
1

Towards Optimal Multi-Level Checkpointing
Anne Benoit, Aurélien Cavelan, Valentin Le Fèvre, Yves Robert, Hongyang Sun

Abstract—We provide a framework to analyze multi-level checkpointing protocols, by formally defining a k-level checkpointing pattern. We
provide a first-order approximation to the optimal checkpointing period, and show that the corresponding overhead is in the order of∑k

`=1

√
2λ`C`, where λ` is the error rate at level `, and C` the checkpointing cost at level `. This nicely extends the classical Young/Daly

formula on single-level checkpointing. Furthermore, we are able to fully characterize the shape of the optimal pattern (number and positions of
checkpoints), and we provide a dynamic programming algorithm to determine the optimal subset of levels to be used. Finally, we perform
simulations to check the accuracy of the theoretical study and to confirm the optimality of the subset of levels returned by the dynamic
programming algorithm. The results nicely corroborate the theoretical study, and demonstrate the usefulness of multi-level checkpointing with
the optimal subset of levels.

Index Terms—resilience, fail-stop errors, multi-level checkpointing, optimal pattern.

F

1 INTRODUCTION

Checkpointing is the de-facto standard resilience method for
HPC platforms at extreme-scale. However, the traditional
single-level checkpointing method suffers from significant
overhead, and multi-level checkpointing protocols now repre-
sent the state-of-the-art technique. These protocols allow dif-
ferent levels of checkpoints to be set, each with a different
checkpointing overhead and recovery ability. Typically, each
level corresponds to a specific fault1 type, and is associated
to a storage device that is resilient to that type. For instance, a
two-level system would deal with (i) transient memory errors
(level 1) by storing key data in main memory; and (ii) node
failures (level 2) by storing key data in stable storage (remote
redundant disks).

We consider a very general scenario, where the platform is
subject to k levels of faults, numbered from 1 to k. Level ` is
associated with an error rate λ`, a checkpointing cost C`, and a
recovery cost R`. A fault at level ` destroys all the checkpoints
of lower levels (from 1 to `−1 included) and implies a roll-back
to a checkpoint of level ` or higher. Similarly, a recovery of level
` will restore data from all lower levels. Typically, fault rates are
decreasing and checkpoint/recovery costs are increasing when
we go to higher levels: λ1 ≥ λ2 ≥ · · · ≥ λk, C1 ≤ C2 ≤ · · · ≤
Ck, and R1 ≤ R2 ≤ · · · ≤ Rk.

The idea of multi-level checkpointing is that checkpoints
are taken for each level of faults, but at different periods. Intu-
itively, the less frequent the faults, the longer the checkpointing
period: this is because the risk of a failure striking is lower when
going to higher levels; hence the expected re-execution time is
lower too; one can safely checkpoint less frequently, thereby
reducing failure-free overhead (checkpointing is useless in the
absence of fault). There are several natural approaches to im-
plement multi-level checkpointing. The first option is to use in-
dependent checkpointing periods for each level. This option raises
several difficulties, the most prominent one being overlapping

• Anne Benoit, Aurélien Cavelan, Valentin Le Fèvre, Yves Robert, and
Hongyang Sun are with Ecole Normale Supérieure de Lyon & INRIA, France.
Yves Robert is also with University of Tennessee Knoxville, USA. Contact:
Anne.Benoit@ens-lyon.fr.

1. We use the terms fault, failure and error indifferently.

checkpoints. Typically, we need to checkpoint different levels
in sequence (e.g., writing into memory before writing onto
disk), so we would need to delay some checkpoints, which
might not be possible in some environments, and which would
introduce irregular periods. The second option is to synchro-
nize all checkpoint levels by nesting them inside a periodic
pattern that repeats over time, as illustrated in Figure 1(a). In
this figure, the pattern has five computational segments, each
followed by a level-1 checkpoint. A segment is a chunk of work
between two checkpoints, and a pattern consists in segments
and checkpoints. The second and fifth level-1 checkpoints are
followed by a level-2 checkpoint. Finally, the pattern ends with
a level-3 checkpoint. When using patterns, a checkpoint at level
` is always preceded by checkpoints at all lower levels 1 to
`−1, which makes good sense in practice (e.g., with two levels,
main memory and disk, one writes the data into memory before
transferring it to disk).

Using periodic patterns simplifies the orchestration of
checkpoints at all levels. In addition, repeatedly applying the
same pattern is optimal for on-line scheduling problems, or for
jobs running a very long (even infinite) time on the platform.
Indeed, in this scenario, we seek the best pattern, i.e., the one
whose overhead is minimal. The overhead of a pattern is the
price per work unit to pay for resilience in the pattern; hence
minimizing overhead is equivalent to optimizing platform
throughput. For a pattern P(W) with W units of work (the
cumulated length of all its segments), the overhead H(P(W))
is defined as the ratio of the pattern’s expected execution time
E(P(W)) over its total work W minus 1:

H(P(W)) =
E(P(W))

W
− 1. (1)

If there were neither checkpoint nor fault, the overhead would
be zero. Determining the optimal pattern (with minimal over-
head), and then repeatedly using it until job completion, is
the optimal approach with Exponential failure distributions
and long-lasting jobs. Indeed, once a pattern is successfully
executed, the optimal strategy is to re-execute the same pattern.
This is because of the memoryless property of exponential dis-
tributions: the history of failures has no impact on the solution,
so if a pattern is optimal at some point in time, it stays optimal

2

Time

C1 C2 C3 C1 C1 C2 C1 C1 C1 C2 C3(a)

Time

C1 C1(b)

Time

C1 C2 C1 C1 C2 C1 C1 C2(c)

Figure 1: Checkpointing patterns (highlighted using red bars) with (a) k =
3, (b) k = 1, and (c) k = 2 levels.

later in the execution, because we have no further information
about the amount of work still to be executed.

The difficulty of characterizing the optimal pattern dra-
matically increases with the number of levels. How many
checkpoints of each level should be used, and at which lo-
cations inside the pattern? What is the optimal length of
each segment? With one single level (see Figure 1(b)), there
is a single segment of length W , and the Young/Daly for-
mula [18], [6] gives W opt =

√
2C1

λ1
. The minimal overhead is

then Hopt =
√

2λ1C1 +O(λ1) [3].
With two levels, the pattern still has a simple shape, with

N segments followed by a level-1 checkpoints, and ended by
a level-2 checkpoint (see Figure 1(c)). Recent work [8] shows
that all segments have same length in the optimal pattern, and
provides mathematical equations that can be solved numeri-
cally to compute both the optimal length W opt of the pattern
and its optimal number of segments. However, no closed-form
expression is available, neither for W opt, nor for the minimal
overhead Hopt.

With three levels, no optimal solution is known. The pattern
shape becomes quite complicated. Coming back to Figure 1(a),
we identify two sub-patterns ending with a level-2 checkpoint.
The first sub-pattern has 2 segments while the second one
has 3. The memoryless property does not imply that all sub-
patterns are identical, because the state after completing the
first sub-pattern is not the same as the initial state when
beginning the execution of the pattern. In the general case
with k levels, the shape of the pattern will be even more
complicated, with different-shaped sub-patterns (each ended
by a level k − 1 checkpoint). In turn, each sub-pattern may
have different-shaped sub-sub-patterns (each ended by a level
k − 2 checkpoint), and so on. The major contribution of this
work is to provide an analytical characterization of the optimal
pattern with an arbitrary number k of checkpointing levels,
with closed-form formulas for the pattern length W opt, the
number of checkpoints at each level, and the optimal overhead
Hopt. In particular, we obtain the following beautiful result:

Hopt =
k∑
`=1

√
2λ`C` +O(Λ), (2)

where Λ =
∑k
`=1 λ`. However, we point out that this analytical

characterization relies on a first-order approximation, so it is
valid only when resilience parameters C` and R` are small
in front of the platform Mean Time Between Failures (MTBF)
µ = 1/Λ. Also, the optimal pattern has rational number of
segments, and we use rounding to derive a practical solution.
Still, Equation (2) provides a lower bound on the optimal over-
head, and this bound is met very closely in all our experimental

scenarios.
Finally, in many practical cases, there is no obligation to

use all available checkpointing levels. For instance, with k = 3
levels, one may choose among four possibilities: level 3 only,
levels 1 and 3, levels 2 and 3, and all levels 1, 2 and 3. Of course,
we still have to account for all failure types, which translates
into the following:
• level 3: use λ3 ← λ1 + λ2 + λ3;
• levels 1 and 3: use λ1 and λ3 ← λ2 + λ3;
• levels 2 and 3: use λ2 ← λ1 + λ2 and λ3;
• all levels: use λ1, λ2 and λ3.

Our analytical characterization of the optimal pattern leads to
a simple dynamic programming algorithm for selecting the
optimal subset of levels.

The rest of this paper is organized as follows. Section 2
surveys the related work. Section 3 is the heart of the paper
and shows how to compute the optimal pattern as well as the
optimal subset of levels. Section 4 is devoted to simulations
assessing the accuracy of the first-order approximation. Finally,
Section 5 provides concluding remarks and hints for future
work.

2 RELATED WORK

Given the checkpointing cost and platform MTBF, classical
formulas due to Young [18] and Daly [6] are well known
to determine the optimal checkpointing period in the single-
level checkpointing scheme. However, this method suffers from
the intrinsic limitation that the cost of checkpointing/recovery
grows with failure probability, and becomes unsustainable at
large scale [9], [4] (even with diskless or incremental check-
pointing [15]).

