven algorithms, which are
always better than that of Equi◦Equi under all system loads. When there are very few jobs in each set,
Equi◦Equi has particularly bad utilization, since it is blind to the jobs’ resource requirements and thus wastes
a lot of processor cycles. In fact, Figure 5(a) shows that Equi◦Equi achieves better set response time in this
case at the cost of poor processor utilization. With increases in the system load, the advantage of the feedback-
driven algorithms becomes smaller, as more processors are effectively allocated by Equi◦Equi when more jobs
are present in the system. Even in this case, the utilization advantage is still around 10-20% in our simulation.
The results confirm that the feedback-driven algorithms, which take advantage of the parallelism correlations
of the jobs, indeed achieve better efficiency than Equi◦Equi in terms of processor utilizations.

8 Conclusion

In this paper, we have studied a two-level scheduling model to minimize the response time for multiple sets of
parallel jobs on multiprocessor systems. We proposed online adaptive scheduling algorithms that achieve fairness
and efficiency at the job-set level and the job level, respectively. Both theoretical analysis and simulation results
demonstrate that our algorithms provide improved performance as compared to an existing scheduler that
exhibits only fairness but not efficiency. Moreover, we provided a generalized analysis framework for a family
of scheduling algorithms with provable efficiency and desirable allocation properties. Finally, we considered
a multi-level hierarchical scheduling problem and proposed a both fair and efficient solution that effectively
reduces it to the two-level scheduling model.

17

References

[1] K. Agrawal, Y. He, W.-J. Hsu, and C. E. Leiserson. Adaptive scheduling with parallelism feedback. In Pro-
ceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),
New York, USA, 2006.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. ACM SIGOPS Operating Systems Review, 37(5):164–177, 2003.

[3] A. Borodin, and R. El-Yaniv. Online computation and competitive analysis. Cambridge University Press,
New York, USA, 1998.

[4] Y. Cao, H. Sun, W.-J. Hsu, and D. Qian. Malleable-Lab: a tool for evaluating adaptive online schedulers
on malleable jobs. In Proceedings of the Euromicro International Conference on Parallel, Distributed and
Network-Based Computing (PDP), Pisa, Italy, 2010.

[5] Y. Cao, H. Sun, D. Qian, and W. Wu. Scalable hierarchical scheduling for multiprocessor systems using
adaptive feedback-driven policies. In Proceedings of the IEEE International Symposium on Parallel and
Distributed Processing with Applications (ISPA), Taipei, Taiwan, 2010.

[6] J. Corbalán, X. Martorell, and J. Labarta. Performance-driven processor allocation. IEEE Transactions on
Parallel and Distributed Systems, 16(7):599–611, 2005.

[7] J. Edmonds. Scheduling in the dark. Theoretical Computer Science, 235(1):109–141, 2000.

[8] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. Non-clairvoyant multiprocessor scheduling of jobs with
changing execution characteristics. Journal of Scheduling, 6(3):231–250, 2003.

[9] J. Edmonds, and K. Pruhs. Scalably scheduling processes with arbitrary speedup curves. ACM Transactions
on Algorithms, 8(3):28:1–28:10, 2012.

[10] D. G. Feitelson. Job scheduling in multiprogrammed parallel systems. IBM Research Report
RC19790(87657) 2nd Revision, 1997.

[11] Y. He, W.-J. Hsu, and C. E. Leiserson. Provably efficient online nonclairvoyant adaptive scheduling. IEEE
Transactions on Parallel and Distributed Systems, 19(9):1263–1279, 2008.

[12] Y. He, H. Sun, and W.-J. Hsu. Improved results for scheduling batched parallel jobs by using a generalized
analysis framework. Journal of Parallel and Distributed Computing, 70(2):173–182, 2010.

[13] B. Kalyanasundaram, and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the ACM, 47(4):617–
643, 2000.

[14] Y.-K. Kwok, and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to multipro-
cessors. ACM Computing Surveys, 31(4):406–471, 1999.

[15] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy for multiprogrammed
shared-memory multiprocessors. ACM Transactions on Computer Systems, 11(2):146–178, 1993.

[16] M. McNett, D. Gupta, A. Vahdat, and G.M. Voelker. Usher: an extensible framework for managing
clusters of virtual machines. In Proceedings of the Large Installation System Administration Conference,
Dallas, USA, 2007.

[17] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoretical Computer Science,
130(1):17-47, 1994.

[18] K. Pruhs. Competitive online scheduling for server systems. Performance Evaluation Review, 34(4):52–58,
2007.

[19] J. Robert, and N. Schabanel. Non-clairvoyant batch set scheduling: fairness is fair enough. In Proceedings
of the European Symposium on Algorithms (ESA), Eilat, Israel, 2007.

[20] J. Robert, and N. Schabanel. Pull-based data broadcast with dependencies: be fair to users, not to items.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans, USA, 2007.

[21] S. Sen. Dynamic processor allocation for adaptively parallel jobs. Master’s thesis, Massachusetts Institute
of technology, 2004.

18

[22] M. Stillwell, F. Vivien, and H. Casanova. Dynamic fractional resource scheduling versus batch scheduling.
IEEE Transactions on Parallel and Distributed Systems, 23(3):521–529, 2012.

[23] R. Sudarsan, and C. J. Ribbens. Design and performance of a scheduling framework for resizable parallel
applications. Parallel Computing, 36(1):48–64, 2010.

[24] H. Sun, Y. Cao, and W.-J. Hsu. Competitive two-level adaptive scheduling using resource augmentation.
In Proceedings of the Workshops on Job Scheduling Strategies for Parallel Processing (JSSPP), Rome, Italy,
2009.

[25] H. Sun, Y. Cao, and W.-J. Hsu. Efficient Adaptive scheduling of multiprocessors with stable parallelism
feedback. In IEEE Transactions on Parallel and Distributed Systems, 22(4), 594–607, 2011.

[26] H. Sun, Y. Cao, and W.-J. Hsu. Fair and efficient online adaptive scheduling for multiple sets of parallel
applications. In Proceedings of the IEEE International Conference on Parallel and Distributed Systems
(ICPADS), Tainan, Taiwan, 2011.

[27] H. Sun, Y. He, and W.-J. Hsu. Speed scaling for energy and performance with instantaneous parallelism.
In Proceedings of the International ICST Conference on Theory and Practice of Algorithms in (Computer)
Systems (TAPAS), Rome, Italy, 2011.

[28] H. Sun, and W.-J. Hsu. Adaptive B-Greedy (ABG): a simple yet efficient scheduling algorithm. In
Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS), Miami,
USA, 2008.

[29] A. Tucker, and A. Gupta. Process control and scheduling issues for multiprogrammed shared-memory
multiprocessors. ACM SIGOPS Operating Systems Review, 23(5):159–166, 1989.

[30] J. B. Weissman, L. R. Abburi, and D. England. Integrated scheduling: the best of both worlds. Journal
of Parallel and Distributed Computing, 63(6):649–668, 2003.

19

