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Abstract: The proliferation of many-core architectures has led ®dkplosive development of parallel applications
using programming models, such as OpenMP, TBB, andCiikk++. With increasing number of cores, however, it be-
comes even harder téfeiently schedule parallel applications on these resowioes current many-core runtime systems
still lack effective mechanisms to support collaborative schedulingexé applications. In this paper, we study feedback-
driven adaptive scheduling based on work stealing, whiclviges an &icient solution for concurrently executing a set
of applications on many-core systems. To dynamically esenthe number of cores desired by each application, a sta-
ble feedback-driven adaptive algorithm, called SAWS, @poised using active workers and the length of active deques,
which well captures the runtime characteristics of theigptibns. Furthermore, a prototype system is built by editegm
the Cilk runtime system, and the experimental results, kvaie obtained on a Sun Fire server, show that SAWS has
more advantages for scheduling concurrent parallel agdics. Specifically, compared with existing algorithm&teal
and WS-EQUI, SAWS improves the performances by up to 12.48&624.32% with respect to mean response time
respectively, and 25.78% and 46.98% with respect to procesiization, respectively.

Keywor ds: Many-core architectures, Many-core runtime systemsgbaek-driven adaptive scheduling

1 Introduction

Recent developments in microprocessor design show a ctaat towards many-core architectures. In the near future, i
will be common to have a many-core processor with hundreds@n thousands of cores on the chip [1]. Exploiting all
the advantagesfiered by these abundant cores, however, will be a great olgalleecause it is not trivial tafeciently
utilize the available computing power.

To exploit the hardware resources of modern processorgugprogramming models for many-core systems have
been developed, such as OpenMP [2], TBB [3], {iikk++ [4] which is recently extended to Intel Cilk Plus [5]. Com-
pared with other parallel programming models, such as MBIRMDSIX threads, these models, supported by their flexible
runtime systems, provide good programmability, portahiind ability to manage dynamic parallelism for many-core
systems. When using these programming models in practiegg\er, many issues remain to be addressedfimiently
utilize the increasing number of cores.

First, current many-core runtime systems may have pooalitdy. It is a typical requirement in most many-core
runtime systems to explicitly or implicitly (via functioratls) specify the number of cores to use for the executiomof a
application. As more cores are becoming available, manijicgtions will start to experience diminishing returns hwit
increased processor allocation. Without knowing the etteawcharacteristic of the application on a particular keace
platform, simply allocating all available cores to the apgtion may not ensure satisfying performance. As we calrnsee
Fig.1(a), which is conducted on a Sun Fire server using ab@iik applications, only a couple of applications, namely
FIB and LU, have nearly linear speedup when increasing thebeu of allocated cores.

Second, competitions for processor resources are undleiglacurrent many-core runtime systems. It is very com-
mon for multiple users or applications to share a high-perémce computing platform nowadays. Using current sahstio
by themselves, the performance may not scale well with asng number of cores, particularly in the presence of con-
currently running parallel applications. To demonstrais with an example, Fig.1(b) and Fig.1(c) give the resuits o
running multiple copies of two Cilk applications on a SuneFgervet. As shown in these figures, the overall run-
ning time (makespan) of both applications under the defakieduler, which runs each copy of the Cilk application on

1The detailed information related to this experiment canchmdl in Section 5.
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Figure 1: Speedup and makespan comparisonftéréint scheduling strategies using Cilk applications.

all available cores, becomes much worse than that of the KEIFS-Come First-Serve) scheduler when increasing the
number of concurrently running copies.

Aiming at addressing these problems in the current mang-nartime systems, adaptive scheduling algorithms are
studied in this paper. Compared to scheduling all appbeatin a time-sharing manner as described above, adaptive
scheduling based on space-sharing seems to provide a fffiaierg solution for simultaneously executing a set of ap-
plications. Since the parallelism of most applicationgofthanges over time, adaptive scheduling takes advantage o
the application malleability by dynamically allocating ariable number of processors to each job during runtimes, ithu
is able to achieve better utilization of the available reses. Fig.1(b) and Fig.1(c) also show the results of runifieg
same set of applications as described previously, but \witrsimple space-sharing scheduler EQUI (Equi-Partitgnin
[6] which at any time divides the total number of cores evemhong all running jobs. The results demonstrate that EQUI
has much better performance in terms of makespan, espestadin the applications have sublinear speedups. While this
simple example shows the benefit of adaptive schedulinggindst of this paper we will study morfective mechanisms
that can better capture and explore the parallelism variatof the jobs.

