
Energy-Efficient Scheduling for Best-Effort Interactive Services to Achieve High
Response Quality

Zhihui Du∗, Hongyang Sun†, Yuxiong He‡, Yu He∗, David A. Bader§, Huazhe Zhang¶
∗Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, Beijing, China
†School of Computer Engineering, Nanyang Technological University, Singapore

‡Microsoft Research, Redmonds, WA, USA
§College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

¶School of Information and Communication Engineering, Beijing University of Post and Telecommunication, Beijing, China

Abstract—High response quality is critical for many best-
effort interactive services, and at the same time, reducing energy
consumption can directly reduce the operational cost of service
providers. In this paper, we study the quality-energy tradeoff
for such services by using a composite performance metric that
captures their relative importance in practice: Service providers
usually grant top priority to quality guarantee and explore
energy saving secondly. We consider scheduling on multicore
systems with core-level DVFS support and a power budget. Our
solution consists of two steps. First, we employ an equal sharing
principle for both job and power distribution. Specifically, we
present a “Cumulative Round-Robin” policy to distribute the
jobs onto the cores, and a “Water-Filling” policy to distribute
the power dynamically among the cores. Second, we exploit
the concave quality function of many best-effort applications,
and develop Online-QE, a myopic optimal online algorithm for
scheduling jobs on a single-core system. Combining the two steps
together, we present a heuristic online algorithm, called DES
(Dynamic Equal Sharing), for scheduling best-effort interactive
services on multicore systems. The simulation results based on a
web search engine application show that DES takes advantage of
the core-level DVFS architecture and exploits the concave quality
function of best-effort applications to achieve high service quality
with low energy consumption.

Keywords-Energy efficiency; Scheduling algorithm; Quality of
service; Multicore systems

I. INTRODUCTION

Many large-scale interactive services—including web
search, video-on-demand, financial, recommendations, map
search, and online gaming—require high service quality with-
in a short response time, which is critical for a service provider
to stay competitive and win customers [15]. In addition, these
services are often hosted on thousands of machines, and hence
it is also crucial to reduce unnecessary energy consumption,
which can reduce the operational cost and increase the profit
of the service provider, not to mention its impact on the carbon
footprint and global environment.

These interactive services possess two properties: they are
often best-effort in nature, and must respond within a rigid
deadline. (1) A best-effort request can be partially executed
and will produce partial results. Given additional resources,
such as processing time, the results will improve in quality.
We use a quality function to map the processing time a request
receives to its quality value, and the shape of such a quality
function is usually non-decreasing and concave as shown in
Figure 1. (2) The processing for a request is limited by time

0 500 1000
0

0.2

0.4

0.6

0.8

1

Processing time(ms)

Q
ua

lit
y

Figure 1. An example quality function that maps the processing time a
request receives to its quality value.

or resource constraints, e.g., it has a deadline. For example,
a web search engine often strives to answer a query within
150ms with at least 95% of the quality that could be obtained
if there is no deadline constraint.

In this paper, we study the problem of scheduling best-
effort interactive services on multicore systems for quality-
energy tradeoff. We introduce a composite performance met-
ric ⟨quality, energy⟩ to capture their relative importance
in practice: Service providers usually grant top priority on
service quality to guarantee user experiences; under a quality
guarantee, they also want to make the system more cost
effective by reducing the energy consumption. In other words,
⟨quality, energy⟩ first ranks the schedules based on the
service quality, and then for those producing the same quality,
it prefers the one with the lowest energy. Such a lexicographic
order [12] respects the relative importance of quality and
energy from the perspective of service providers.

We focus on scheduling best-effort interactive services on
emerging processors that support core-level DVFS (Dynamic
Voltage & Frequency Scaling). Compared to most existing
processors that only support system-level DVFS [20][22],
where all cores on a chip must share the same speed, core-
level DVFS allows each individual core to have its own
speed/power level with little additional overhead [26][27].
While the entire system is bounded by a power budget, the
new architecture apparently provides more flexibility for both
quality and energy optimization.

We present a heuristic online algorithm, called DES (Dy-
namic Equal Sharing), which possesses two important prop-
erties that differentiate it from other scheduling algorithms:
(1) DES takes advantage of the core-level DVFS feature for

better power distribution among the cores in order to handle
the service demand variation of the requests. Specifically,
cores with heavy load (executing long or more requests) can
consume more power and run faster to achieve higher response
quality while cores with light load (executing short or less
requests) can spend less power and run slower to improve the
energy efficiency. (2) DES exploits the best-effort feature of
interactive services to optimize the execution of the requests.
In particular, the quality of many best-effort applications
is a concave function of a request’s processing time [14]:
response quality improves with increasing resources but with
diminishing returns. DES runs the most profitable portions of
the requests under heavy load in order to gain more quality
with the same energy expenditure.

With the above intuition, DES divides the multicore
scheduling problem into two sub-problems. The first sub-
problem concerns how to distribute the requests onto the cores
and how to distribute the power budget among the cores. The
second sub-problem concerns how to execute the assigned
requests on a single core with the given power budget. DES
integrates our solutions to the two subproblems, and can be
considered as DES = C-RR + WF + Online-QE. That is, it
uses “Cumulative Round-Robin” policy and “Water-Filling”
policy for job and power distributions, respectively, and then
it applies a myopic optimal algorithm Online-QE, which is
inspired by an offline optimal algorithm, for scheduling the
requests on each individual core.

We use simulation to evaluate the performance of DES
and to compare it with a few widely accepted scheduling
algorithms. Using requests from web search engine as the
driving workload, the results show that DES takes advantage
of the core-level DVFS architecture and the concave quality
function of best-effort applications to achieve high quality
with low energy consumption. In particular, at light load,
DES achieves about 2% more quality than other scheduling
algorithms (which is significant for large-scale interactive
services) with roughly the same energy as the compared
scheduling algorithms. At heavy load, the quality improve-
ment is even more as DES can better utilize the power budget
and the energy resources. For the same target quality of 0.9,
DES achieves up to 69% higher throughput than the other
scheduling algorithms.

The contributions of this paper are the following: (1)
We present a new metric ⟨quality, energy⟩ to evaluate the
quality-energy tradeoff of online services. (2) We develop an
optimal offline algorithm on single-core systems with respect
to ⟨quality, energy⟩, and present a myopic online algorithm
based on the offline optimal. (3) We propose an heuristic
online scheduling algorithm to schedule requests on multicore
systems with core-level DVFS support and a power budget.
(4) We use simulation to evaluate the performance of our
algorithm and validate the results on real systems.

The rest of this paper is organized as follows. Section
II formulates the scheduling problem. Section III presents
the single-core offline algorithm and its optimality proof, as
well as a single-core online algorithm. Section IV presents
our main algorithm for multicore systems, followed by its
performance evaluation in Section V. Section VI discusses

some related work, and Section VII concludes the paper.

II. PROBLEM FORMULATION

A. Best-Effort Interactive Services

We consider the following model for best-effort interactive
services [15]. There is a set J = {J1, J2, · · · , Jn} of
n interactive requests or jobs, and each job Jj ∈ J is
characterized by a release time rj , a deadline dj , and a service
demand wj (the required number of CPU cycles). Each job
can only be processed between its release time and deadline.
We assume that the deadlines of the jobs are agreeable, that
is, a job with later release time has a later deadline. This is
true for many applications such as search engines and video-
on-demand servers, where jobs usually have similar response
time requirements.