To reduce the I/O overhead, various two-level checkpoint-
ing protocols have been studied. Vaidya [17] proposed a two-
level recovery scheme that tolerates a single node failure using
a local checkpoint stored on a parter node. If more than one
failure occurs during any local checkpointing interval, the
scheme resorts to the global checkpoint. Silva and Silva [16]
advocated a similar scheme by using memory to store local
checkpoints, which is protected by XOR encoding. Di et al. [8]
analyzed a two-level checkpointing pattern, and proved equal-
length segments in the optimal solution. They also provided
mathematical equations that can be solved numerically to
compute the optimal pattern length and number of segments.
Benoit et al. [3] relied on disk checkpoints to cope with fail-stop
failures and memory checkpoints coupled with error detectors
to handle silent data corruptions. They derived first-order ap-
proximation formulas for the optimal pattern length and the
number of memory checkpoints between two disk checkpoints.

Some authors have also generalized two-level checkpoint-
ing to account for an arbitrary number of levels. Moody et
al. [14] implemented this approach in a three-level Scalable
Checkpoint/Restart (SCR) library. They relied on a rather com-
plex Markov model to recursively compute the efficiency of
the scheme. Bautista-Gomez et al. [2] designed a four-level
checkpointing library, called Fault Tolerance Interface (FTI), in
which partner-copy and Reed-Solomon coding are employed as
two intermediate levels between local and global disks. Based
on FTI, Di et al. [7] proposed an iterative method to compute the
optimal checkpointing interval for each level with prior knowl-
edge of the application’s total execution time. Hakkarinen and
Chen [11] considered multi-level diskless checkpointing for

3

tolerating simultaneous failures of multiple processors. Bal-
aprakash et al. [1] studied the trade-off between performance
and energy for general multi-level checkpointing schemes.

While all of these works relied on numerical methods to
compute the checkpointing intervals at different levels, this
paper is the first one to provide explicit formulas on the optimal
parameters in a multi-level checkpointing protocol (up to first-
order approximation as in Young/Daly’s classical result).

3 COMPUTING THE OPTIMAL PATTERN

This section computes the optimal multi-level checkpointing
pattern. We first state our assumptions in Section 3.1, and
then analyze the simple case with k = 2 levels in Section 3.2,
before proceeding to the general case in Section 3.3. Finally, the
algorithm to compute the optimal subset of levels is described
in Section 3.4.

3.1 Assumptions

In this paper, we assume that failures from different levels are
independent2. For each level `, the arrival of failures follows
Poisson process with error rate λ`. In order to deal with the
interplay of failures from different levels, we make use of
the following well-known properties of independent Poisson
processes [10, Chapter 2.3].

Property 1. During the execution of a segment with length w,
let X` denote the time when the first level-` error strikes. Thus,
X` is a random variable following an Exponential distribution with
parameter λ`, for all ` = 1, 2, . . . , k.

(1). Let X denote the time when the first error (of any level)
strikes. We have X = min{X1, X2, . . . , Xk}, which follows
an Exponential distribution with parameter Λ =

∑k
`=1 λ`. The

probability of having an error (from any level) in the segment is
therefore P (X ≤ w) = 1− e−Λw.

(2). Given that an error (from any level) strikes during the execution
of the segment, the probability that the error belongs to a
particular level is proportional to the error rate of that level,
i.e., P (X = X`|X ≤ w) = λ`

Λ , for all ` = 1, 2, . . . , k.

Moreover, we assume that error rates of different levels are
of the same order, i.e., λ` = Θ(Λ) for all ` = 1, 2, . . . , k, and
that errors only strike during the computations, while check-
pointing and recovery are error-free. Indeed, the durations of
checkpoints and recoveries are generally small compared to the
pattern length, so the probability of a failure striking during
these operations is low. It has been shown in [3] that removing
this assumption does not impact the first-order approximation
of the pattern overhead.

3.2 Optimal two-level pattern

We start by analyzing the two-level pattern shown in Fig-
ure 1(b). The goal is to determine a first-order approximation
to the optimal pattern length W , the number n of level-1
checkpoints in the pattern, as well as the length wi = αiW
of the i-th segment, for all 1 ≤ i ≤ n, where

∑n
i=1 αi = 1.

2. In practice, failures from different checkpointing levels can exhibit
potential correlation [12], [7]. Consideration of correlated failures is beyond
the scope of this paper.

3.2.1 With a single segment
We first consider a special case of the two-level pattern, in
which only a single segment is present, i.e., n = 1. The
result establishes the order of the optimal pattern length W opt,
which will be used later for analyzing the general case. Recall
that Λ = λ1 + λ2 and, for convenience, let us also define
C = C1 + C2. The following proposition shows the expected
time of such a pattern with fixed length W .

Proposition 1. The expected execution time of a two-level pattern
with a single segment and fixed length W is

E = W + C +
1

2
ΛW 2 +O(max{Λ2W 3,ΛW}).

Proof. We can express the expected execution time of the pat-
tern recursively as follows:

E = P

(
Elost(W,Λ) +

λ1

Λ
(R1 + E) +

λ2

Λ

(
R2 +R1 + E

))
+ (1− P) (W + C) , (3)

where P = 1 − e−ΛW denotes the probability of having a
failure (either level-1 or level-2) during the execution of the
pattern based on Property 1.1, and Elost(wi,Λ) denotes the
expected time lost when such a failure occurs. In this case,
and based on Property 1.2, if the failure belongs to level 1,
which happens with probability λ1

Λ , we can recover from the
latest level-1 checkpoint (R1). Otherwise, the failure belongs to
level 2 with probability λ2

Λ , and we need to first recover from
the latest level-2 checkpoint (R2) before restoring the level-1
checkpoint (R1). In both cases, the entire pattern needs to be re-
executed again. Finally, if no error (of any level) strikes, which
happens with probability 1 − P , the pattern is completed after
W time of execution followed by the time C to perform the two
checkpoints, which are assumed to be error-free.

From [13, Equation (1.13)], the expected time lost when
executing a segment of length W with error rate Λ is

Elost(W,Λ) =
1

Λ
− W

eΛW − 1
. (4)

Substituting Equation (4) into Equation (3) and solving for E,
we get:

E =
(
eΛW − 1

)(1

Λ
+R1 +

λ2

Λ
R2

)
+ C1 + C2, (5)

which is an exact formula on the expected execution time of
the pattern. Now, using Taylor series to expand eΛW = 1 +

ΛW + Λ2W 2

2 +O(Λ3W 3) while assuming W = Θ(Λ−x), where
0 < x < 1, we can re-write Equation (5) as

E = W +
1

2
ΛW 2 + C1 + C2 +O(Λ2W 3)

+

(
ΛW +

Λ2W 2

2
+O(Λ3W 3)

)(
R1 +

λ2

Λ
R2

)
.

Since recovery costs (R1, R2) are assumed to be constants,
and error rates (λ1, λ2,Λ) are in the same order, the expected
execution time can be expressed as follows:

E = W + C1 + C2 +
1

2
ΛW 2 +O(Λ2W 3) +O(ΛW),

which completes the proof of the proposition.

From Proposition 1, the expected execution overhead of the

4

pattern can be derived as

H =
C

W
+

1

2
ΛW +O(max{Λ2W 2,Λ}).

Assume that the platform MTBF µ = 1/Λ is large in front
of the resilience parameters, and consider the first two terms
of H : the overhead is minimized when the pattern has length
W = Θ(Λ−1/2), and in that case both terms are in the order
of Θ(Λ1/2), so we have H = Θ(Λ1/2) + O(Λ). Indeed, the
last term O(Λ2W 2) = O(Λ) becomes negligible compared
to Θ(Λ1/2). Hence, the optimal pattern length W opt can be
obtained by balancing the first two terms in H , which gives

W opt =

√
2C

Λ
= Θ(Λ−1/2), (6)

and the optimal execution overhead becomes

Hopt =
√

2ΛC +O(Λ). (7)

Remarks. Unlike in single-level checkpointing, the check-
point to roll back to in a two-level pattern depends on which
type of error strikes first. Under first-order approximation and
assuming that the resilience parameters are small compared to
the platform MTBF and pattern length, the formulas shown in
Equations (6) and (7) reduce exactly to Young/Daly’s classical
result by aggregating the error rates and checkpointing costs of
both levels.

3.2.2 With multiple segments
We now consider the general two-level pattern with multiple
segments, and derive the optimal pattern parameters. As in
the single-segment case, we start with a proposition showing
the expected time to execute a two-level pattern with fixed
parameters.

Proposition 2. The expected execution time of a given two-level
pattern is

E=W+nC1+C2 +
1

2

(
λ1

n∑
i=1

α2
i + λ2

)
W 2 +O(Λ1/2).

Proof. We first prove the following result (by induction) on the
expected time Ei to execute the i-th segment of the pattern (up
to the level-1 checkpoint at the end of the segment):

Ei = wi +C1 +
λ1

2
w2
i + λ2

w2
i

2
+
i−1∑
j=1

wjwi

+O(Λ1/2). (8)

According to the result with a single segment, we know that
the optimal pattern length and hence the segment length are in
the order of O(Λ−1/2), which implies that Ei = wi +O(1).