Although some existing work have studied adaptive schadulinost results are based on theoretical analysis and
simulation approaches [7, 8, 9, 10, 11]. Unlike these resiitthis paper we study the benefits of adaptive scheduling
based on solid experiments conducted on practical systedwcual workloads. The adaptive runtime system we build is
based on the well-known work-stealing strategy, which reentshown to have good performances from both theoretical
and practical perspectives [4, 12]. The main contributiitbe paper are the following:

¢ An adaptive runtime system is implemented based on the wiadding load balancing strategy. The runtime system
has the ability to dynamically change the number of corexated to each job so that it cafiextively exploit the
runtime characteristics of the jobs, and more importan#yjiminates the need of manually specifying the number
of cores required by most existing many-core runtime system

e To dynamically estimate the number of cores desired by ealzhg stable feedback algorithm, called SAWS, is
proposed using active workers and the length of active deq@empared to existing algorithms, SAWS captures
more precisely the parallelism of the jobs, and more impaitat solves the desire instability problem of an

existing algorithm.

e A prototype system is built by heavily modifying the origit@@ilk runtime system. The experimental results show
that feedback-driven algorithms have more advantagesfadiling parallel applications with dynamic changing
parallelism, and better overall performance will be acbéwith more accurate and stable feedback mechanism.

The rest of this paper is organized as follows: Section Algrietroduces adaptive scheduling based on work stealing.
Section 3 describes how to obtain stable parallelism feddibaing active workders and the length of active deques.
Section 4 gives the detailed implementation of the adaptireduling framework. Our experimental results are pitesen

in Section 5 and Section 6 concludes the paper.

2 Adaptive Scheduling Based on Work Stealing

In order to present our adaptive runtime system and the sadddriven algorithm, it is necessary to review adaptive
scheduling and work stealing. In this section, we will firsfide the basic concepts in the two scheduling paradigms. We

then discuss challenges in adaptive work stealing.
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Figure 2: The paradigm of working stealing.

2.1 Work Stealing

Work stealing [12] is a popular thread-level scheduling haeism to schedule parallel computations with dynamiclpara
lelism. Because of the good performance and ease of impkaiem it has been successfully applied to runtime systems
in Cilk [4], Cilk Plus [5], TBB [3] and OpenMP [13].

In traditional work stealing, as shown in Fig. 2, an applmats given a fixed set d® processors throughout execution.
Each processor (or worker) maintains a double-ended qeaileddeque, which contains the ready threads of the job.
A worker treats its own deque as a stack and treats the decamotier worker as a queue. At any time, each worker
works as follows: (1) when the thread it is currently runngpgwns a new thread, the worker pushes the parent onto the
bottom of its deque and starts working on the child threapiyf2en the running thread completes or blocks, the worker
checks its own deque. If the deque is not empty, it pops theathfrom the bottom of the deque and starts working on
it. In case the deque is empty, e.g., for Worker Fig. 2, the worker becomes a “thief” and starts work stegliln this
process, the thief randomly chooses another worker, céliedm”, e.g., Worker 1 in Fig. 2, and removes the thread
from the top of victim’s deque if it is not empty. If the victismdeque is empty, the thief restarts the stealing process by
randomly choosing another victim until its finds a thread tkwon. Clearly, when an application first starts to run, &ll o
its allocated processors have empty deques except onemtbetavorks on the job’s root thread.

Work stealing has been shown to have provaliicient performances in terms of both time and space bounds [12
Moreover, unlike centralized schedulers based on workisfpauch as the Greedy scheduler [9], a work stealing sckedul
operates in a decentralized manner without knowing all adlable threads of a job at any time. Therefore, due to ease
of implementation, it has also been shown to befé@ctive thread scheduling mechanism in practice.

2.2 Adaptive Scheduling

Adaptive scheduling provides afffieient solution to better utilize the available processspteces for simultaneously
executing a set of applications, thus has gained populadgntly [7, 8, 9, 10, 11, 14, 15, 16, 17]. Since the paralelof
most applications often changes over time, adaptive sdingdiakes advantage of the application malleability anckgi
a variable processor allocations to the jobs.

One common approach used in adaptive scheduling is theaved-$cheduling framework [7]. In this framework,
the executions of the jobs are divided into regular intexvahlled scheduling quantum, and the processors are +eallo
cated based on the interaction between the job-level treelaeduler and the global-level resource allocator or fasme
controller. Specifically, at the beginning of each scheduljuantung, a thread scheduler for each job calculates its
processor desirg(q), that is, how many processors the job needs, in this quantimeprocessor controller at the global
level then based on the processor desires of all jobs andhedsiling policy decides a processor allocatig) for the
job in quantung. This process, callesbquest-allocation protocol [9], will repeat after each scheduling quantum until the
completion of all jobs.