Another important property of best-effort interactive ser-
vices is the support of partial evaluation. Let pj denote the
processed volume (the number of processed cycles) job Jj
receives during [rj , dj], and it need not equal to its full service
demand, that is, partial execution is allowed with pj ≤ wj .
In a schedule, if pj = wj , we say that job Jj is satisfied.
Otherwise, the job is said to be deprived. A quality function
f : R → R maps the processed volume of a job to a quality
value gained by (partially) executing the job. We assume that
the quality function f is monotonically increasing and strictly
concave. For simplicity of analysis, we also assume that the
same function f applies to all jobs in J . Such concave quality
functions are common due to the effect of diminishing returns;
many best-effort interactive services such as search engines
and video-on-demand servers exhibit such properties [15].
The total quality gained by executing a set J of jobs is then
given by Q =

∑
Jj∈J f(pj).

B. Multicore Server

We consider a multicore server supporting core-level DVFS.
A server is composed of a set {M1,M2, · · · ,Mm} of m
cores, and each core supports independent DVFS and can
have a different speed from other cores. The total power
consumption of a core consists of both dynamic power and
static power, i.e., P = Pdynamic+Pstatic. The dynamic power
is usually a convex function of the core’s speed [25], and
we employ the model Pdynamic = a × sβ , where a > 0 is
the scaling factor and β > 1 is the power parameter. The
static power Pstatic = b is a non-negligible constant with
b > 0. In this paper we do not allow an individual core to
shut down when the server is running, so the static power will
then become a common offset to all scheduling algorithms.
Therefore, except when validating the results using a real
system in Section V-G, we ignore static power in the rest
of this paper and only consider the effect of dynamic power
for comparing different scheduling algorithms.

For the dynamic power, the server has a total budget H
which can be distributed arbitrarily among the cores. Let Pi(t)
denote the power consumption of core Mi at time t. The total
power P (t) of the system, which is given by the sum of power
of all cores at time t, should be bounded by the power budget
H , i.e., P (t) =

∑m
i=1 Pi(t) ≤ H . The energy consumption E

for scheduling a set J of jobs is the total power consumed

from the release time of the first job to the deadline of the last
job, i.e., E =

∫ dn

r1
P (t)dt. Note that the energy above refers to

the one contributed by the dynamic power only while the static
energy consumption in interval [r1, dn] will be a constant for
all scheduling algorithms in our model.

To reduce context-switching overhead, we consider non-
migratory scheduling, that is, a job can be executed by any
core in the server; but once started, it cannot be migrated to a
different core. The total processed volume of a job is decided
by the processing time the job receives as well as the speed of
the core executing the job. For job Jj , let sj(t) represent the
speed of the core that is processing the job at time t. If job Jj
is not being processed at time t, we have sj(t) = 0. The total
processed volume of job Jj is given by pj =

∫ dj

rj
sj(t)dt.

C. Performance Metric and Scheduling Model

To address both quality and energy concerns, we introduce
a composite performance metric – ⟨quality, energy⟩ – as
our scheduling objective. As interactive service providers, the
top priority is to offer high quality of service to improve
user experiences. With a quality guarantee, they also want
to make the system more energy efficient. The composite
metric ⟨quality, energy⟩ captures precisely this objective by
first ranking the schedules based on the total quality, and
then for those under the same quality chooses the one that
minimizes the total energy consumption. In other words, a
lexicographic order is imposed on the ⟨quality, energy⟩ pair
when comparing different schedules. An optimal solution with
respect to this performance metric should produce the highest
total quality Q among all valid schedules, and it should also
consume the minimum amount of energy E among those
schedules that maximize the total quality.

In this paper, we consider both offline and online scheduling
for the single-core scenario. An offline model assumes that a
scheduler knows complete information about all jobs includ-
ing future arrivals. Although not practical in reality, it inspires
the design of our online algorithms for both a single core
and multicore systems. In the online model, a scheduler uses
only the information of arrived jobs including their service
demands, release times and deadlines without requiring any
information of future jobs.

III. ALGORITHMS FOR SINGLE-CORE SYSTEM

This section discusses scheduling for a single-core system.
We first introduce an offline algorithm and prove its optimality
with respect to ⟨quality, energy⟩. Inspired by this optimal
offline algorithm, we then present a myopic optimal online al-
gorithm, which turns out to be an important component when
designing our multicore scheduling algorithm in Section IV.

A. Optimal Offline Algorithm

We present an offline algorithm, called QE-OPT, and
prove that it produces an optimal schedule with respect to
⟨quality, energy⟩ under a given power budget.

Preliminaries: QE-OPT generates an optimal schedule in
two steps: The first step determines the processing volume
for each job in the job set to maximize the total quality. The
second step determines the speed at which each job will be
processed to minimize the overall energy.

The design of the two steps is inspired by two algo-
rithms, namely, Energy-OPT [25] and Quality-OPT [15],
respectively.1 Each algorithm gives an optimal schedule for
a simpler metric. QE-OPT is an amalgamation of these two
algorithms, and we will show that it is optimal with respect
to ⟨quality, energy⟩. We first give an overview of these two
algorithms to help us construct and understand QE-OPT.

Energy-OPT uses DVFS to schedule jobs on a single core
to minimize the energy consumption without power budget
constraint. Since there is no power limit, all jobs can be
satisfied and there is no need to consider partial evaluation.
Two key concepts are defined for Energy-OPT:

• Interval intensity: The intensity of an interval I = [z, z′]
is defined as

g(I) =

∑
wi

z′ − z
,

where the sum is taken over all jobs in JI =
{Jj |[rj , dj] ⊆ [z, z′]}. It is also called the average speed
of interval I .

• Critical interval: We call I∗ a critical interval if I∗

maximizes g(I) among all intervals in J . The set JI∗ of
jobs falling in I∗ is the critical group of J . The average
speed of a critical interval is called critical speed.

Since Energy-OPT attempts to satisfy all jobs in J , its main
intuition is to find the most intensive interval, or the critical
interval I∗, to schedule first. Due to the convex nature of
the power function, the most energy-efficient speed to run
JI∗ would be g(I∗) because the core cannot run any slower
to finish all the jobs in I∗ before their deadlines. After
deciding the first critical interval and assigning the schedule
for this critical group, Energy-OPT removes the interval and
the critical group from J , adjusts the release time and the
deadline for other jobs that partially overlap with this interval,
and then repeats the process of finding the next critical interval
for the remaining jobs recursively.

Quality-OPT, on the other hand, schedules jobs on a single
core with a fixed speed to maximize the total service quality.
Since the core’s speed cannot be changed and the jobs need
to be processed before their deadlines, some jobs can only
be partially evaluated when the workload is high. As with
Energy-OPT, two important concepts are defined for Quality-
OPT:

• Deprived mean (d-mean) of an interval: The d-mean p̃(I)
of an interval I = [z, z′] is defined as

p̃(I) =
z′ − z −

∑
Jj∈S(I) wj

|D(I)|
,

where S(I) and D(I) denote the set of satisfied jobs and
the set of deprived jobs in interval I , respectively. The
type of each job is determined by comparing its service
demand with a temporary value of d-mean in an iterative
fashion (See [15] for details). Note that if all jobs in an
interval I can be satisfied, i.e., |D(I)| = 0, its d-mean
is simply defined as p̃(I) =∞.

1Energy-OPT is also referred to as the YDS algorithm in the literature [4],
and Quality-OPT is also called Tians-OPT in [15].

• Busiest deprived interval: An interval I∗ is called the
busiest deprived interval if I∗ minimizes p̃(I∗) among
all intervals of job set J .