For the ease of analysis, we assume that there is a hypo-
thetical segment at the beginning of the pattern with length
w0 = 0 (hence no need to checkpoint). For this segment, we
have E0 = w0 = 0, satisfying Equation (8). Suppose the claim
holds up to Ei−1. Then, Ei can be recursively expressed as
follows:

Ei = Pi

(
Elost(wi,Λ) +

λ1

Λ
(R1 + Ei)

+
λ2

Λ

(
R2 +R1 +

i−1∑
j=1

Ej + Ei
))

+ (1− Pi)(wi + C1), (9)

where Pi = 1−e−Λwi denotes the probability of having a failure
(either level-1 or level-2) during the execution of the segment,
and Elost(wi,Λ) denotes the expected time lost when such a
failure occurs.

Equation (9) is very similar to Equation (3), except when a
level-2 failure occurs we need to re-execute all the segments
(up to segment i) that have been executed so far. Following the
derivation of Proposition 1 and applying Ej = wj + O(1) for
j = 1, 2, . . . , i− 1, we can derive the first-order approximation
of Ei as follows:

Ei=wi+C1+
1

2

(
λ1w

2
i +λ2w

2
i +2λ2wi

i−1∑
j=1

Ej

)
+O(Λ1/2)

=wi+C1+
1

2

(
λ1w

2
i +λ2w

2
i +2λ2wi

i−1∑
j=1

(
wj+O(1)

))
+O(Λ1/2)

=wi+C1+
1

2

(
λ1w

2
i +λ2

(
w2
i +2

i−1∑
j=1

wjwi
))

+O(Λ1/2). (10)

Since the level-2 checkpoint at the end of the pattern is
also assumed to be error-free, we can compute the expected
execution time of the pattern as

E =
n∑
i=1

Ei + C2

= W + nC1 + C2 +
1

2

(
λ1

n∑
i=1

α2
i + λ2

)
W 2 +O(Λ1/2),

since
∑n
i=1 w

2
i + 2

∑n
i=1

∑i−1
j=1 wjwi=(

∑n
i=1 wi)

2
=W 2.

Theorem 1. A first-order approximation to the optimal two-level
pattern is characterized by

nopt =

√
λ1

λ2
· C2

C1
, (11)

α
opt
i =

1

nopt ∀i = 1, 2, . . . , nopt, (12)

W opt =

√√√√ noptC1 + C2

1
2

(
λ1

nopt + λ2

) , (13)

where nopt is the number of segments, αopt
i W

opt is the length of the
i-th segment, and W opt is the pattern length.
The optimal pattern overhead is

Hopt =
√

2λ1C1 +
√

2λ2C2 +O(Λ). (14)

Proof. For a given pattern with a fixed number n of segments,∑n
i=1 α

2
i is minimized subject to

∑n
i=1 αi = 1 when αi = 1

n for
all i = 1, 2, . . . , n. Hence, we can derive the expected execution
overhead from Proposition 2 as follows:

H =
nC1 + C2

W
+

1

2

(
λ1

n
+ λ2

)
W +O(Λ). (15)

For a given n, the optimal work length can then be
computed from Equation (15), and it is given by W opt =√

nC1+C2
1
2 (λ1n +λ2)

. In that case, the execution overhead becomes

H =

√
2

(
λ1

n
+ λ2

)
(nC1 + C2) +O(Λ), (16)

5

which is minimized as shown in Equation (14) when n satisfies
Equation (11). Indeed, 2

(
λ1

nopt + λ2

)
(noptC1 + C2) = 2λ1C1 +

2λ2C2 + 4
√
λ1λ2C1C2 = (

√
2λ1C1 +

√
2λ1C1)2. In practice,

since the number of segments can only be a positive integer, the
optimal solution is either max(1, bnoptc) or dnopte, whichever
leads to a smaller value of the convex function H as shown in
Equation (16).

Remarks. Consider the example given in [8] with C1 = R1 =
20, C2 = R2 = 50, λ1 = 2.78 × 10−4 and λ2 = 4.63 × 10−5.
The optimal solution3 provided by [8] gives nopt = 3.83,
W opt = 1362.49 and Hopt = 0.1879, while Theorem 1 suggests
nopt = 3.87, W opt = 1378.27 and Hopt = 0.1735, which is quite
close to the exact optimum. The difference in overhead is due
to the negligence of lower-order terms in the first-order approx-
imation. We point out that the solution provided by [8] relies
on numerical methods to solve rather complex mathematical
equations, whose convergence is not always guaranteed, and it
is only applicable to two levels. Our result, on the other hand,
is able to provide fast and good approximation to the optimal
solution when the error rates are sufficiently small, and it can
be readily extended to an arbitrary number of levels, as shown
in the next section.

3.3 Optimal k-level pattern
In this section, we derive the first-order approximation to
the optimal k-level pattern by determining its length W , the
number N` of level-` checkpoints for all 1 ≤ ` ≤ k, as well as
the positions of all checkpoints in the pattern.

3.3.1 Observations
Before analyzing the optimal pattern, we make several observa-
tions. First, we can obtain the orders of the optimal length and
pattern overhead as shown below (recall that Λ =

∑k
`=1 λ`).

Observation 1. Consider the simplest k-level pattern with a sin-
gle segment of length W . We can conduct the same analysis as
in Section 3.2.1 to show that the optimal pattern length satis-
fies W opt = Θ(Λ−1/2), and the corresponding overhead satisfies
Hopt = Θ(Λ1/2).

From the analysis of the two-level pattern, we can also
observe that the overall execution overhead of any pattern
comes from two distinct sources defined below.

Observation 2. There are two types of execution overheads for a
pattern:
(1). Error-free overhead, denoted as oef, is the total cost of all the

checkpoints placed in the pattern. For a given set of checkpoints,
the error-free overhead is completely determined regardless of
their positions in the pattern.

(2). Re-executed fraction overhead, denoted as ore, is the expected
fraction of work that needs to be re-executed due to errors. The re-
executed fraction overhead depends on both the set of checkpoints
and their positions.

For example, in the two-level pattern with n level-1 check-
points and given values of αi for all i = 1, 2, . . . , n, the

3. The original optimal solution of [8] considers faults in checkpointing
but not during recoveries. We adapt its solution to exclude faults in
checkpointing so to be consistent with the model in this paper for a
fair comparison. The results reported herein are based on this modified
solution.

s(4)

s
(3)
1 s

(3)
2

c4
c3 c3

s
(2)
1,1 s

(2)
1,2 s

(2)
1,3 s

(2)
1,4

c2

s
(2)
2,1 s

(2)
2,2

c2 c2

c2 c2
c1 c1 c1

s
(1)
1,3,1 s

(1)
1,3,2 s

(1)
1,3,3

c4

Figure 2: Example of a 4-level pattern. Here, we let c` = C1|C2| · · · |C`

denote the succession of checkpoints from level 1 to level `.

two types of overheads are given by oef = nC1 + C2 and
ore = 1

2

(
f1

∑n
i=1 α

2
i + f2

)
, where f` = λ`

Λ for ` = 1, 2.
Assuming that checkpoints at all levels have constant costs and
that the error rates at all levels are in the same order, then both
oef and ore can be considered as constants, i.e., oef = O(1) and
ore = O(1).

A trade-off exists between these two types of execution
overheads, since placing more checkpoints generally reduces
the re-executed work fraction when an error strikes, but it can
adversely increase the overhead when the execution is error-
free. Therefore, in order to achieve the best overall overhead, a
resilience algorithm must seek an optimal balance between oef
and ore.

For a given pattern with fixed overheads oef and ore, we can
make the following observation based on Propositions 1 and 2,
which partially characterizes the optimal pattern.

Observation 3. For a given pattern (with fixed oef and ore), the
expected execution time is given by

E = W + oef︸ ︷︷ ︸
error-free

execution time

+ ΛW︸︷︷︸
expected
errors

· oreW︸ ︷︷ ︸
re-executed work
in case of error

+ O(Λ1/2), (17)

and the optimal pattern length and the resulting expected execution
overhead of the pattern are

W opt =

√
oef

Λ · ore
, (18)

Hopt = 2
√

Λ · oef · ore +O(Λ). (19)

Equation (19) shows that the trade-off between oef and ore
is manifested as the product of the two terms. Hence, in order
to determine the optimal pattern, it suffices to find the pattern
parameters (e.g., n and αi) that minimize oef · ore.

3.3.2 Analysis
We now extend the analysis to derive the optimal multi-level
checkpointing patterns. Generally, for a k-level pattern, each
computational segment s(`)

ik−1,...,i`
can be uniquely identified by

its level ` as well as its position 〈ik−1, . . . , i`〉 within the multi-
level hierarchy. For instance, in a four-level pattern, the segment
s

(2)
1,3 denotes the third level-2 segment inside the first level-

3 segment of the pattern (see Figure 2). Note that a segment
can contain multiple sub-segments at the lower levels (except

6

for bottom-level segments) and is a sub-segment of a larger
segment at a higher level (except for top-level segments). The
entire pattern can be denoted as s(k), which is the only segment
at level k.

For any segment s(`)
ik−1,...,i`

at level `, where 1 ≤ ` ≤ k,

let w(`)
ik−1,...,i`

denote its length. Hence, we have w(`+1)
ik−1,...,i`+1

=∑
i`
w

(`)
ik−1,...,i`

and w(k) = W . Also, let n(`)
ik−1,...,i`

denote the

number of sub-segments contained by s
(`)
ik−1,...,i`

at the lower

level ` − 1. We have n
(1)
ik−1,...,i1

= 1 for all ik−1, . . . , i1. For
convenience, we further define

α
(`)
ik−1,...,i`

=
w

(`)
ik−1,...,i`

W

as the fraction of the length of segment s(`)
ik−1,...,i`

inside the pat-
tern, and define N` to be the total number of level-` segments
in the entire pattern. Therefore, we have Nk = 1, Nk−1 = n(k),
and in general

N` =
∑

ik−1,...,i +̀1

n
(+̀1)
ik−1,...,i +̀1

.