One important aspect of two-level adaptive scheduling v tuocalculate processor desires from the thread scheduler.
Since the future parallelism of the job is usually unknowvne, desire calculation is usually based on the executioaryist
of the job in the previous quantum, such as measurements #i®job’s processor utilizations or average parallelism
[7, 10]. Another aspect is for the processor controller taidiethe processor allocation of each job. In this paper, see u
the well-known dynamic equi-partitioning (DEQ) policy [[18vhich we will describe in detail in Section 4.

2.3 Adaptive Work Stealing

Compared with conventional thread schedulers that useafiked set of processors at any time, adaptive scheduling
has the additional challenge of dealing with variable pssoe allocations at fferent times. When the thread scheduler



uses distributed work stealing, this task becomes even wtwalenging since the scheduler does not possess global
information on the deques of the processors.

To handle processor changes, we adopt the conceptigding [14]. While the number of processors and therefore
the number of deques is fixed for an application in traditiamark stealing, it is no longer the case in adaptive work
stealing. In particular, when the processor allocatiorrekeses from quantumpto g + 1, the job loses(q) — a(g + 1)
processors, who may have non-empty deques. These dequel,amhtain ready threads for the job and therefore still
belong to the job, are however not associated with any psocest this time, and thus become muggable. When any
processor of the job runs out of work during quantyml, instead of immediately stealing work from another preoes
it will first look for muggable deques. If there are indeed dwegjwaiting to be mugged, it will claim any such deque as
its own and starts working on its bottom-most thread. Otlewif there is no muggable deque, it will start stealing as
normal. On the other hand, when the processor allocatiorases from quantumto g + 1, the job gaing(q+ 1) — a(q)
additional processors with empty deque. Again, each oftpescessors will first look for a muggable deque, which may
be available from previous quantum, before stealing worttessribed before.

Moreover, besides dealing with processor changes, anatimeimportant challenge in adaptive work stealing is how
to calculate processor desires for a job in each scheduliagtgm. In the next section, we will design a novel desire
calculation strategy that directly utilizes the lengthstaf active deques, which solves the desire instability leratof an
existing scheduler.

3 Stable Desire Calculation Using Both Processor Utilization and Length of
Active Deques

In this section, we propose an novel desire calculationrélgu, called SAWS, based on the utilization of active waske
and the length of active deques. We show that the processedealculated by SAWS well reflects the parallelism of
the job, and more importantly, it solves the desire insiigtiroblem of an existing scheduler.

3.1 A Nove Algorithm: SAWS

SAWS works based on both processor utilization and lengtctife deques in each scheduling quantum. Intuitively,
the status of the processors in terms of whether they aredidie indicates the utilization of the resources allodéate

a job, thus it can be used to determine the number of processtine next quantum. Moreover, the total length of the
active deques of the job at any time gives the number of rdadyadls that can be stolen when the job is provided with
suficient processors to execute, thus it can indicate the uaigeglparallelism of the job. SAWS explores both of these
indicators and computes the processor desire of the jobsasilded in the following.

Since the processor allocation can be changed dynamica#igaptive scheduling, only a worker that is associated
with a physical processor is called an active worker; otl@it is called an inactive worker. Suppose that quangum
starts at timefy and lastsL units of time. Since an active worker is either working, mingg or stealing at any time
t € [tg, tq + L], let X;(t) denote the status of thigh processor at timg where 1< j < a(q). Specifically, if processor
j is either working or mugging &t we haveX;(t) = 1. Otherwise, if processdris stealing at, we haveX;(t) = 0.

As mugging is a result of reduced processor allocation, ithe spent on mugging is considered as not wasted [8].
Apparently,% ft:“+L Z"l?‘iql) X;(t)dt represents the average number of processor cycles notnatsday time in quantur,

thus it reflects the processor utilization in the quantum.
Let e(t) denote the number of active deques of the job at timt, tq + L], including the muggable ones that are not
attached to any processor. For fjtle active deque, le®;(t) denote its length, or the number of ready threads on the top

of the deque waiting to be stolen at timeHence,% fttq+L ng)l Q;(t)dt represents the average length of all active deques

at any time in quanturg, which reflects the potential parallelism of the job not expt in the quantum.
The processor desire for the job in next quantml is then calculated based on bogf{t) andQ;(t) as follows:

1 thrL a(g) e(t)
da+1)= ¢ f {Z X +6) Q; (t)] dt, (1)
fq j=1 j=1

whereg > 1 is the exploration parameter that controls how aggrelssilie scheduler exploits the job’s parallelism.