Since the quality functions of all jobs are concave and
identical, the intuition behind Quality-OPT is that it will
achieve the highest quality for the jobs in I∗ by satisfying
all jobs in S(I∗) and allocating an equal processing volume
(or d-mean) to each deprived job. As with Energy-OPT, after
finding the first busiest deprived interval and assigning the
schedule for this group of jobs, Quality-OPT removes this
interval and scheduled jobs, adjusts the release time and the
deadline for other jobs that partially overlap with this interval,
and recursively schedules the remaining jobs by searching for
the next busiest deprived interval or until all jobs are satisfied
with the fixed core speed.

Algorithm QE-OPT: QE-OPT addresses a more complex
problem by combining the benefits of Quality-OPT and
Energy-OPT, which are responsible for maximizing quality
and minimizing energy, respectively. In particular, QE-OPT
first runs Quality-OPT with the maximum core speed, i.e., full
power budget, to determine the processing volume for each
job. This step guarantees to deliver the maximum quality. The
minimum energy is then ensured by running Energy-OPT on
top of the schedule produced by Quality-OPT. The following
shows the two steps of QE-OPT in detail:

1) Apply Quality-OPT on job set J using the maximum
core speed to determine the processing volume pj for
each job Jj ∈ J . Then, for each job, adjust its service
demand to be its processed volume, i.e., wj ← pj ,
without changing the release time and deadline. Call
the new job set J ′.

2) Apply Energy-OPT on the new job set J ′ with the
adjusted service demands to determine the speed sj to
execute each job Jj ∈ J ′ on the core.

Since both Quality-OPT and Energy-OPT produce non-
preemptive schedules when the deadlines of the jobs are
agreeable, the final schedule computed by QE-OPT also
executes each job without preemption in the order of their
arrivals. A straightforward implementation of Energy-OPT
takes O(n3) time, and the complexity of Quality-OPT is
O(n4), where n is the total number of jobs. Thus, a straight-
forward implementation of QE-OPT takes O(n4) time. In
Section III-B, we show that when jobs arrive in an online
manner, a simpler implementation of QE-OPT is possible with
lower complexity.

Optimality Analysis: We show that QE-OPT produces an
optimal schedule with respect to the metric ⟨quality, energy⟩.
Before proving its optimality, we first show that the schedule
produced by QE-OPT is always feasible.

Theorem 1: QE-OPT produces a feasible schedule for any
job set on a single-core system.

Proof: We prove the feasibility by showing that any
critical speed used by Energy-OPT for job set J ′ is not
more than the maximum core speed, denoted by s∗. Since the
critical speed is non-increasing over critical intervals and the
speed within a critical interval does not change [25], we need
only consider the first critical interval I∗ found by Energy-
OPT. Suppose the speed of this interval is larger than the

maximum core speed, i.e., g(I∗) > s∗. Consider the set of
jobs in I∗. While both Quality-OPT with fixed speed s∗ and
Energy-OPT with variable speed are able to complete every
job in I∗, Energy-OPT runs at speed g(I∗) thus consumes
more energy than Quality-OPT. This contradicts the fact that
Energy-OPT produces a minimum energy schedule for any
critical job group.

Theorem 2: QE-OPT produces an optimal schedule with
respect to ⟨quality, energy⟩ on a single-core system.

Proof: Since Quality-OPT computes the maximum qual-
ity on a core with fixed speed, and the first step of QE-
OPT uses the fastest core speed, QE-OPT gives the maximum
possible quality for the job set. Moreover, since the quality
function is strictly concave, according to convex optimiza-
tion [6], the optimal quality is uniquely determined by the
assigned job processing volumes calculated by Quality-OPT.
From Theorem 1, we know that the same optimal quality is
preserved by Energy-OPT without violating the power budget.
Since Energy-OPT gives a minimum energy schedule for any
critical job group, the schedule produced by QE-OPT also
minimizes the energy among those with maximum quality.

B. Myopic Optimal Online Algorithm

While QE-OPT gives an optimal solution to our scheduling
problem, it requires complete information of the jobs includ-
ing future arrivals. This section presents a practical online
algorithm, called Online-QE, based on the basic principles of
QE-OPT but with lower complexity.

Online-QE simply computes the optimal schedule based
on the current knowledge of the jobs in the system, including
jobs that have arrived so far and whose deadlines have not
yet expired. The algorithm is invoked in an online manner
whenever some triggering events occur (see Section IV-E).
Upon each invocation, Online-QE recomputes a new schedule
using QE-OPT. Apparently, the overall schedule is not glob-
ally optimal for the whole set of jobs; Online-QE guarantees
a myopic optimal solution for the set of available jobs at each
invocation.

There is, however, one issue we need to address to even
guarantee myopic optimal schedule on the set of ready jobs.
That is, a new invocation can be requested when the currently
running job is not yet completed according to the previous
schedule. We address this issue by readjusting the release time
of the job to ensure correct calculations of both Quality-OPT
and Energy-OPT. Let t denote the current time when Online-
QE is invoked. Let Jt denote the set of ready jobs at time t,
and let J1 ∈ Jt denote the job that is currently running, and
suppose that the processed volume of J1 so far is p̄1. Before
invoking the algorithm, we first adjust the release time of J1
to be r1 = t− p̄1/s

∗, where s∗ denotes maximum core speed
under the given power budget, and adjust the release time of
any other job Jj ∈ Jt to be rj = t. Keeping all the other
attributes of the jobs unchanged, call the new job set with
adjusted release times J ′

t . Online-QE performs two steps:
1) Apply Quality-OPT on J ′

t using the maximum core
speed to determine the processing volume pj for each
job Jj ∈ J ′

t . Then, for the currently running job J1,
readjust its release time to be the current time t, and

adjust its service demand to be w1 = p1−p̄1. If w1 ≤ 0,
remove J1 from J ′

t . For any other job Jj ∈ J ′
t , adjust

its service demand to be wj = pj . Call the new job set
J ′′
t .

2) Run Energy-OPT on the new job set J ′′
t to determine

the speed sj to execute each job Jj ∈ J ′′
t on the core

from current time t onwards.
Following the analysis of QE-OPT, it is not hard to see

that Online-QE gives a feasible and myopic optimal schedule
for the set of ready jobs at each invocation. In particular, the
adjustments of the jobs’ release time before both steps of
the algorithm ensure the correct calculations of the optimal
processing volume and the speed for each job, assuming that
there is no future arrivals and the computed schedule is only
applied to the jobs from the current time onwards.

Moreover, the computational complexity of Online-QE can
be reduced to O(n2) at each invocation, where n denotes the
total number of ready jobs when the algorithm is invoked.
This is because all jobs except the currently running one can
now be considered as having the same release time. Therefore,
both Energy-OPT and Quality-OPT need only consider the
O(n) intervals instead of all O(n2) possible intervals.

Finally, the schedule produced by Online-QE for the entire
job set is also non-preemptive and it works even when the
power budget of the core can change at each invocation. On
a multicore system, such scenario can happen with dynamic
power distribution across cores. This allows our single-core
algorithm to be employed as an independent procedure in
scheduling multicore systems as described in Section IV-D.

IV. ALGORITHM FOR MULTICORE SYSTEM

This section discusses scheduling on multicore systems
with a dynamic power budget that can be distributed arbi-
trarily among the cores. The offline version of this problem
is NP-hard, since a simpler problem where the objective is
to minimize the energy consumption without a power budget
has been shown to be NP-hard [1]. In this section, we focus
on the online version of the problem by presenting a heuristic
algorithm, called DES (Dynamic Equal Sharing). We evaluate
the performance of DES in Section V.