The following proposition shows the expected time to exe-
cute a given k-level pattern.

Proposition 3. The expected execution time of a given k-level
pattern is

E = W +
k−1∑
`=1

N`C` + Ck

+
W 2

2

 k∑
`=1

λ`
∑

ik−1,...,i`

(
α

(`)
ik−1,...,i`

)2

+O(Λ1/2).

Proof. We show that the expected time to execute any segment
s

(h)
ik−1,...,ih

at level h, where 1 ≤ h ≤ k, satisfies the following
(without counting the time to execute all the checkpoints inside
the segment):

E(h)
ik−1,...,ih

= w
(h)
ik−1,...,ih

+
W 2

2

 h∑
`=1

λ`
∑

ih−1,...,i`

(
α

(`)
ik−1,...,i`

)2


+ Λ[h+1,k]


(
w

(h)
ik−1,...,ih

)2

2
+ w

(h)
ik−1,...,ih

ih−1∑
jh=1

E(h)
ik−1,...,jh


+ w

(h)
ik−1,...,ih

k∑
`=h+2

Λ[`,k]

i −̀1−1∑
j −̀1=1

E(−̀1)
ik−1,...,j −̀1

+O(Λ1/2), (20)

where Λ[x,y] =
∑y
`=x λ` and, if x > y, we define Λ[x,y] =

0. The proposition can then be proven by setting E = E(k) +∑k−1
`=1 N`C` + Ck, since checkpoints are assumed to be error-

free.

We now prove Equation (20) by induction on the level h. For
the base case, i.e., when h = 1, consider a segment s(1)

ik−1,...,i1
at the first level. Following the proof of Proposition 2 (in
particular, Equation (9)), we can express its expected execution

time E(1)
ik−1,...,i1

, as

E(1)
ik−1,...,i1

=P
(1)
ik−1,...,i1

(
Elost(w(1)

ik−1,...,i1
,Λ
)

+
λ1

Λ

(
R1 + E(1)

ik−1,...,i1

)
+
λ2

Λ

(2∑
j=1

Rj +
i1∑

j1=1

E(1)
ik−1,...,j1

)

+
λ3

Λ

(3∑
j=1

Rj +
i2−1∑
j2=1

E(2)
ik−1,...,j2

+
i1∑

j1=1

E(1)
ik−1,...,j1

)
...

+
λk
Λ

(k∑
j=1

Rj +

ik−1−1∑
jk−1=1

E(k−1)
jk−1

+

ik−2−1∑
jk−2=1

E(k−2)
ik−1,jk−2

+ · · ·+
i1∑

j1=1

E(1)
ik−1,...,j1

))
+
(
1− P (1)

ik−1,...,i1

)
w

(1)
ik−1,...,i1

, (21)

where Λ =
∑k
`=1 λ` is the total rate of all error sources, and

P
(1)
ik−1,...,i1

= 1 − eΛ·w(1)
ik−1,...,i1 denotes the probability of having

an error (from any level) during the execution of the segment.
Simplifying Equation (21) and solving for E(1)

ik−1,...,i1
we get:

E(1)
ik−1,...,i1

= w
(1)
ik−1,...,i1

+
W 2

2
Λ[1,k]

(
α

(1)
ik−1,...,i1

)2

+ w
(1)
ik−1,...,i1

k∑
`=2

Λ[`,k]

i −̀1−1∑
j −̀1=1

E(−̀1)
ik−1,...,j −̀1

+O(Λ1/2)

= w
(1)
ik−1,...,i1

+
W 2

2
λ1

(
α

(1)
ik−1,...,i1

)2

+ Λ[2,k]


(
w

(1)
ik−1,...,i1

)2

2
+ w

(1)
ik−1,...,i1

i1−1∑
j1=1

E(1)
ik−1,...,j1


+ w

(1)
ik−1,...,i1

k∑
`=3

Λ[`,k]

i −̀1−1∑
j −̀1=1

E(−̀1)
ik−1,...,j −̀1

+O(Λ1/2),

which satisfies Equation (20).

Suppose Equation (20) holds up to any segment s(h)
ik−1,...,ih

at
level h. Following the proof of Proposition 2 (in particular, the
derivation of Equation (10)), we can show by induction that
E(h)
ik−1,...,ih

= w
(h)
ik−1,...,ih

+ O(1). Hence, for segment s(h+1)
ik−1,...,ih+1

at level h+ 1, we have:

E(h+1)
ik−1,...,ih+1

=
∑
ih

E(h)
ik−1,...,ih

=
∑
ih

w
(h)
ik−1,...,ih

+
W 2

2

 h∑
`=1

λ`
∑

ih,...,i`

(
α

(`)
ik−1,...,i`

)2


+ Λ[h+1,k]

∑
ih


(
w

(h)
ik−1,...,ih

)2

2
+w

(h)
ik−1,...,ih

ih−1∑
jh=1

w
(h)
ik−1,...,jh



7

+
∑
ih

w
(h)
ik−1,...,ih

k∑
`=h+2

Λ[`,k]

i −̀1−1∑
j −̀1=1

E(−̀1)
ik−1,...,j −̀1

+O(Λ1/2)

= w
(h+1)
ik−1,...,ih+1

+
W 2

2

 h∑
`=1

λ`
∑

ih,...,i`

(
α

(`)
ik−1,...,i`

)2


+ Λ[h+1,k]

(
w

(h+1)
ik−1,...,ih+1

)2

2

+ w
(h+1)
ik−1,...,ih+1

k∑
`=h+2

Λ[`,k]

i −̀1−1∑
j −̀1=1

E(−̀1)
ik−1,...,j −̀1

+O(Λ1/2)

= w
(h+1)
ik−1,...,ih+1

+
W 2

2

h+1∑
`=1

λ`
∑

ih,...,i`

(
α

(`)
ik−1,...,i`

)2


+ Λ[h+2,k]


(
w

(h+1)
ik−1,...,ih+1

)2

2
+w

(h+1)
ik−1,...,ih+1

ih+1−1∑
jh+1=1

E(h+1)
ik−1,...,jh+1


+ w

(h+1)
ik−1,...,ih+1

k∑
`=h+3

Λ[`,k]

i −̀1−1∑
j −̀1=1

E(−̀1)
ik−1,...,j −̀1

+O(Λ1/2).

Hence, Equation (20) also holds for any segment at level h+ 1.
This completes the proof of the proposition.

Proposition 3 shows that, for a given k-level checkpointing
pattern, the error-free overhead oef and the re-executed fraction
overhead ore are given as follows:

oef =
k−1∑
`=1

N`C` + Ck, (22)

ore =
1

2

k∑
`=1

f`
∑

ik−1,...,i`

(
α

(`)
ik−1,...,i`

)2
, (23)

where f` = λ`
Λ . According to Observation 3, it remains to find

parameters of the pattern such that oef · ore is minimized.
To derive the optimal pattern, we first consider the case

where oef is fixed, i.e., the set of checkpoints is given. The
following proposition shows the optimal value of ore.

Proposition 4. For a k-level checkpointing pattern, suppose the
number N` of checkpoints at each level ` is given, i.e., the error-free
overhead oef is fixed (as in Equation (22)). Then, the optimal value of
the re-executed work overhead is given by

oopt
re =

1

2

(
k−1∑
`=1

f`
N`

+ fk

)
, (24)

and it is obtained when all the checkpoints of each level are equally
spaced in the pattern.

Proof. According to Equation (23), which shows the value of ore
for the entire pattern, we can define the corresponding over-
head for each level-h segment s(h)

ik−1,...,ih
recursively as follows:

ore

(
s

(h)
ik−1,...,ih

)
=
fh
2
·
(
α

(h)
ik−1,...,ih

)2
+
∑
ih−1

ore

(
s

(h−1)
ik−1,...,ih−1

)
,

with ore

(
s

(0)
ik−1,...,i0

)
= 0 by definition.

For each segment s(h)
ik−1,...,ih

, we also define N`
(
s

(h)
ik−1,...,ih

)
to

be the total number of level-` segments it contains, with ` ≤
h. We will show that the optimal value oopt

re

(
s

(h)
ik−1,...,ih

)
for the

segment satisfies:

oopt
re

(
s

(h)
ik−1,...,ih

)
=

1

2

 h∑
`=1

f`

N`
(
s

(h)
ik−1,...,ih

)
(α(h)

ik−1,...,ih

)2
, (25)

and it is achieved when its level-` checkpoints are equally
spaced, for all ` ≤ h − 1. The proposition can then be proven
by setting oopt

re = o
opt
re

(
s(k)
)

, since N`
(
s(k)
)

= N`, Nk = 1, and

α(k) = 1.