For instance, suppose a procesgis busy working at timeé and has one more ready thread on its current deque,
that is, Xj(t) = Q;(t) = 1. From this deque’s perspective, an extra processor waulible to steal its ready thread, thus
explores the available parallelism of the job. Setfhg 1 will satisfy this requirement. However, since the readgéu
is in higher level of the job’s structure, it is more likely $pawn more threads in the future. Thus, having a larger value
for B8, such as setting = 2, will further explore the unexposed parallelism of the job explore the entire parallelism of
the job and to smooth out the processor desire, this calonlat taken from all processors and deques, and is averaged



for (i=0; 1 <Nj;i++t) {
Spawn Work(i);

1
S

sync;

Figure 3: A simple data-parallel program written in Cilk atedDAG representation.

Processor Processor

Desire Desire
N-10 N-10
/ ! / 1

1
5

4 3
1

Quantum Quantum

(@) (b)

—

Figure 4: Processor desires calculated by (a) A-Steal JrisiAtV'S, when the parallelism of the job is constaritlat 10.

over the entire quantum as shown in Eq (1). In case that no thorad is spawned by the extra processors, the processor
desire will be reduced to the number of busy processors ifotleving quantum.

3.2 An Existing Algorithm: A-Steal

We now describe an existing adaptive work stealing algovjtballed A-Steal [14], which calculates the processorrdesi
for a job in each quantum based on only the utilization of tit#g allocated processors in the previous quantum. The
calculation uses a simple multiplicative-increase miittggive-decrease strategy first introduced in [7].

Recall thatX;(t) denotes the status of thjéh processor at timg where 1< j < a(g). The usage of the allocated
processors in quantunis then given byw(q) = ft:‘”L Z?iql) Xj(t)dt. Since maximum possible usage of the quantum is
a(g)L, the utilization of the processors igq) = w(q)/(a(g)L). The quantum is said to be flicient” if the utilization
satisfiesu(q) > &, wheres is a threshold usually set in the range of 80% to 95%. Othenwitse quantum is said to
be “inefficient”. In addition, the quantum is said to be “satisfied” & Wwavea(q) > d(g). Otherwise, the quantum is
“deprived”. The processor desire for the job in next quantum1l is calculated depending on whether quantyia
efficient or indficient and whether it is satisfied or deprived as follows:

d(g)-p Iif qis efficient and satisfied,
d(g+1)=1¢ d(g)/p if qisinefficient,
d(q) if gis eficient and deprived,

wherep is a responsiveness parameter usually set in the range &. lIndoth SAWS and A-Steal, the processor desire
for the first quantum is fixed to be 1, since the job usuallytstaith a single thread.

Note that A-Steal also actively explores the potential felism of the job by increasing its processor desire by a
multiplicative factorp each time. Since such calculation is blind to the actualllgdican of the job, it can result in
desire instability as we will show in the next subsection\W&\ on the other hand, performs such exploration with more
precision and stability, as it directly makes use of the rimfation about the length of active deques, which is a strong
indicator on job’s actual parallelism.

3.3 Desire Stability of SAWS and A-Steal

It was shown in [16, 10] that another adaptive schedulerdasecentralized work sharing, called A-Greedy [7], ex-
hibits desire instability problem, even when the paralaliof the job is constant. Since both A-Steal and A-Greedy use
multiplicative-increase multiplicative-decrease sgpt to calculate processor desires, such instability proldan also
be observed in A-Steal. In this section, we use a simple pgataHel program to demonstrate the desire instability of
A-Steal, and to compare it with SAWS.

Suppose that we have a data-parallel application writteRilin[4] as shown in Fig.3, wherdl children threads are
spawned by the parent thread at almost the samé tiamel each child contains a large amount of work to be donesin th

2TheN threads are spawned with a small delay after each iterafitimedor loop. Compared to the large amount of time to complete thetiom
Work(), however, such delay is negligible.
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Figure 5: The adaptive scheduling framework of ACilk.

Work() function. The graph at the right of Fig.3 shows the DAG @ted Acyclic Graph) that represents the structure of
the program. The parallelism of this application is therefoonstant al for a long period of time.