A. Overview of DES

Two key aspects of our multicore scheduling algorithm are
to distribute the ready jobs onto the cores and to distribute
the power budget among the cores. These are two challenging
tasks because we need to consider their impacts on both qual-
ity and energy. To achieve good job and power distributions,
DES applies the principle of equal sharing, which turns out
to be an effective strategy to address both quality and energy
concerns. By doing so, the algorithm effectively divides the
multicore scheduling problem into many independent single-
core problems, and the sub-problem for each individual core
can then be solved by using the Online-QE algorithm pre-
sented in Section III-B.

B. Job Distribution Policy

To maximize quality, it is desirable to distribute the jobs
evenly among the cores so as to balance the workload on each
core. This will minimize job contention so that more jobs

can be potentially satisfied and more work can be completed,
which directly contributes towards higher total quality. To
minimize energy with a convex power function, we want to
run each job as slowly as possible while meeting its deadline.
Apparently, having less job contention on each core enables
us to achieve this goal. Thus, even distribution of the jobs
also helps reduce the overall energy consumption.

With this intuition, we employ a simple and efficient
“C-RR” (Cumulative Round Robin) policy to equally share
the ready jobs among the cores at each invocation of the
algorithm. The policy is cumulative in the sense that it starts
to assign the ready jobs from the core where the last job
distribution cycle stops. Compared with non-cumulative RR,
which distributes jobs starting from the same core at each
invocation, “C-RR” can lead to much balanced job distribution
in the long run. Since our algorithm is non-migrating, once
a job is distributed to a core, it will stay on the core till
completion or when it is discarded due to partial evaluation.

C. Power Distribution Policy
After job distribution, each core can produce its own

schedule by using the Online-QE algorithm. However, the
total requested power from all cores may exceed the total
power budget of the system. In such case, we need an effective
policy to distribute the power.

Since the power function is convex, the sum of speeds of
all the cores is maximized when the power is equally shared
among them. This will maximize the total amount of work
that can be done in a time unit, thus potentially improves the
chance to complete more work and achieve higher quality.
Therefore, the key insight for power distribution is, once
again, equal sharing. Due to workload variations, however,
a core may need less power than the designated equal share.
In this case, it will be more energy-efficient to provide only
what the core demands and assign the remaining power budget
to other cores with higher power demands. Based on this
intuition, we propose a dynamic power distribution policy,
called “WF” (Water-Filling).

As the name suggests, “WF” policy is analogous to filling
water into containers of different heights. Here, the total
amount of water represents the total power budget, and the
height of a container represents the requested power of the
corresponding core. Imagine that the bottom of the containers
are connected so that water can flow freely among them.
“WF” policy is equivalent to pouring water from the top of
the containers until all are fully filled or there is no more
water. Figure 2 illustrates this process on a 4-core system.
In this example, core 4 requires less than the equal share so
that it gets what it demands. Cores 1, 2 and 3, having higher
demands, equally share the remaining power.

More formally, let hi denote the requested power from core
Mi and let ai denote the assigned power for core Mi. Initially,
set ai = 0 for all 1 ≤ i ≤ m. Given a total power budget H ,
the “WF” policy distributes the power to the cores iteratively
as follows:

1) Suppose there are m′ unsatisfied cores whose request-
ed power remains nonzero. If m′ = 0, the policy
terminates. Otherwise, let hmin denote the minimum
requested power among these cores.

Power
“Water Filling” from here

4321 Cores

Figure 2. “WF” policy for distributing power budget among cores.

2) If hmin ·m′ ≥ H , then evenly distribute the remaining
power budget to these cores, i.e., ai = ai +H/m′, and
terminate. Otherwise, add hmin power to each of these
cores, i.e., ai = ai + hmin. Then, update the remaining
power budget H = H − hmin ·m′ and the request of
each core hi = hi − hmin. Go back to Step 1).

D. DES Algorithm

We now describe our DES (Dynamic Equal Sharing) algo-
rithm. The basic idea is to use the job and the power distribu-
tion policies to divide one global multicore scheduling prob-
lem into several local single-core problems. Then, we employ
the single-core online algorithm presented in Section III-B on
each individual core. In a sense, DES can be considered as
DES = C-RR + WF + Online-QE, which presents a package
of solutions, and each component addresses a different aspect
of a complex scheduling problem.

DES is invoked to recompute the schedule whenever some
triggering events occur (See Section IV-E). The input is a set
of ready jobs that have arrived since the last invocation, and
the output is a schedule that defines when a job runs on which
core and at what speed. Suppose DES is invoked at time t,
and the following shows the scheduling steps:

1) Ready-job-distribution: Employ the “C-RR” policy to
distribute the ready jobs onto the cores. Adjust the
release time of all jobs to the current time t.

2) Budget-free-independent-core-scheduling: Assuming
unlimited power, use Energy-OPT to calculate a
schedule on each core. Let P ′

i (t) denote the power
required at time t in this schedule for core Mi. Since
all jobs are now released at current time t, according
to Energy-OPT, the calculated power on each core
decreases monotonically over time, i.e., P ′

i (t
′) ≤ P ′

i (t)
for all t′ ≥ t. If the total power at time t can meet
the budget, i.e., P ′(t) =

∑m
i=1 P

′
i (t) ≤ H , we can

complete all jobs under the power budget and the
algorithm terminates; otherwise, proceed to Step 3).

3) Dynamic-power-distribution: Employ the “WF” policy
to distribute the total power budget H among the cores
based on the required power P ′

i (t) of each core Mi at
time t. Let Pi(t) denote the distributed power to Mi.

4) Budget-bounded-independent-core-scheduling: For each
core Mi, employ the single-core Online-QE algorithm
with power budget Pi(t) to calculate a schedule.

Steps (1) and (3) distribute the jobs and the power budget to
the cores respectively, and Steps (2) and (4) schedule the jobs

on each individual core. In particular, Step (2) first calculates
an optimistic schedule for each core without assuming a
power budget. If such a schedule does not violate the power
constraint, all jobs can be satisfied and we are done; otherwise,
Step (3) resolves the power competition among the cores and
Step (4) produces a feasible schedule that meets the power
budget with some partially evaluated jobs.

E. Triggering Events for Grouped Scheduling

Instead of using Immediate Scheduling (IS), which recom-
putes a new schedule whenever a job arrives, we employ
Grouped Scheduling (GS) for DES. With GS, arriving jobs
are first stored in a waiting queue, and they are only as-
signed to cores when certain scheduling events are triggered.
GS reduces scheduling overhead; it also helps to improve
the quality of scheduling decision by considering multiple
requests together. The following shows the three types of
triggering events we use in this paper:

• Quantum trigger: The scheduler is triggered periodically
after each scheduling quantum.

• Idle-core trigger: An idle core triggers the scheduler to
start assigning more jobs.

• Counter trigger: The scheduler is triggered when certain
number of jobs have been accumulated in the queue.

V. PERFORMANCE EVALUATION

We evaluate the performance of our DES algorithm on dif-
ferent architectures and compare it with different algorithms.
First, the simulation results show that DES can take advantage
of both the modern hardware architecture and the feature of
the best-effort applications to achieve high quality and low
energy. Second, even for the same architecture and appli-
cation, DES outperforms other widely accepted scheduling
algorithms. The sensitivity study then shows how the quality
function, power budget and number of cores can affect the
performance of our algorithm. Finally, validation on a real
system shows the accuracy of the simulations, thus suggesting
the reliability of our results.