Now, we prove Equation (25) by induction on the level h.
For the base case, i.e., when h = 1, we have ore

(
s

(1)
ik−1,...,i1

)
=

f1
2 ·

(
α

(1)
ik−1,...,i1

)2
by definition, and it satisfies Equation (25),

because N1

(
s

(1)
ik−1,...,i1

)
= 1. Suppose Equation (25) holds for

any segment s(h)
ik−1,...,ih

at level h. Then, for segment s(h+1)
ik−1,...,ih+1

at level h+ 1, we have:

ore

(
s

(h+1)
ik−1,...,ih+1

)
=
fh+1

2
·
(
α

(h+1)
ik−1,...,ih+1

)2
+
∑
ih

oopt
re

(
s

(h)
ik−1,...,ih

)
=
fh+1

2
·
(
α

(h+1)
ik−1,...,ih+1

)2
+

1

2
y, (26)

where y =
∑
ih
x

(h)
ik−1,...,ih

·
(
α

(h)
ik−1,...,ih

)2
, and x

(h)
ik−1,...,ih

=∑h
`=1

f`

N
(̀
s
(h)
ik−1,...,ih

) . To minimize ore

(
s

(h+1)
ik−1,...,ih+1

)
as shown in

Equation (26), it suffices to solve the following minimization
problem:

minimize y =
∑
ih

x
(h)
ik−1,...,ih

·
(
α

(h)
ik−1,...,ih

)2
,

subject to
∑
ih

α
(h)
ik−1,...,ih

= α
(h+1)
ik−1,...,ih+1

.

Since y is clearly a convex function of α(h)
ik−1,...,ih

, we can readily
get, using Lagrange multiplier [5], the minimum value of y as
follows:

ymin =
1∑

ih
1/x

(h)
ik−1,...,ih

·
(
α

(h+1)
ik−1,...,ih+1

)2
, (27)

which is obtained at

α̃
(h)
ik−1,...,ih

=
1/x

(h)
ik−1,...,ih∑

jh
1/x

(h)
ik−1,...,jh

· α(h+1)
ik−1,...,ih+1

. (28)

Let us define z =
∑
ih

1/x
(h)
ik−1,...,ih

. We now need to solve
the following maximization problem:

maximize z =
∑
ih

1∑h
`=1

f`

N
(̀
s
(h)
ik−1,...,ih

) ,

subject to
∑
ih

N`
(
s

(h)
ik−1,...,ih

)
=N`

(
s

(h+1)
ik−1,...,ih+1

)
,∀` = 1, . . . , h.

Again, z is a convex function of N`
(
s

(h)
ik−1,...,ih

)
, and it can be

8

shown to be maximized when

N`
(
s

(h)
ik−1,...,ih

)
=
N`
(
s

(h+1)
ik−1,...,ih+1

)
n

(h+1)
ik−1,...,ih+1

, ∀` = 1, . . . , h,

which gives α̃(h)
ik−1,...,ih

= 1

n
(h+1)
ik−1,...,ih+1

· α(h+1)
ik−1,...,ih+1

according to

Equation (28). This implies that all level-` checkpoints are also
equally spaced inside segment s(h+1)

ik−1,...,ih+1
, for all ` ≤ h. The

maximum value of z in this case is

zmax =
1∑h

`=1
f`

N
(̀
s
(h+1)
ik−1,...,ih+1

) ,

and the optimal value of ymin according to Equation (27) is then
given by

y
opt
min =

1

zmax

(
α

(h+1)
ik−1,...,ih+1

)2

=

 h∑
`=1

f`

N`
(
s

(h+1)
ik−1,...,ih+1

)
(α(h+1)

ik−1,...,ih+1

)2
.

Substituting yopt
min into Equation (26), we get the optimal value

of ore

(
s

(h+1)
ik−1,...,ih+1

)
as follows:

oopt
re

(
s

(h+1)
ik−1,...,ih+1

)
=
fh+1

2
·
(
α

(h+1)
ik−1,...,ih+1

)2
+

1

2
y

opt
min

=
1

2

h+1∑
`=1

f`

N`
(
s

(h+1)
ik−1,...,ih

)
(α(h+1)

ik−1,...,ih+1

)2
.

This shows that Equation (25) also holds for segment s(h+1)
ik−1,...,ih+1

at level h+1 and, hence, completes the proof of the proposition.

We are now ready to characterize the optimal k-level pat-
tern. The result is stated in the following theorem.

Theorem 2. A first-order approximation to the optimal k-level
pattern and its overhead are characterized by

W opt =

√√√√√2
(∑k−1

`=1 N
opt
` C` + Ck

)
∑k−1
`=1

λ`
N

opt
`

+ λk
, (29)

N
opt
` =

√
λ`
C`
· Ck
λk
, ∀` = 1, 2, . . . , k − 1, (30)

Hopt =
k∑
`=1

√
2λ`C` +O(Λ). (31)

Proof. From Observation 3, Equation (22) and Proposition 4, we
know that the optimal pattern can be obtained by minimizing
the following function:

F = oef · oopt
re =

1

2

(
k−1∑
`=1

N`C` + Ck

)(
k−1∑
`=1

f`
N`

+ fk

)
.

We first compute the optimal number of checkpoints at each
level using a two-phase iterative method. Towards this end, let

us define

oef(h) =
k−1∑
`=h

N`C` + Ck,

oopt
re (h) =

1

2

(
k−1∑
`=h

f`
N`

+ fk

)
.

In the first phase, we set initially

F (1) = oef(1) · oopt
re (1).

The optimal value of N1 that minimizes F (1) can then be
obtained by setting

∂F (1)

∂N1
= C1o

opt
re (1)− oef(1)

f1

2N2
1

= C1

(
f1

2N1
+ oopt

re (2)

)
− (N1C1 + oef(2))

f1

2N2
1

= C1o
opt
re (2)− oef(2)

f1

2N2
1

= 0,

which gives Nopt
1 =

√
f1
C1
· oef(2)

2o
opt
re (2)

. Substituting it into F (1) and

simplifying, we can get the value of F after the first iteration as

F (2) =
1

2

(√
f1C1 +

√
oef(2) · oopt

re (2)

)2

.

Repeating the above process, we can get the optimal value of F
after k − 1 iterations as

F opt = F (k) =
1

2

(
k∑
`=1

√
f`C`

)2

, (32)

and the optimal value of N` as

N
opt
` =

√
f`
C`
· oef(`+ 1)

2o
opt
re (`+ 1)

, ∀` = 1, 2, . . . , k − 1. (33)

In the second phase, we first compute from Equation (33)

N
opt
k−1 =

√
fk−1

Ck−1
· oef(k)

2o
opt
re (k)

=

√
fk−1

Ck−1
· Ck
fk

=

√
λk−1

Ck−1
· Ck
λk
.

Substituting it into Nopt
k−2, we obtain:

N
opt
k−2 =

√
fk−2

Ck−2
· oef(k − 1)

2o
opt
re (k − 1)

=

√√√√√ λk−2

Ck−2
·
N

opt
k−1Ck−1 + Ck
λk−1

N
opt
k−1

+ λk

=

√√√√√ λk−2

Ck−2
·

√
λk−1

λk
Ck−1Ck + Ck√

λk−1λk
Ck−1

Ck
+ λk

9

=

√√√√√√√ λk−2

Ck−2
·
Ck

(√
λk−1

λk
· Ck−1

Ck
+ 1

)
λk

(√
λk−1

λk
· Ck−1

Ck
+ 1

)
=

√
λk−2

Ck−2
· Ck
λk
.

Repeating the above process iteratively, we can compute the
optimal values of Nopt

` for ` = k − 3, . . . , 2, 1, as given in
Equation (30) by using values of Nopt

k−1, . . . , N
opt
`+1.

The optimal pattern length, according to Equation (18),
can be expressed as W opt =

√
oef

Λ·oopt
re

, which turns out to be

Equation (29) with the optimal values of Nopt
` .

The optimal overhead, according to Equations (19) and (32),
can be expressed as Hopt = 2

√
Λ · F opt +O(Λ), which gives rise

to Equation (31). This completes the proof of the theorem.

Since Proposition 4 shows that all the checkpoints of each
level are equally spaced in the pattern, we can readily obtain
the following corollary.

Corollary 1. In an optimal k-level pattern, the number of level-`
checkpoints between any two consecutive level-(`+ 1) checkpoints is
given by

n
opt
` =

N
opt
`

N
opt
`+1

=

√
λ`
λ`+1

· C`+1

C`
. (34)

for all ` = 1, . . . , k − 1.

Remarks. The optimal k-level pattern derived in this section
has a rational number of segments, while the optimal integer
solution could be much harder to compute. In Section 4, we
use rounding to derive a practical solution. Still, Equation (31)
provides a lower bound on the optimal overhead, which is met
very closely in all our experimental scenarios.

3.4 Optimal subset of levels

The preceding section characterizes the optimal pattern by
using k levels of checkpoints. In many practical cases, there is
no obligation to use all available levels. This section addresses
the problem of selecting the optimal subset of levels in order to
minimize the overall execution overhead.

3.4.1 Checkpoint cost models
So far, we have assumed that all the checkpoint costs are
fixed under a multi-level checkpointing scheme. In practice,
the checkpoint costs may vary depending upon the imple-
mentation, and upon the subset of selected levels. In order to
determine the optimal subset, we identify the following two
checkpoint cost models:
• Fixed independent costs. The checkpoint cost C` at level `

is the cost paid to save data at level `, independently of the
subset of levels used. In this model, the checkpoint costs
stay the same for all possible subsets.

• Incremental costs. The checkpointing cost C` at level ` is
the additional cost paid to save data when going from level
`− 1 to `. In this model, the checkpoint cost at a particular
level depends on the subset of levels selected.

For example, with k = 2 levels and C1 = 10, C2 = 20, two
subsets are possible: {1, 2} and {2}. In the fixed independent

cost model, these costs will stay unchanged regardless of the
subset chosen. In the incremental cost model, since C2 is the
additional cost paid after C1 is done, when using subset {2},
i.e., only placing level-2 checkpoints in the pattern, we need to
adjust its cost as C ′2 = 10 + 20 = 30. In both cases, once the
subset is decided, the checkpoint costs at the selected levels can
be computed and therefore considered as fixed constants. The
theoretical analysis presented in Section 3.3 can then be used to
compute the optimal pattern.