To schedule this application with SAWS or A-Steal, we malesftllowing two assumptions. First, we assume that the
desires of the job can be satisfied by the global-level psmrasontroller as much as possible. This corresponds to ligh
to medium workloads, in which two-level adaptive schedsilend to work better compared to non-adaptive schemes
[17, 10]. Second, we assume that the ready threads of a dequieecstolen as quickly as possible by steal attempts
from other processors. Since the victims are chosen unijoatrandom, this is usually true for a reasonable number
of processors and when the quantum is set to licgntly long. Given these two assumptions, the processsirale
and hence the processor allocation of the job can be showthibieunstable behavior as shown in Fig.4(a), where the
responsiveness parameter of A-Steal is set fo b&, the utilization threshold is set to= 0.8, and the parallelism of the
jobis atN = 10.

Although Fig.3 only gives a simple example, it is not hardde that such instability problem of A-Steal will remain
in many other data-parallel programs like this. Varyinggmeterso and¢é can alleviate the problem for a specific
parallelism. However, it will inevitably fiect the responsiveness of the desires or the utilizatiohefptocessors for
other sections of the job with fllerent parallelism.

Fig.4(b), on the other hand, shows the processor desireslatdd by SAWS for the same application when its
exploration parameter is set to fe= 2. Compared to A-Steal, which catches up with the job’s pelisin in about
log, N steps, but never convergesih SAWS converges to the target parallelism in abNyj§ steps, and exhibits no
desire oscillation afterwards. With comparable values andg, A-Steal tends to have better convergence for lage
initially, but its desire instability will delay job exedoh and cause resource waste for the majority of time stefisein
steady state. SAWS, on the other hand, is more conservatesimating the processor desires, but guarantees stabili
no steady-state error and as shown in Fig.4(b) a small anwdurdnsient overshodét These properties not only ensure
more dficient job execution and resource utilization, but also heleduce scheduling overheads in practice caused by
context switching and cache reloading when adjusting msmeallocations for a job [16, 10].

4 Implementations

In this section, we present an adaptive scheduling frameeailed ACilk, which provides the ability to feedback thepr
cessor desires and to support dynamical processor reidio@aruntime. We also present moreient implementations
of the desire calculation algorithms based on sampling attithat approximate the required statistics.

4.1 Theframework of ACilk

To implement the feedback-driven scheduling algorithmes bwild an adaptive scheduling framework ACilk (Adaptive
Cilk), as shown in Fig. 5, which is an extension to the Cilktionme system [4]. Cilk is a language for multithreaded
parallel programming based on ANSI C and it employs the vaealing scheduler in its runtime system. Based on
POSIX threads library, ACilk is built on top of operating 8ms, such as Linux, and includes three main components:
System Config, Processor Controller, and ACilk Runtimehasv in Fig. 5. The System Config component provides the
ability to collect the hardware information, such as avdéacores in system, and to specify user-oriented configurat
information such as scheduling quantum, scheduling algos to be used by ACilk. The obvious benefit provided by
System Config is to enhance the system scalability and taredie the drawback of explicitly specifying the number

3The desire overshoot is because of the parent thread thtmwes after thdor loop, but immediately blocks when executing #yec statement.
Since SAWS does not have advanced information about thegrostructure, it requests for more processors to expla@akential parallelism. The
extra processor is immediately released in the next quantiiem the parent blocks and no longer spawns more threads.



of cores by users. The Processor Controller is located ircéimer of ACilk, which provides two main functions: 1)
coordination with runtime systems by employing a requdletation protocol [9] to control processor allocationglan
feedback processor desires of jobs; 2) reallocation ofgs®mr resources among running jobs, which currently stppor
two processor reallocation strategies, namely, EQUI an@Dkhe Processor Controller is implemented as a daemon
process on operating systems, and the Shared Memory teehisqused as the Inter-Process Communication (IPC)
between the controller and ACilk runtime systems. ACilk Rume extends the original Cilk runtime system but has the
following major improvements: 1) supporting dynamic resdinent of processor allocations without interrupting the
execution of the jobs; 2) providing afffieient approximating method to collect and feedback praredssires of jobs at
runtime. The more detailed implementation information @il is given in the following subsections.

4.2 Sampling Methodsfor Desire Calculation

As described in Section 3, the desire calculation algoritiimSAWS and A-Steal require utilization information of the
active workers in a quantum, and SAWS also needs the lengthaiftive deques at any time during a quantum. Gathering
these information can be very expensive in practice, whithiveur a large amount of overhead in the implementation.
In this subsection, we will present a morgi@ent implementation of the algorithms based on samplinthous that
approximate the required statistics.