A. Evaluation Methodology

Our DES algorithm targets at best-effort interactive services
on multicore architectures that support fine-grained core-level
DVFS. In our evaluation, we simulate such an architecture
and use the web search engine as an example to model
interactive services. We evaluate the performance of DES from
the following five aspects: (1) Does it take advantage of the
core-level DVFS to achieve high quality with low energy?
(2) Given the same architecture, does DES take advantage
of the partial evaluation feature of best-effort applications
(e.g. web search) to achieve higher quality? (3) Based on the
same architecture and application, does DES improve quality
and save energy compared with other scheduling policies?
(4) How is the performance of DES affected by different
quality functions, amount of power budget, number of cores
and discrete speed scaling in the system? (5) How reliable
are the simulation results when validated on real systems
with realistic power models? We elaborate our evaluation
methodologies of the five sets of experiments as follows.

Taking Advantage of Modern Multicore Architectures:
We implement DES on three processor architectures with
different levels of DVFS support. The aim is to evaluate both
quality and energy of DES on these architectures, and to show
its advantage on the core-level DVFS systems.

• No-DVFS: This architecture cannot support any DVFS to
achieve energy saving. To implement DES on No-DVFS
architecture, we ignore Steps (2) and (3) of the algorithm
as well as the second step of the single-core Online-QE
algorithm. In other words, the algorithm simply assigns
the ready jobs to cores using the “C-RR” policy, and
employs Quality-OPT to optimize quality on each core.

• S-DVFS (System-level DVFS): This architecture provides
limited DVFS support, where all cores can change their
speeds all must share the same speed at any time. To
implement DES on S-DVFS, we set the power require-
ments of all cores calculated in Step (2) of DES to the
maximum power requested by any core, so Step (3) will
assign the same power to each core. If the total power
requirement is less than the power budget, unlike No-
DVFS, S-DVFS is able to save energy by running all
cores at a slower speed. The second step of the single-
core Online-QE algorithm is also ignored.

• C-DVFS (Core-level DVFS): This is the most flexible
architecture that allows each individual core of the sys-
tem to run at different speed at any time. It can provide
fine-grained DVFS support and our DES algorithm is
designed for this architecture.

Taking Advantage of Best-Effort Interactive Services:
Web search is a good example of best-effort interactive
service, where we can obtain some quality even if a job is
only partially executed by its deadline. For a job that cannot
be partially evaluated, however, we will not get any quality if
it is not executed to completion. To show how DES can take
advantage of this feature, we will vary the proportion of the
jobs with best-effort support to compare the different qualities
obtained with the same power budget.

Comparing with Different Scheduling Algorithms: Under
the same hardware architecture and application models, we
compare the performance of our DES algorithm with three
widely used scheduling policies, namely FCFS (First-Come,
First-served)2, LJF (Longest Job First) and SJF (Shortest Job
First). All three algorithms are triggered whenever a core
becomes idle, and a job in the ready queue (with earliest
release time in FCFS, with largest service demand in LJF,
and with smallest service demand in SJF) will be assigned to
the core. The job will be executed with the slowest possible
speed to finish it before deadline to save energy. If the power
supplied to the core is not enough to complete the job, it will
be executed with the highest available speed till its deadline.
The default power distribution policy for all three algorithms
is static equal sharing, i.e., all the cores will be given the same
power budget, similarly to the situation under the S-DVFS
architecture. We also compare DES with these algorithms
when they are augmented with “WF” power distribution.

2FCFS is equivalent to EDF (Earliest Deadline First) policy, since we
assumed that the jobs’ deadlines are agreeable.

Sensitivity Study under Different Scenarios: We study the
sensitivity of DES under the following scheduling scenarios:

• Effect of quality function: We show how quality functions
with different concavity can affect the total achieved
quality with the same consumed energy.

• Effect of power budget: We show the tradeoff between
quality and energy and its implications when different
power budgets are used, especially under heavy load.

• Effect of number of cores: We show how different
numbers of cores can affect quality and energy, and the
optimal number of cores to use for the best performance.

• Effect of discrete speed scaling: We show how to support
DES under discrete speed scaling model, and study its
impact on quality and energy.

In the last sensitivity study, we modify the power distribu-
tion policy in order to support discrete speed scaling. After
performing the “WF” power distribution and starting from the
core with the lowest assigned power, we rectify the speed to a
discrete value closest to but not less than the continuous one,
subject to the total power budget. If the power budget cannot
support such a discrete speed, we will select the next lower
discrete speed instead.

Validation on Real System: We validate the simulation
results on a real system to evaluate the accuracy of the energy
consumption. In this study, a scheduling trace of the DES
algorithm under discrete speed scaling is reproduced on a
8-node multicore cluster. To match our simulation settings
with the actual system, we also adopt a more practical power
consumption model including both static and dynamic power.
We use regression method to obtain a power function based
on a set of measured ⟨speed, power⟩ pairs on the real system.
Under this practical power function, we compare the result of
our simulations with the one measured in the system.

B. Simulation Setup

We model a web search server with m = 16 cores
and model the web search requests with partial evaluation
support as follows. The arrival of the requests follows the
Poisson process and the deadline of each request is defined
to be 150ms after its arrival (later responses may affect user
experience). The service demand of a request follows bounded
Pareto distribution with three parameters α, xmin and xmax,
which represent the Pareto index, the lower bound and the
upper bound on the service demand (for simplicity, we use
how many processing units instead of how many instructions
to represent the jobs’ demands), respectively. We define the
processing capability of a core executing at 1Ghz in one
second to be 1000 processing unit. Our simulation results
show consistency with different parameter values, hence we
only present the results with α = 3, xmin = 130 processing
units and xmax = 1000 processing units (the mean service
demand of a request can then be calculated to be 192
processing units).

We use the following family of quality functions:

q(x) =
1− e−cx

1− e−1000c
, (1)

where c is a multiplier constant determining the concavity of
the function. Figure 7(a) visualizes the quality functions with

different values of c. We use the default value of c = 0.003
except in Section V-F where we perform sensitivity study on
the impact of different quality functions. The total quality
presented in our simulation results are normalized against the
maximum possible quality that can be obtained.

We set a total dynamic power budget of H = 320W and
apply the dynamic power function Pdynamic = a× sβ , where
a = 5 and β = 2 are constants and s is the core speed (in
terms of Ghz). So the average speed for each core is

√
20/5 =

2Ghz, and it can finish 2000 processing units in one second.
In our simulation, we do not consider static power since it
serves as a common offset to all scheduling algorithms.

Under this setting, we quantitatively define the workload to
be light when the job arrival rate is less than 120 requests per
second, which means that on average the requests consume
72% of the server’s total processing capacity with the given
power budget and number of cores. We also define heavy load
to be when the job arrival rate is larger than 180 requests per
second, which already exceeds the total processing capacity
of the server in the ideal case.

For the triggering events, we use all three triggers described
in Section IV-E and set the quantum trigger to be 500ms and
use a counter trigger of 8 requests. The simulation time for
all the experiments is 1800 seconds.

C. Performance of DES on Different Architectures
We evaluate DES on three architectures: No-DVFS, S-

DVFS, and C-DVFS. The results show that C-DVFS produces
the highest quality and consumes the lowest energy, which
demonstrates the benefits of our “WF” power distribution
policy and the effectiveness of DES on exploiting modern
architecture with fine-grained DVFS support.