But how to determine the optimal subset of levels? Consider
again the example with k = 2 levels. In the incremental
cost model, Equation (31) suggests that the optimal solution
(ignoring lower-order terms) uses both levels if and only if√

2λ1C1 +
√

2λ2C2 ≤
√

2 (λ1 + λ2) (C1 + C2)

⇔ 0 ≤
(√

λ1C2 −
√
λ2C1

)2
,

which is always true when assuming λ1 ≥ λ2 and C1 ≤ C2. We
can easily apply the same argument to show that the optimal
subset must contain all levels available as long as all checkpoint
costs are positive.

In the fixed independent cost model, however, it is not clear
whether all available levels should be used. Consider the same
example with k = 2 levels, and define α = λ2

λ1
and β = C2

C1
. The

optimal solution uses both levels if and only if√
2λ1C1 +

√
2λ2C2 ≤

√
2 (λ1 + λ2)C2

⇔ 4αβ ≤ (β − 1)2,

which is not true when α = 0.5 and β = 2. In this case, using
only level-2 checkpoints leads to a smaller overhead.

3.4.2 Dynamic programming algorithm

In the fixed independent cost model, the optimal subset of
levels in a general k-level pattern could well depend on the
checkpoint costs and error rates of different levels. One can
enumerate all 2k−1 possible subsets and select the one that
leads to the smallest overhead. The following theorem presents
a more efficient dynamic programming algorithm when the
number k of levels is large.

Theorem 3. Suppose there are k levels of checkpoints available and
their costs are fixed. Then, the optimal subset of levels to use can be
obtained by dynamic programming in O(k2) time.

Proof. Let Sopt(h) ⊆ {0, 1, . . . , h} denote the optimal subset
of levels used by a pattern that is capable of handling errors
up to level h, and let Hopt(h) denote the corresponding op-
timal overhead (ignoring lower-order terms) incurred by the
pattern. Define Sopt(0) = ∅ and Hopt(0) = 0. Recall that
Λ[x,y] =

∑y
`=x λ`. We can compute Hopt(h) using the following

dynamic programming formulation:

Hopt(h) = min
0≤`≤h−1

{
Hopt(`) +

√
2Λ[`+1,h]Ch

}
, (35)

and the optimal subset is Sopt(h) = Sopt(`opt)
⋃
{h}, where `opt

is the value of ` that yields the minimum Hopt(h).
The optimal subset of levels to handle all k levels of errors is

then given by Sopt(k) with the optimal overhead Hopt(k). The
complexity is clearly quadratic in the total number of levels.

10

4 SIMULATIONS

In this section, we conduct a set of simulations whose goal is
threefold: (i) to verify the accuracy of the first-order approxima-
tion; (ii) to confirm the optimality of the subset of levels found
by the dynamic programming algorithm; and (iii) to evaluate
the performance of our approach and to compare it with
other multi-level checkpointing algorithms. After introducing
the simulation setup in Section 4.1, we proceed in two steps.
First, in Section 4.2, we instantiate the model with realistic
parameters from the literature and run simulations for all
possible subsets of levels and roundings. Then, in Section 4.3,
we instantiate the model with different test cases from the
recent work of Di et al. [7], [8] on multilevel checkpointing
and compare the overheads obtained with three approaches:
(a) Young/Daly’s classical formula; (b) our first-order approxi-
mation formula; and (c) Di et al.’s iterative/optimal algorithm.
The simulator code is publicly available at http://perso.ens-lyon.
fr/aurelien.cavelan/multilevel.zip, so that interested readers can
experiment with it and instantiate the model with parameters
of their own choice.

4.1 Simulation setup
Checkpoint and recovery costs both depend on the volume of
data to be saved, and are mostly determined by the hardware
resource used at each level. As such, we assume that recovery
cost for a given level is equivalent to the corresponding check-
pointing cost, i.e., R` = C` for 1 ≤ ` ≤ k (unless specified
otherwise). This a common assumption [14], [7], even though
in practice the recovery cost can be expected to be somewhat
smaller than the checkpoint cost [7], [8]. All costs are fixed and
independent (as discussed in Section 3.4.1).

The simulator is fed with k levels of errors and their MTBFs
µ` = 1/λ`, as well as the resilience parameters C` and R`.
For each of the 2k−1 possible subsets of levels (the last level
is always included), we take the optimal pattern given in
Theorem 2 and Corollary 1, and then try all possible roundings
(floor and ceiling) based on the optimal (rational) number of
checkpoints (nopt

` given in Equation (34)). For each rounding,
we compare the following three overheads:
• Simulated overhead, obtained by running the simulation

10000 times and averaging the results;
• Corresponding theoretical overhead, obtained from Equa-

tions (19), (22) and (24) using the integer solution that
corresponds to the rounding;

• Theoretical lower bound, obtained from Equation (31)
with the optimal rational solution.

In the following, we associate Young/Daly’s classical for-

mula, defined as W opt =
√

2C
Λ , with the highest checkpoint-

ing level available, i.e., C = Ck. Note that in this case,
Young/Daly’s formula and Equation (29) can be used inter-
changeably, and the corresponding theoretical overhead is ob-
tained with Hopt =

√
2ΛC .

4.2 Assessing accuracy of first-order approximation
In this section, we run simulations with two sets of parameters,
described in Table 1. For each set of parameters, we consider all
possible subsets of levels. Then, for each subset, we compute
the optimal pattern length and number of checkpoints to be
used at each level. We show the accuracy of our approach in
both scenarios, and we confirm the optimality of the subset of
levels returned by the dynamic programming algorithm.

Table 1: Sets of parameters (A) and (B) used as inputs for simulations.

Set From Level 1 2 3 4

(A) Moody C (s) 0.5 4.5 1051 -
et al. [14] MTBF (s) 5.00e6 5.56e5 2.50e6 -

(B) Balaprakash C (s) 10 30 50 150

et al. [1] MTBF (s) 3.60e4 7.20e4 1.44e5 7.20e5

4.2.1 Using set of parameters (A)
The first set of parameters (shown in set (A) of Table 1) corre-
sponds to the Coastal platform, a medium-sized HPC system
of 1104 nodes at the Lawrence Livermore National Laboratory
(LLNL). The Coastal platform has been used to evaluate the
Scalable Checkpoint/Restart (SCR) library by Moody et al. [14],
who provided accurate measurements for the checkpoint costs
using real applications (given in the first row of Table 1). There
are k = 3 levels of checkpoints. First-level checkpoints are
written to the local RAMs of the nodes, and this is the fastest
method (0.5s). Second-level checkpoints are also written to
local RAMs, but small sets of nodes collectively compute and
store parity redundancy data, which takes a little while longer
(4.5s). Lastly, Lustre is used to store third-level checkpoints
onto the parallel file system, which takes significantly longer
time (1051s). Failures were analyzed in [14], and the error rates
are given in the second row of Table 1. Note that the error rate
at level 2 is higher than those of levels 1 and 3.

Results: Table 2 and Figure 3 present the simulation results.
Table 2 shows, from left to right, the subset of levels used, the
number of checkpoints computed by our first-order approxi-
mation formula for each possible rounding (N1, N2, N3), the
corresponding optimal pattern length (W opt(s)), the simulated
overhead (Sim. Ov.), the corresponding theoretical overhead
(Th. Ov.), the absolute and relative differences of these two
overheads (Ab. Diff. = 100 × (Sim. Ov. - Th. Ov.), and Rel.
Diff. = 100 × (Sim. Ov. - Th. Ov.)/Sim. Ov.), and finally the
theoretical lower bound for this subset (Th. L.B.).

With k = 3, there are four possible subsets of levels,
and both the best simulated overhead and the corresponding
theoretical overhead are achieved for the subset {2, 3}, with
N2 = 35 and N3 = 1 (highlighted in bold in the table). First,
the difference between the simulated and theoretical overheads
is very small, with a difference < 0.7% in absolute values, and
a relative difference ranging from 2.9% (for subset {1, 2, 3}) to
8.14% (for subset {3}), which shows the accuracy of the first-
order approximation for this set of parameters. The simulated
overhead is always higher than the theoretical one, which is
expected, because the first-order approximation ignores some
lower-order terms. Next, we observe that, for each subset, all
roundings of the number of checkpoints yield similar over-
heads on this platform, and the difference between the best
and worst roundings is almost negligible.

Furthermore, using the best subset ({2, 3}) improves the
overhead by over 50% compared to using level-3 checkpoints
alone (as in Young/Daly’s result). This is indeed the subset
returned by the dynamic programming algorithm, and the
result matches closely the minimum theoretical lower bound.
Finally, comparing our result to the one obtained by the optimal
two-level algorithm by Di et al. [8] on this best subset, we
see that the simulated overheads are similar under the optimal
subset, as the patterns found using both approaches share the
same number of checkpoints and the pattern lengths are also
almost identical.

11

Table 2: Simulation results using set of parameters (A).