4.2.1 Approximating Processor Utilization

To approximate the processor utilization in a quantum, vpathe technique used in [19], which takes the ratio between
the total number of purely unsuccessful steal attemptstantbtal number of all steal attempts. Specifically, for gath

in quantuma, let total_steal; denote the total number of steal attempts by jiteallocated processor or active worker,
where 1< j < a(g). Among all steal attempts, lgdurely_unsucc_steal ; denote the total number of purely unsuccessful
steal attempts. A steal attempt is called purely unsucakgghe victim itself is attempting to steal work from other
processors. The processor utilizatig(a) of the job in quantung can then be approximated by

Z?(:ql) purely_unsucc_steal ;

u(g) =1 @
3] total _steal

which can be used to calculate the processor desires of#l-$te shown in Section 3.2, we can also égfqﬂ 2?5“1) Xj(t)dt =
: -

u(g)a(qg), which can be used to calculate the processor desires ofSiAiq (1).

The intuition for the above approximation of the procesdibization is the following. Since a processor at any time is
either working, mugging or stealing and the victim is chogeifiormly at random, the ratio between the number of purely
unsuccessful steal attempts and the total number of allatteanpts gives a reasonable approximation for théiciency,
that is 1- u(q), of the processors in quantumFrom a sampling perspective, the approximation is morarate if there
is a larger number of steal attempts. Furthermore, sincevtiike-stealing scheduler of Cilk runtime already has binilt-
counters to measure the steal attempts, collecting théseriation would incur very little extra overhead.

4.2.2 Approximating Active Deques L ength

To approximate the length of active deques in a quantum tasbd in the desire calculation of SAWS, we again use the
technique for approximating processor utilization, bunbine it with the length of the deques sampled at the end of the
guantum for better accuracy.

We introduce a new counter in ACilk to accumulate the lendtthe victims' deques at every steal attempt for each
active workerj, and denote the accumulated length at the end of quaqtoyriength;. The approximated length of all
active deques is then given by

25 length;

Qo) =eltg+L) g ———
17 2% total_steal

wheree(ty + L) denotes the number of active deques when quamtemds at timdg + L. Since each steal attempt will
collect the deque length of the victim processor, the raéitwieen the total accumulated deque length from all active
workers and the total number of steal attempts intuitivéleg the average length of any single deque in the quantum.
Multiplying this ratio by the number of active deques thewvegia natural approximation for the total length of all aetiv
deques.

In addition, we use the length of the deques sampled at theftid quantum as another approximation, and it is
given byQ’(q) = Z?S‘fu Qj(ty + L), whereQj(tq + L) denotes the length of thigh deque of the job at timig + L when
guantumg ends.
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Figure 6: State diagram of a worker’s execution in adaptigekvgtealing.

The final approximation of the length of active deques th&aga linear combination of the two approximations and
is given by% JE‘#L ng)l Qj(t)dt = @Q(q) + (1 — ®)Q'(0), which can be used to complete the desire calculation of SAW
shown in Eq (1). Intuitively, the first approximation is maecurate when there are more samples in steal attempts, thus
should have higher weight. In our implementation, weestd be the ratio between the total number of steal attempts in
the quantum and the maximum possible steal attempts. Herecggcond approximation is always used in the calculation,
and when no steal attempt occurs in the quantum, the firsbapation is simply ignored.

4.3 Processor Reallocation

For implementation of adaptive work stealing, one of impottchallenges in ACilk is how to deal with the dynamic
processor reallocations in runtime without interruptihg £xecution of jobs. To support adaptive work stealing,llACi
introduces four dferent states, namely working, stealing, mugging, and slgdp each processor or a worker in Cilk
runtime system. ACilk ensures that the number of active exsrkised by a job always matches the number of physical
processors assigned to it by controlling the state of thekerst The detailed process is depicted in Fig.6. At the
initialization stage, ACilk creates as many workers as @ humber of physical processors for each job. After ggtiis

first processor allocation (which is usually 1), ACilk pute textra workers into the sleeping state. After each scivegiul
guantum, whenever the allocation of the job increases, ssorkers of the job are waken up. When the allotment
decreases, the corresponding number of workers are pigl@gping state. Unlike the original work-stealing mechani
whenever a worker runs out work in ACilk, that is, its locatjde becomes empty, it first enters the mugging state to look
for muggable deques instead of immediately stealing wankfanother worker.