Figure 3(a) shows that C-DVFS always achieves the best
quality among the three architectures (the qualities of S-DVFS
and No-DVFS are very close to each other). Under light load,
C-DVFS is much better than S-DVFS and No-DVFS. In this
case, C-DVFS can achieve nearly full quality (by processing
each request to near completion) but S-DVFS and No-DVFS
will lose about 2% of the quality (some requests will be
discarded before completing the search), which is considered
significant in large-scale search engines. The reason is that
although DES tries to distribute the jobs evenly on each core,
it cannot completely eliminate the load imbalance because
of the variance in the jobs’ service demand. Both No-DVFS
and S-DVFS lack architectural support to dynamically allocate
enough power for those cores experiencing temporal high
loads. With C-DVFS, DES can now exploit the hardware
flexibility by allowing heavily loaded cores to have more
power than lightly loaded ones in order to alleviate the load
imbalance and hence return more search results.

With increasing loads, the quality will start to decrease for
all architectures, but C-DVFS’s quality degrades much slower
than those of S-DVFS and No-DVFS. Under heavy load, the
qualities of the three architectures become similar because all
cores will be heavily loaded, and the power budget is not
sufficient to support the cores to achieve more quality. In this
case, the best strategy is to give each core the same power,
diminishing the difference between static and dynamic power
distribution.

100 150 200
0.9

0.92

0.94

0.96

0.98

1

 Arrival Rate

Q
ua

lit
y

C−DVFS
S−DVFS
No−DVFS

(a)

100 150 200 250

2

3

4

5

6x 10
5

Arrival Rate

E
ne

rg
y

C−DVFS
S−DVFS
No−DVFS

(b)

Figure 3. Quality and energy of DES on different architectures.

Figure 3(b) shows that DES also takes advantage of the C-
DVFS architecture to save energy. Because No-DVFS does not
support any DVFS, it consumes the maximum energy given
by the budget. S-DVFS architecture can save energy when
the peak power of the cores is less than the budget. C-DVFS
achieves further saving by reducing the speed of an individual
core according to its own load. Under light load, both C-
DVFS and S-DVFS can save energy but C-DVFS saves more.
In particular, S-DVFS saves at least 35.6% of the dynamic
energy compared with No-DVFS, and C-DVFS further saves
about 6.8% on top of S-DVFS.3 Again under heavy loads,
the entire dynamic power budget is used to execute the jobs
regardless of the architectures, and they consume the same
amount of energy.

D. Performance of DES with Different Job Execution Models

We show that DES indeed benefits from jobs that have
partial evaluation support. In this set of simulations, we vary
the proportion of the jobs that can be partially evaluated.
Three different scenarios are presented under the same load
conditions. One is that all the jobs cannot be partially ex-
ecuted; the second is that 50% of the jobs can be partially
executed and the last scenario is that all jobs can be partially
executed. For a job that cannot be partially evaluated, the
algorithm first checks if it can be completed in full under the
current schedule. If not, the algorithm discards this job and
computes a new schedule based on the remaining jobs.

Figure 4 shows that the more jobs that can support partial
evaluation, the more quality we will get under the same load,
and the more energy will be consumed because more work
needs be done in order to achieve higher quality. It clearly
shows that our DES algorithm can take advantage of the
partial evaluation feature of the jobs and can explore the power
budget efficiently to improve quality.

As shown in Figure 4(a), under light load, all three cases
can achieve almost full quality with low energy consumption
because the power budget is sufficient to finish all the jobs.
With increasing workload, their qualities all decrease, but
the case with 100% partial evaluatable jobs decreases much
slower. The horizonal dotted line in Figure 4(a) shows that to
achieve the same normalized quality of 0.9, the 100% case
can support a workload with an arrival rate as high as 194
requests per second, while the 50% case can support an arrival
rate of 168 (a reduction of about 13.4% in workload), and the

3The total energy saving also depends on the proportion of static power.
For example, if static power takes up 60% of the total power, then C-DVFS
saves about (35.6% + 6.8%)× 40% = 16.96% of the total energy.

100 150 200
0.85

0.9

0.95

1

Arrival Rate

Q
ua

lit
y

0%
50%
100%

(a)

100 150 200 250

3

4

5

6x 10
5

Arrival Rate

E
ne

rg
y

0%
50%
100%

(b)

Figure 4. Quality and energy of DES for jobs with different proportions of
partial evaluation support.

0% case can only support an arrival rate of 158 (a reduction
of about 18.5%). On the other hand, the vertical dotted line
shows that under the same workload with an arrival rate of
150, the 100% case achieves a normalized quality as high as
0.99, the 50% case achieves a quality of 0.95, and the 0%
case only achieves a quality of 0.93.

E. Comparing DES with Different Scheduling Algorithms

We have shown that our DES algorithm can take advantage
of the core-level DVFS architecture and the features of best-
effort applications to achieve high quality. In this subsection
we will show that under the same hardware architecture and
application model, DES can take advantage of its power
distribution policy to achieve better performance than three
widely accepted scheduling algorithms: FCFS, LJF, and SJF.

In the first experiment, we employ the default static power
sharing policy for the other three algorithms. Figure 5(a)
shows that the quality of DES is always better than the other
algorithms. Even under light load, the qualities of FCFS, LJF
and SJF are about 2% less than DES, which is significant
for large-scale interactive services. This is because DES has
a global view in job distribution and speed scaling, and at
the same time it is supported by the dynamic “WF” power
distribution, which provides the flexibility to optimize for
more jobs in one schedule. The other algorithms, however,
only optimize for one job in one schedule and use static power
distribution. In particular, the “WF” power distribution is ef-
fective because of the variance in jobs’ service demands even
under light load. In such case, “WF” borrows some excessive
power budget from the lightly-loaded cores to support the
heavily-loaded ones, and therefore achieves better resource
utilization, which eventually translates to higher quality.

Among the three algorithms, the qualities of LJF and SJF
are the worst, because they disturb the arrival/deadline order
of the jobs. In either case, jobs with earlier deadline may
be discarded in favor of jobs with later deadline, while they
could have been co-scheduled to achieve better quality. FCFS
achieves relatively higher quality since it respects the deadline
order of the jobs so it can finish more jobs.

For the same quality, say 0.9, DES can support an arrival
rate as high as 196, while FCFS, LJF and SJF support an
arrival rate of 164, 132 and 116 respectively. It means that
the throughput of DES is about 20%, 48% and 69% higher
than those of FCFS, LJF and SJF.

Figure 5(b) shows that, under light load, DES achieves
significantly higher quality with little extra energy consump-

100 150 200
0.9

0.92

0.94

0.96

0.98

1

 Arrival Rate

Q
ua

lit
y

DES
FCFS
LJF
SJF

(a)

100 150 200 250
1

2

3

4

5

6x 10
5

Arrival Rate

E
ne

rg
y

DES
FCFS
LJF
SJF

(b)

Figure 5. Quality and energy comparison for different scheduling algorithms.

100 150 200
0.9

0.92

0.94

0.96

0.98

1

 Arrival Rate

Q
ua

lit
y

DES
FCFS+WF
LJF+WF
SJF+WF

(a)

100 150 200 250

2

3

4

5

6x 10
5

Arrival Rate

E
ne

rg
y

DES
FCFS+WF
LJF+WF
SJF+WF

(b)

Figure 6. Quality and energy comparison for different scheduling algorithms
with “WF” power distribution.

tion. When the load increases, the energy consumption of
all algorithms (except SJF) will start to increase, and DES
incurs more energy in order to complete more work to sustain
its quality. The energy of SJF reduces with increasing load
because it will discard more long jobs with early deadlines.
In this case, the short jobs will be executed with very slow
speed for energy efficiency, but the long jobs will not have any
chance to be executed before they expire. This also explains
why SJF has the worst quality among all algorithms.