Levels N1 N2 N3 W opt (s) Sim. Ov. Th. Ov. Abs. Diff. Rel. Diff. Th. L.B.
{3} - - 1 2.96e4 7.74e-2 7.11e-2 0.63% 8.14% 7.11e-2

{1,3} 14 - 1 3.09e4 7.40e-2 6.85e-2 0.55% 7.43%
6.85e-2

13 - 1 3.09e4 7.39e-2 6.85e-2 0.54% 7.31%

{2,3} - 35 1 7.27e4 3.44e-2 3.33e-2 0.11% 3.20% 3.33e-2
- 34 1 7.25e4 3.46e-2 3.33e-2 0.13% 3.76%

{1,2,3} 33 33 1 7.27e4 3.46e-2 3.35e-2 0.11% 3.18%
3.35e-2

32 32 1 7.24e4 3.45e-2 3.35e-2 0.10% 2.90%

{3} {1,3} {2,3} {1,2,3}
Subsets of Levels

0.00

0.02

0.04

0.06

0.08

0.10

0.12

O
v

e
rh

e
a

d

Sim. Overhead (Young/Daly)

Sim. Overhead (Di et al.)

Theoretical L.B. (Optimal Subset)

Sim. Overhead (Best Rounding)

Corresp. Theoretical Overhead

Sim. Overhead (Worst Rounding)

Corresp. Theoretical Overhead

Figure 3: Simulated and (corresponding) theoretical overheads for all
possible subsets of levels with the best and worst roundings for each subset
using set of parameters (A).

4.2.2 Using set of parameters (B)

The second set of parameters correspond to the execution of
the LAMMPS application on the large BG/Q platform Mira at
the Argonne National Laboratory (ANL) [1]. The parameters
are presented in set (B) of Table 1. In this setting, the Fault Tol-
erance Interface (FTI) [2] was used, which has four checkpoint
levels (k = 4): Local checkpoint; Local checkpoint + Partner-
copy; Local checkpoint + Reed-Solomon coding; and PFS-based
checkpoint. The MTBFs correspond to the failure rates typically
observed for petascale HPC applications [2], [14], [7].

Table 3: Simulation results using set of parameters (B).

Levels N1 N2 N3 N4 W opt (s) Sim. Ov. Th. Ov. Abs. Diff. Rel. Diff. Th. L.B.
{4} - - - 1 2.45e3 1.43e-1 1.22e-1 1.9% 13.3% 1.22e-1

{1,4} 5 - - 1 3.79e3 1.18e-1 1.05e-1 1.3% 11.0%
1.05e-1

4 - - 1 3.61e3 1.18e-1 1.05e-1 1.3% 11.0%
{2,4} - 5 - 1 6.00e3 1.11e-1 1.00e-1 1.1% 9.9% 1.00e-1

{3,4} - - 11 1 1.55e4 9.96e-2 9.02e-2 0.94% 9.44%
9.01e-2

- - 10 1 1.44e4 9.91e-2 9.01e-2 0.90% 9.08%

{1,2,4}

9 3 - 1 6.41e3 1.11e-1 1.03e-1 0.8% 7.2%

1.02e-16 2 - 1 5.21e3 1.13e-1 1.04e-1 0.9% 8.0%
6 3 - 1 5.84e3 1.11e-1 1.03e-1 0.8% 7.2%
4 2 - 1 4.74e3 1.17e-1 1.05e-1 1.2% 10.3%

{1,3,4}

21 - 7 1 1.58e4 9.72e-2 8.99e-2 0.73% 7.51%

8.96e-218 - 6 1 1.40e4 9.82e-2 8.98e-2 0.84% 8.55%
14 - 7 1 1.04e4 9.68e-2 9.01e-2 0.67% 6.92%
12 - 6 1 1.26e4 9.85e-2 9.04e-2 0.81% 8.22%

{2,3,4}

- 16 4 1 1.70e4 1.07e-1 9.75e-2 0.95% 8.9%

9.68e-2- 12 3 1 1.36e4 1.04e-1 9.73e-2 0.67% 6.4%
- 12 4 1 1.47e4 1.05e-1 9.68e-2 0.82% 7.8%
- 9 3 1 1.17e4 1.05e-1 9.75e-2 0.75% 7.1%

{1,2,3,4}

24 8 4 1 1.66e4 1.09e-1 1.00e-1 0.9% 8.2%

9.92e-2

18 6 3 1 1.32e4 1.08e-1 9.99e-2 0.81% 7.5%
12 4 4 1 1.15e4 1.11e-1 1.03e-1 0.8% 7.2%
9 3 3 1 9.17e3 1.14e-1 1.05e-1 0.9% 7.9%
16 8 4 1 1.51e4 1.08e-1 9.95e-2 0.85% 7.9%
12 6 3 1 1.20e4 1.09e-1 1.00e-1 0.9% 8.3%
8 4 4 1 1.05e4 1.16e-1 1.05e-1 1.1% 9.5%
6 3 3 1 8.33e3 1.19e-1 1.08e-1 1.1% 9.2%

{4} {1,4} {2,4} {3,4} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}
Subsets of Levels

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

O
v

e
rh

e
a

d

Sim. Overhead (Young/Daly)

Sim. Overhead (Di et al.)

Theoretical L.B. (Optimal Subset)

Sim. Overhead (Best Rounding)

Corresp. Theoretical Overhead

Sim. Overhead (Worst Rounding)

Corresp. Theoretical Overhead

Figure 4: Simulated and (corresponding) theoretical overheads for all
possible subsets of levels with the best and worst roundings for each subset
using set of parameters (B).

Results: Table 3 and Figure 4 present the simulation results
for this set of parameters. There are 8 possible subsets of levels.
As before, we observe that the theoretical overhead is always
slightly smaller than the simulated one, with an absolute differ-
ence of less than 2%, and a relative difference between 6-14%,
demonstrating the accuracy of the model. Again, the results are
very close to the theoretical lower bound. For this platform, the
simulated overheads vary from 9.68% (with optimal subset of
levels {1, 3, 4} found by the dynamic programming algorithm)
to 14.3% (with level-4 checkpoints alone). For a given subset of
levels, the rounding does not play a significant role, as W opt is
also adjusted accordingly (increased or decreased) as a result of
rounding. For instance, we observe that, for subset {1, 2, 3, 4},
the numbers of checkpoints at levels 1 and 2 are halved for the
third rounding compared to the first rounding in Table 3, but
W opt is also reduced by 31%, so that for the same amount of
work, the number of checkpoints does not change by much.
We can also see that the pattern length W opt for the smallest
overhead is around 10400s, but only 2450s for the largest
overhead. In fact, the largest pattern lengths are obtained for
the highest cumulated checkpoint cost, which turns out to be 830s
for {2, 3, 4} with N2 = 16, N3 = 4, N4 = 1, and for {1, 2, 3, 4}
with N1 = 24, N2 = 8, N3 = 4 and N4 = 1. This is because using
more checkpoints both increases the error-free overhead and
reduces the time lost due to re-executions upon errors. As a
consequence, and to mitigate the aforementioned overhead, the
length of the pattern increases (e.g., W opt = 17000s for {2, 3, 4}
and W opt = 16600s for {1, 2, 3, 4}). And the converse is also
true: when using fewer checkpoints, the error-free overhead
decreases and the time lost upon errors increases. In order to
compensate, the pattern length decreases (e.g., W opt = 8330s
for {1, 2, 3, 4} with N1 =6, N2 =3, N3 =3 and N4 =1).

We note that, in this case, our first-order solution slightly
outperforms the iterative method by Di et al. [7] on multi-
level checkpointing (with a simulated overhead of 9.68e-2 com-
pared to 9.75e-2). The reason is that their algorithm computes
a solution under the independent checkpointing model, i.e.,
checkpoints at different levels are taken according to different
independent periods. However, it is not clear how such a
model can be implemented in practice due to the difficulties
as explained in Section 1 and the different options to rollback
to a checkpoint in case of a fault. Therefore, we transformed
their result to a pattern-based solution by rounding the differ-

12
Table 4: Set of parameters (C) used as input for simulations.

Set (C), from Di et al. [7]
Level 1 2 3 4

Case #A
C (s) 8 10 80 90
R (s) 8 10 80 90

MTBF (s) 2160 1440 8640 21600

Case #B
C (s) 1 20 60 70
R (s) 1 10 30 35

MTBF (s) 864 864 1080 1440

Case #A Case #B
0.0

0.5

1.0

1.5

2.0

O
v
e
rh
e
a
d

Young/Daly's formula (Simulated)

Our first-order approx. (Simulated)

Our first-order approx. (Theoretical)

Di et al.'s algorithm (Simulated)

Figure 5: Performance comparison of the three different approaches using
two cases from Di et al. [7].

ent numbers of checkpoints obtained using their algorithm to
create equal number of checkpoints at level `− 1 between two
consecutive level-` checkpoints. Although the best rounding
is selected here for comparison, the result can still change
drastically the number of checkpoints computed by their initial
rational solution without changing the pattern length, thus
increasing the overhead.

4.3 Comparing performance of different approaches
In this section, we conduct simulations using settings from Di et
al.’s recent work on multilevel checkpointing, which comprises
two cases with four levels [7] and eight cases with two levels [8],
thus covering a wide range of configurations. For each case,
we compare the performance of three different approaches: (a)
Young/Daly’s classical formula; (b) our first-order approxima-
tion formula; and (c) Di et al.’s iterative algorithm.

4.3.1 Using set of parameters (C)
We first run simulations for Cases #A and #B, whose parameters
are presented in Table 4. These parameters are based on the FTI
multilevel checkpointing model and have been used by Di et
al. [7] to evaluate the performance of their approach. Note that
the recovery cost is about half that of the checkpointing cost in
Case #B.