In the Processor Controller, twoftrent resource allocation strategies EQUI and DEQ are imgéed. EQUI
(Equi-partitioning) [6] is one of the well-known resourdaation strategies, which at any time divides the totahiver
of all available cores evenly among all running jobs. Obsiguonly when a new job is released or when a job completes,
EQUII starts to readjust the processor allocation amonguheing jobs, and any feedback from the jobs is not considered
in this algorithm.

DEQ [18] is a variant of EQUI, which can take advantage of tamfelism feedbacks. Compared with EQUI, DEQ
never allocates more processors to a job than the job’s gsocelesire, hence it is better known for iti@ency and
fairness in processor allocation [15]. L#{(qg) denote the set of active jobs when a new quanfqumegins. Based on the
processor desires of all jobs collected by ACilk runtime (D&llocates the processors as shown in Algorithm 1, where
a;(q) andd;(q) denote the processor allocation and the processor dégale 4 in quantuny respectively, ané denotes
the total number of available cores in the system.

5 Experiments

The experiments are carried out on a Sun Fire X4600 M2 serki@has equipped with eight AMD Opteron(TM) 8384
guad-core processors, each with 2.7 GHz clock speed, 128Kéathe, 512 KB L2 cache per core, 6 MB L3 cache, and
256GB main memory. The operating system is Ubuntu 9.10 ¢ karnel 2.6.28), and the compiler is GCC 4.4.1, with
the compiling option “-g -O2”. Six computation-intensiverizhmarks are selected from th@aal released Cilk-5.4.6
for the experiments. The brief description and input setbe$e benchmarks are listed in Table 1.

To compare the performances offdrent scheduling algorithms, we use the following metriceakespan, mean
response time, and processor utilization. The makespaafiised! as the completion time of the last completed job in the
job set. The response time of a single job is the time elapsed Wwhen the job arrives to when it completes, and the
mean response time of the job set is used in our experimengsutllization of the job’s allocated processors is cotect



Algorithm 1 DEQ(J(q), P)
1: if J(q) = 0 then

2 return

3 S={Ji€J() :di(q) < P/TQ
4: if S=0then

5:  for eachJ; € J(q) do

6: a(q) = P/l (a)l

7 return

8: else

9: for eachJ, € Sdo

10: g(q) = di(9)
1 DEQ(J(a) — S,P - X 5cs ()

=

Table 1: The description and input sets of the benchmarks

| Benchmark] Description |  Inputsets |
CK Rudimentary checkers -b 10 -w 13
Fib Fibonacci numbers 46
FFT Fast Fourier Transform -n 2%6
LU LU decomposition -n 4096

Jacobi-type iteration to -g 10 -nx 4096
Solve a finite-diference -ny 4096 -nt 500
Strassen | Multiplies two nx n matrices -n 4096

Heat

by counting the time of each processor during a quantum wineprocessor is doing useful work. Note that the time a
processor spends on stealing is considered as wasted seeglthough the processor is not idle during stealing, ibts n
contributing towards the work of the job. In the experimetiie responsiveness paramegtend the utilization threshold

¢ of A-Steal are set to be 2 and 80% respectively, and the exjpborparametes of SAWS is set to be 2.

As pointed out in previous sections, the WS (Work Stealingd@thm implemented by original Cilk runtime system
does not support dynamically readjusting the jobs’ prameafiocations at runtime. Therefore, manually specifying
fixed number of processors may easily lead to degraded peafoze when concurrently running multiple Cilk jobs. In
our experiment, we implement WS as a two-level scheduliggrghm by combining it with algorithm EQUI and name
the new algorithm WS-EQUI. Compared with WS, WS-EQUI doesteed explicit specification on the number of cores
by each user and it can automatically share all availablescamong the running jobs equally. Since WS-EQUI can be
considered as a special type of two-level adaptive scheditie variable quantum length (a quantum only expires ifta jo
completes or a new job is released) and an oblivious paratideedbacks (which always divides the processors equally
among the active jobs regardless of each job’s processoejlese use it as a reference to evaluate the performances of
the feedback-driven scheduling algorithms, such as AlatehSAWS in the following experiments.

5.1 Scheduling Quantum and Overhead

In adaptive scheduling, the length of the scheduling quansuan important system parameter, which may significantly
affect the performance of a scheduling algorithm. Intuitivelpaller quantum length may lead to mof&agency for
capturing changes in a job’s parallelism, but it inevitablgurs more scheduling overhead, including the cost ofgssar
reallocation. In this subsection, we conduct a set of expemis to examine the impact of scheduling quantum and
corresponding overhead on the performancesfdédint scheduling algorithms. Specifically, only one job &bl€ 1 is
used for each experiment. The quantum length is varied fnrmsitb 50ms. The experimental results for Strassen and LU
are shown in Fig.7 while the other benchmarks have simikulte and are omitted.