In another experiment, we enhance the three comparing
algorithms with “WF” power distribution. Figure 6 shows
that they can all benefit from this dynamic policy. Specifi-
cally, under light load, all the “WF”-enhanced algorithms can
achieve nearly full quality, which is a significant improvement
compared to the results in Figure 5(a). When the load becomes
high, DES still maintains its quality advantage over the other
algorithms, due to its global view in job distribution and speed
scaling. In particular, DES schedules all jobs in the ready
queue at each invocation while FCFS, LJF and SJF select
only one job to schedule, so they cannot efficiently make use
of the power budget to achieve high quality in total.

F. Sensitivity Study

We perform some sensitivity study on our DES algorithm
in this subsection. The results show: (1) With the same
power budget, we can achieve more quality if the applications
exhibit a more concave quality function; (2) For the same
target quality, more power budget can support higher load,
with increased energy consumption; (3) With the same power
budget, an optimal number of cores can be used to achieve
the best quality with the least energy under a specific load; (4)
Discrete speed scaling has little impact on the performance
of DES.

Effect of different quality functions: DES is designed for
best-effort interactive services with concave quality functions.

0 500 1000
0

0.2

0.4

0.6

0.8

1

 x

Q
ua

lit
y c=0.009

c=0.005
c=0.003
c=0.002
c=0.001
c=0.0005

(a)

100 150 200 250
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 Arrival Rate

Q
ua

lit
y

c = 0.009
c = 0.005
c = 0.003
c = 0.002
c = 0.001
c = 0.0005

(b)

Figure 7. Different quality functions and impacts on the quality of DES.

100 150 200 250
0

0.2

0.4

0.6

0.8

1

Arrival Rate

Q
ua

lit
y

budget = 80
budget = 160
budget = 320
budget = 480
budget = 640

(a)

100 150 200 250
0

2

4

6

8

10

12x 10
5

Arrival Rate

E
ne

rg
y

budget = 80
budget = 160
budget = 320
budget = 480
budget = 640

(b)

Figure 8. Quality and energy of DES with different power budgets.

The resulting quality is highly affected by the concavity of
the function. Figure 7(a) shows different quality functions by
choosing different values for the parameter c given in Eq. (1).
As can be seen, a larger c gives a more concave function, and
therefore gets more quality from (partially) executing the same
fraction of the job. Because of this, under the same schedule,
a larger c results in higher quality than a smaller c, as shown
in Figure 7(b). The energy consumption will not be affected
by the quality functions.

Effect of different power budgets: Figure 8 depicts the
impact of different power budgets on both quality and energy.
The results show: (1) When load is heavy, with more power
budget, DES is able to achieve higher quality under the same
load, or support higher load in order to sustain the same
quality; when load is light, however, high power budget is
not necessary. (2) The energy consumption will increase as the
load increases until the total power reaches the given budget.
From then on, a higher load will no longer affect the energy
while the quality will start to degrade.

Effect of different numbers of cores: Both quality and
energy will benefit from having more cores in the system.
Due to the convexity of the power function, a larger number
of cores will increase the total processing capability under the
same power budget. It also decreases the potential contention
of the jobs on each core so that a job can be executed
more slowly to save energy. Figure 9 shows the impact of
different numbers of cores on both quality and energy when
the arrival rate is 90 (Similar curves are observed for other
loads). We can see that a small number of cores only obtains
very limited quality and consumes a lot of energy. The effect
of both quality and energy improves as more cores are added
to the system. Such improvement reaches saturation when no
more concurrent jobs can be executed with additional cores.
In our experiment, 16 cores are sufficient to sustain high
quality with low energy. In practice, adding more cores will
change the hardware setting, which will lead to more static

0 2 4 6
0.5

0.6

0.7

0.8

0.9

1

Number of Cores=2x

Q
ua

lit
y

(a)

0 2 4 6
2

3

4

5

6x 10
5

Number of Cores=2x

E
ne

rg
y

(b)

Figure 9. Quality and energy of DES with different numbers of cores.

100 150 200

0.9

0.95

1

 Arrival Rate

Q
ua

lit
y

Continuous Speed
Discrete Speed

(a)

100 150 200 250

2

3

4

5

6x 10
5

Arrival Rate

E
ne

rg
y

Continuous Speed
Discrete Speed

(b)

Figure 10. Quality and energy with continuous and discrete speed scaling.

power consumption, so the effect of energy saving will be
compromised to some extent by the increased static energy.

Effect of discrete speed scaling: Figure 10 compares the
the quality and energy of DES under continuous and discrete
speed scaling. The discrete implementation loses some quality
because it is not able to use the ideal speed to complete as
much work as originally planned in the continuous case. But at
the same time, the energy consumption of the discrete version
is also less than that of the continuous one. Under light load,
the difference in quality is about 1% and the difference in
energy is less than 7.6%, which is relatively high. This is
because of the variance in service demands and the limit in a
core’s highest speed. For example, even when the total power
budget is sufficient, some long requests cannot be completed
due to the discrete speed limit of the cores, but they can
be completed under continuous speed scaling since the cores
can run in any speed. The differences in both quality and
energy become smaller as the arrival rate increases. Under
heavy load, the both of differences are reduced to less than
0.5% between the two implementations.

G. Validation on Real Systems

This last subsection validates the accuracy of our simulation
results, in particular the energy consumption, by comparing it
against the one measured in a real system. For this purpose,
we implement DES using discrete speed scaling and apply the
scheduling solutions from simulation on the real system for
energy measurement.

The system we use is a 8 nodes multicore cluster. Each node
has two Quad-Core AMD Opteron(tm) Processor 2380. Each
core’s speed can be set as 800Mhz, 1300Mhz, 1800Mhz, or
2500Mhz independently. The corresponding power consump-
tions are 11.06W, 13.275W, 16.85W and 22.69W, respectively.
The cluster is equipped with the PowerPack software [13] as
well as the necessary hardware to measure its practical energy
consumption. Adopting the power model P = a× sβ + b, we

40 60 80 100 120
5

6

7

8

9

x 10
4

Arrival Rate

 E
ne

rg
y

 Simulation
 Real

Figure 11. Energy comparison between simulation and real system imple-
mentation.

can get a = 2.6075, β = 1.791 and b = 9.2562, which are
then used to drive our simulation. The power budget is set as
152W and the simulation time for each arrival rate is 10min.
Figure 11 shows the energy measurements from both simula-
tions and the real system. The results are very close to each
other, despite the fact that there could be additional scheduling
overheads in the actual system implementation. This suggests
that our simulations provide accurate and reliable results on
the performance of the DES algorithm.

VI. RELATED WORK

In this section, we review some related works on schedul-
ing interactive services for energy minimization and quality
maximization.

Energy Minimization with DVFS: DVFS has been a widely
adopted technique to achieve higher energy efficiency. Yao
et al. [25] initiated the study of energy minimization by
scheduling requests on a single DVFS-enabled processor. As-
suming that power is a convex function of the processor speed,
they provided an optimal offline algorithm as well as two
online algorithms, which was shown to have good competitive
ratios [4][25]. Refinement for the offline algorithm was later
provided in [21] with lower computational complexity as well
as with discrete processor speed. Albers et al. [1] recently
considered the same scheduling problem but for multicore
systems, where the speed of each core can be independently
scaled. They provided both an optimal offline algorithm and a
competitive online algorithm for this setting. All these results
assumed no power budget, i.e., the speed of the processors
can be scaled arbitrarily high, so all the jobs can be fully
processed to achieve the maximum possible quality.