The results demonstrate that, compared with WS-EQUI, ttopeance of A-Steal and SAWS are impacted by
varying scheduling quantum, especially that of A-Steal wuigs unstable parallelism feedbacks. As can be seen in Fig.
7, the makespans of A-Steal and SAWS are much worse when #méugn length is set to 1ms, as the overhead incurred
by the feedback-driven algorithms is too large to be igndrethis case. With increasing quantum length, however,
the makespans of A-Steal and SAWS become smaller and teret toger to that of WS-EQUI since the scheduling
overhead is now better amortized over the entire schedgliagtum. Based on the experimental results, the lengtteof th
scheduling quantum is set to be 10ms in all following experits, which seems to provide a good tratiéetween the
responsiveness and the scheduling overhead.
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5.2 Performance Comparison of Different algorithms

In this subsection, we evaluate and compare the perforrsarickifferent scheduling algorithms using two sets of experi-
ments. The first set usesidirent types of batched workloads, where each type of wodkbeepresented by a particular
job shown in Table 1 and several copies of the same job arasedesimultaneously. This corresponds to typical burst
arrivals of jobs with the same characteristics. The systead Is set to be proportional to the number of simultaneously
submitted copies, which is varied from 2 to 12. The secondises the general non-batched workloads, where jobs are
randomly chosen from Table 1, and they are released intoydtera according to the Poisson process, where the inter-
arrival time follows exponential distributiof(t; 1) = 1e~(t > 0). The system load is proportional to the arrival raief

the jobs, which is varied from/16 to 1, and the total number of jobs is fixed to be 16.

Batched jobs The experimental results, as shown in Fig.8, demonstratehle feedback-driven adaptive scheduling
algorithms A-Steal and SAWS generally outperform WS-EQlihwespect to Makespan. In addition, better performance
tend to be achieved when the jobs have lower parallelismasi€K and Strassen, as shown in Fig.1(a). The reason is that
feedback-driven scheduling strategies take advantageegfdrallelism feedback based on the information of exenuti
history and thus can more precisely captures the runningctegistics of jobs, while WS-EQUI is oblivious to the jeb’
parallelism and thus wastes many processor resources. eOuthier hand, as shown in Fig.8(c), when the jobs have
suficient parallelism, such as LU, the performances of all algors tend to eventually converge to each other, since
the jobs can #iciently utilize all available cores regardless of the alfpon. Nevertheless, it shows that feedback-driven
adaptive schedulers have more advantages than WS-EQUutupary when the runtime characteristics of the jobs are
unknown in advance.

Non-batched jobs The non-batched experiments represent more realisti@gosmwhen running parallel jobs in prac-
tice. The results as shown in Fig.9 suggest that SAWS gdpeiciieves better performance than A-Steal and WS-EQUI
with respect to makespan, mean response time, and utlizaspecifically, the mean response time improvements of
SAWS over A-Steal and WS-EQUI are 12.43% and 21.32% resgdgtind the corresponding utilization improvements
are 25.78% and 46.98% respectively. The makespan improusmESAWS, however, seem small, which are only 3.02%
and 7.18%, as it could be easily dominated by one large joberndb set with long execution time. The main advantage
of SAWS is that it directly benefits from its more accurate atable parallelism feedbacks, as described in Section 3.3.
The experimental results also show that WS-EQUI seems te ietter performance when the system load is light, but it
is at the cost of wasting more processor resources, asyckkawn in Fig.9(c).

6 Conclusion

In this paper, we studied feedback-driven adaptive scliglblased on a work-stealing load-balancing strategy, lwhic
provides an fficient solution to better utilize the available processaorgces and to improvdiiency when concur-
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Figure 9: Performance comparison oftdrent algorithms using nonbatched jobs.

rently executing parallel applications on many-core platfs. The benefit of adaptive scheduling is reflected not only
in eliminating the need of manually specifying the numbecafes required by most existing many-core runtime sys-
tems, but also in enhancing the overall system performayesloiting the runtime characteristics of individual pke|
applications. The experimental results demonstratedideatback-driven adaptive scheduling algorithms achietteb
performance with respect to makespan, mean response tiof@cessor utilization, especially when more accurate and
stable feedback mechanism is applied. For our future woekplan to integrate our adaptive scheduling algorithm into
the Linux kernel, which will provide more benefits foffieiently controlling and collaborating with many-core rimn¢
systems.
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