Quality Maximization under Overloads: Maximizing the
service quality for interactive jobs on a fixed-speed processor
has been the subject of many studies over the years. While the
EDF (Earliest Deadline First) algorithm is known to produce
an optimal schedule under light load, it can perform very
badly in overloaded systems [24]. To handle overloads, many
early works [19][5][18][17][23] assumed a strict scheduling
model in which an uncompleted job before its deadline does
not contribute any value towards the total quality. Inspired
by the emerging workload on interactive services such as
web search and video-on-demand, He et al. [15] recently
considered a scheduling model that supports partial evaluation
for the jobs. Assuming that the quality function is non-
decreasing and strictly concave, they gave an optimal offline
algorithm, and evaluated the proposed online algorithms also
using web search as an example. Prior to this work, similar

models have been studied in [8][9][10][11], which assumed
a linear quality function for jobs with different priorities. All
these results do not consider energy since the speed of the
processor is assumed to be fixed.

Scheduling under a Power Budget: Many prior works on
energy-efficient scheduling does not assume a power budget
for DVFS-enabled systems. In practice, the total power is
often constrained by the chip design and its cooling system.
Prior work in [3][7] focused on the strict scheduling model
on a single core with a power budget, and proposed online
algorithms that achieve competitive performance for both
quality and energy. Isci et al. [16] considered global power
management for multicore systems based on the per-core
load and a given power budget. Baek and Chilimbi [2]
proposed a framework that trade off quality and energy by
supporting different approximations for interactive services.
Although their results are also based on partial executions,
they did not consider scheduling and DVFS. To the best of
our knowledge, no prior work studies scheduling interactive
jobs that support partial evaluation with the objective of both
quality maximization and energy minimization.

VII. CONCLUSION

In this paper, we have proposed a new performance metric
⟨quality, energy⟩ to measure the performance of scheduling
algorithms with both quality and energy considerations. We
have presented the DES algorithm for scheduling best-effort
interactive services on multicore systems with a power budget.
We showed that the algorithm can exploit the application
features and can take advantage of the core-level DVFS
architecture to enable new advances in quality improvement
and energy saving. Simulation results demonstrate the benefits
of DES in achieving high service quality with low energy
consumption. Validation on a real system also verifies the
accuracy and reliability of our simulation results.

ACKNOWLEDGMENT

We would like to thank Prof. Rong Ge of Marquette Univer-
sity for providing the PowerPack environment for conducting
validation on real systems. This research is supported in
part by National Natural Science Foundation of China (No.
61272087, No. 61073008, No. 60773148 and No. 60503039),
Beijing Natural Science Foundation (No. 4082016 and No.
4122039), NSF Grants OCI-0904461 and OCI-1051537.

REFERENCES

[1] S. Albers, F. Müller, and S. Schmelzer. Speed scaling on
parallel processors. In ACM Symposium on Parallelism in Al-
gorithms and Architectures(SPAA), pages 289–298, San Diego,
USA, 2007.

[2] W. Baek and T. M. Chilimbi. Green: a framework for
supporting energy-conscious programming using controlled ap-
proximation. In ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), pages 198–209,
2010.

[3] N. Bansal, H. L. Chan, T. W. Lam, and L. K. Lee. Scheduling
for speed bounded processors. In International Colloquium on
Automata, Languages and Programming (ICALP), pages 409–
420, 2008.

[4] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage
energy and temperature. Journal of the ACM, 54(1):3:1–3:39,
2007.

[5] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan,
L. Rosier, D. Shasha, and F. Wang. On the competitiveness of
on-line real-time task scheduling. Real-Time Systems, 4(2):125–
144, 1992.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[7] H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, and
P. W. H. Wong. Energy efficient online deadline scheduling. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
795–804, 2007.

[8] E.-C. Chang and C. Yap. Competitive on-line scheduling with
level of service. Journal of Scheduling, 6(3):251–267, 2003.

[9] F. Y. L. Chin and S. P. Y. Fung. Online scheduling with
partial job values: Does timesharing or randomization help.
Algorithmica, 37:149–164, 2003.

[10] F. Y. L. Chin and S. P. Y. Fung. Improved competitive algo-
rithms for online scheduling with partial job values. Theoretical
Computer Science, 325(3):467–478, 2004.

[11] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichý,
and N. Vakhania. Preemptive scheduling in overloaded systems.
Journal of Computer and System Sciences, 67(1):183–197,
2003.

[12] M. Ehrgott. A characterization of lexicographic max-ordering
solutions. In Proceedings of the 6th Workshop of the DGOR
Working-Group Multicriteria Optimization and Decision The-
ory, pages 193–202, 1997.

[13] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K.W.
Cameron. Powerpack: Energy profiling and analysis of high-
performance systems and applications. IEEE Transactions on
Parallel and Distributed Systems, 21(5):658–671, 2010.

[14] Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta: scheduling
interactive services with partial execution. In Proceedings of
the Third ACM Symposium on Cloud Computing, 2012.

[15] Y. He, S. Elnikety, and H. Sun. Tians scheduling: Using
partial processing in best-effort applications. In International
Conference on Distributed Computing Systems(ICDCS), pages
434–445, 2011.

[16] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and
M. Martonosi. An analysis of efficient multi-core global power
management policies: Maximizing performance for a given
power budget. In IEEE/ACM International Symposium on
Microarchitecture, pages 347–358, 2006.

[17] C.-Y. Koo, T.-W. Lam, T.-W. Ngan, K. Sadakane, and K.-K.
To. On-line scheduling with tight deadlines. Mathematical
Foundations of Computer Science (MFCS), 295(1-3):251–261,
2003.

[18] G. Koren and D. Shasha. Dover: An optimal on-line scheduling
algorithm for overloaded uniprocessor real-time systems. SIAM
Journal on Computing, 24(2):318–339, 1995.

[19] E. L. Lawler. A dynamic programming algorithm for preemp-
tive scheduling of a single machine to minimize the number
of late jobs. Annals of Operations Research, 26(1-4):125–133,
1991.

[20] J. Li and J. F. Martı́nez. Power-performance considerations of
parallel computing on chip multiprocessors. ACM Transactions
on Architecture and Code Optimization, 2(4):397–422, 2005.

[21] M. Li, A. Yao, and F. Yao. Discrete and continuous min-energy
schedules for variable voltage processors. National Academy
of Sciences, 103:3983–3987, 2006.

[22] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabuk-
swar, K. Krishnan, and A. Kumar. Power and thermal manage-
ment in the intel core duo processor. Intel Technology Journal,
10(2):109–122, 2006.

[23] Z. Shi, C. Beard, and K. Mitchell. Competition, cooperation,
and optimization in multi-hop CSMA networks. In ACM
symposium on Performance Evaluation of Wireless Ad Hoc,
Sensor, and Ubiquitous Networks (PE-WASUN), 2011.

[24] J. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo.
Deadline Scheduling for Real-Time systems - EDF and related
algorithms. Academic Publishers, 1998.

[25] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. In IEEE Symposium on Foundations of
Computer Science (FOCS), pages 374–382, 1995.

[26] X. Zhang, K. Shen, S. Dwarkadas, and R. Zhong. An evaluation
of per-chip nonuniform frequency scaling on multicores. In
USENIX Annual Technical Conference (USENIX ATC), pages
19–19, 2010.

[27] X. Zhao and N. Jamali. Fine-grained per-core frequency
scheduling for power efficient-multicore execution. In Interna-
tional Green Computing Conference (IGCC), pages 1–8, 2011.