In their work, Di et al. considered independent checkpoint-
ing periods, as opposed to the nested method based on periodic
patterns (as discussed in Section 1). Although they provided an
optimal solution, an iterative approach was used to compute it
numerically in contrast to the simple formula we propose in this
paper. Recall that using independent checkpointing periods al-
lows checkpoints at different levels to be taken simultaneously,
which can hardly be done in practice. Adapting their solution
to our model results in rational numbers of checkpoints, and we
again use rounding to resolve this issue. We find that, using the
best roundings for both approaches, their solution turns out to

Table 5: Set of parameters (D) used as input for simulations.

Set (D), from Di et al. [8]
Level 1 2 Level 1 2

Case 1 C (s) 20 50 Case 5 C (s) 10 40

MTBF (s) 3600 21600 MTBF (s) 432 2160

Case 2 C (s) 20 50 Case 6 C (s) 100 20

MTBF (s) 1728 8640 MTBF (s) 432 2160

Case 3 C (s) 20 100 Case 7 C (s) 40 200

MTBF (s) 864 4320 MTBF (s) 288 1440

Case 4 C (s) 10 40 Case 8 C (s) 50 300

MTBF (s) 864 4320 MTBF (s) 216 1440

be very similar to ours (with the same number of checkpoints,
and close periods with < 1% difference).

Results: Figure 5 presents the overheads for both cases.
First, we observe that Di et al.’s optimal iterative algorithm has
almost identical performance to our solution, with a simulated
overhead around 45% for Case #A and 140% for Case #B under
both approaches. However, using Young/Daly’s formula to
checkpoint only at the highest level yields significantly worse
overheads (around 90% for Case #A and 170% for Case #B).
Overall, our solution is as good as Di et al.’s optimal numerical
one (but has much less complexity), and it is up to 45% better
than Young/Daly’s formula in Case #A and 30% better in
Case #B.

Note that the corresponding theoretical overhead of our
solution is close to the simulated one for Case #A, but starts to
diverge for Case #B. This is because first-order approximation
is only accurate when the resilience parameters and pattern
length are small compared to the MTBF, which is no longer
true for Case #B. Specifically, we have:

• In Case #A, the optimal subset of levels is {2, 4}. The
optimal pattern has length W opt = 1052s and consists of
N2 = 8 level-2 checkpoints followed by N4 = 1 level-
4 checkpoint, meaning that we have a level-2 checkpoint
every 131.5s of computation. So a level-2 checkpoint is
saved every 141.5s and a level-4 checkpoint is saved every
1222s. On the other hand, the combined MTBF for errors
at levels 1 and 2 (handled by level-2 checkpoints) is 864s
and the combined MTBF for errors at levels 3 and 4
(handled by level-4 checkpoints) is 6171s. Hence, we have
141.5
864 = 0.164 and 1222

6171 = 0.198, which are reasonably
small, making our solution accurate.

• In Case #B, the optimal subset of levels is {1, 4}, and the
optimal pattern has W opt =223s, N1 =5 and N4 =1. Thus,
we have a level-1 checkpoint every 44.6s of computation.
So a level-1 checkpoint is saved every 45.6s and a level-
4 checkpoint is saved every 298s. The MTBF for errors at
level 1 is 864s and the combined MTBF for errors at levels
2, 3 and 4 (handled by level-4 checkpoints) is 360s. Thus,
we have 44.6

864 = 0.052, which is fine, but 298
360 = 0.828,

which is too high and essentially makes the first-order
solution inaccurate.

Despite the difference between the theoretical and simulated
overheads under Case #B, the proximity of our solution to
Di et al.’s optimal numerical solution nevertheless shows the
usefulness of first-order approximation for determining the
optimal multi-level checkpointing patterns.

13

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0.0

0.5

1.0

1.5

2.0

O
v
e
rh
e
a
d

Young/Daly's formula (Simulated)

Our first-order approx. (Simulated)

Our first-order approx. (Theoretical)

Di et al.'s algorithm (Simulated)

Di et al.'s algorithm (Theoretical)

Case 7 Case 8
0

5

10

15

20

25

30

35

40

45

O
v
e
rh
e
a
d

Young/Daly's formula (Simulated)

Our first-order approx. (Simulated)

Our first-order approx. (Theoretical)

Di et al.'s algorithm (Simulated)

Di et al.'s algorithm (Theoretical)

Figure 6: Performance comparison of the three different approaches using
8 cases from Di et al. [8].

4.3.2 Using set of parameters (D)
Finally, we run simulations for eight cases, whose parameters
are presented in Table 5. These parameters have been used by
Di et al. [8] to evaluate their two-level checkpointing model,
and as such, each case consists of only two checkpointing
levels. In their work, the authors proposed an optimal solution
by solving complex mathematical equations using numerical
method. Again, for each case, we compare the simulated over-
heads obtained with the three different approaches.

In this set of parameters, the MTBF has a large variation,
ranging from more than 1 hour (Case 1) to less than 4 minutes
(Case 8). Similarly, the checkpointing costs vary from 10s
(Cases 4 and 5) to 300s (Case 8). Note that Cases 7 and 8
have both very short MTBFs and very high checkpointing costs,
resulting in a lot of errors and recoveries. In particular, the
checkpointing cost at level 2 in Case 8 (300s) is larger than
the MTBF at level 1 (216s).

Results: Figure 6 presents the simulation results for the
eight cases. First, we observe that the optimal algorithm by Di
et al. only yields a slightly better simulated overhead compared
to our simple first-order approximation solution (by less than
2% in Cases 1 to 6). However, our solution always improves
significantly over Young/Daly’s formula, from 2% (Case 1) up
to 100% (Case 6). Due to their short MTBFs, Cases 7 and 8 stand
out and incur much higher overheads compared to the first six
cases (thus their results are presented in a separate plot). Still,
considering Case 8, we are able to improve over Young/Daly’s
solution by as much as 2500% (in absolute value of the over-
head), and we are off the optimal simulated overhead by only
300%. In addition, Figure 6 shows the theoretical overheads
obtained both with our formula and the solution provided

by Di et al. in [8]. As expected, our first-order approximation
remains accurate when the MTBF is large, as in Cases 1, 2 and 4.
However, it becomes less accurate with shorter MTBFs and
higher error rates, especially in Cases 7 and 8 (which do not
represent healthy HPC platforms).

4.4 Summary of results
From the simulation results, we conclude that first-order ap-
proximation remains a valuable performance model for eval-
uating checkpointing solutions in HPC systems (as long as
the error rates stay reasonably low). We have demonstrated,
through an extensive set of simulations with a wide range of
parameters, the usefulness of multi-level checkpointing (over
using only one level of checkpoints) with significantly reduced
overheads. The results also corroborate the analytical study by
showing the benefit of selecting an optimal subset of levels
among all the levels available. Overall, our approach achieves
the optimal or near-optimal performance in almost all cases,
except when the MTBF is too small, in which case even the
optimal solution yields an unacceptably high overhead (e.g.,
Case 8 of Table 5).

5 CONCLUSION

This paper has studied multi-level checkpointing protocols,
where different levels of checkpoints can be set; lower levels
deal with frequent errors that can be recovered at low cost (for
instance with a memory copy), while higher levels allow us
to recover from all errors, such as node failures (for instance
with a copy in stable storage). We consider a general scenario
with k levels of faults, and we provide explicit formulas to
characterize the optimal checkpointing pattern, up to first-order
approximation. The overhead turns out to be of the order of∑k
`=1

√
2λ`C`, which elegantly extends Young/Daly’s classical

formula.
The first-order approximation to the optimal k-level check-

pointing pattern uses rational numbers of checkpoints, and we
prove that all segments should have equal lengths. We corrob-
orate the theoretical study by an extensive set of simulations,
demonstrating that greedily rounding the rational values leads
to an overhead very close to the lower bound. Furthermore, we
provide a dynamic programming algorithm to determine those
levels that should be selected, and the simulations confirm the
optimality of the subset of levels returned by the dynamic
programming algorithm.

The problem of finding a first-order optimal pattern with an
integer number of segments to minimize the overhead remains
open. It may well be the case that such an integer pattern is
not periodic at each level and uses different-length segments.
However, the good news is that the rounding of the rational
solution provided in this paper seems quite efficient in practice.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable comments, which have greatly improved the quality
of this paper. This research was funded in part by the European
project SCoRPiO, by the LABEX MILYON (ANR-10-LABX-
0070) of Université de Lyon, within the program “Investisse-
ments d’Avenir” (ANR-11-IDEX-0007) operated by the French
National Research Agency (ANR), by the PIA ELCI project,
and by the ANR RESCUE project. Yves Robert is with Institut
Universitaire de France.

14

REFERENCES

[1] P. Balaprakash, L. A. B. Gomez, M.-S. Bouguerra, S. M. Wild, F. Cap-
pello, and P. D. Hovland. Analysis of the tradeoffs between energy
and run time for multilevel checkpointing. In Proc. PMBS’14, 2014.

[2] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka. FTI: High performance fault tol-
erance interface for hybrid systems. In Proc. SC’11, 2011.

[3] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Optimal resilience pat-
terns to cope with fail-stop and silent errors. Research report RR-8786,
INRIA, 2015. Available at graal.ens-lyon.fr/∼yrobert/rr8786.pdf.
Short version appears in IPDPS’16.

[4] G. Bosilca et al. Unified model for assessing checkpointing protocols
at extreme-scale. Concurrency and Computation: Practice and Experience,
2013.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004.

[6] J. T. Daly. A higher order estimate of the optimum checkpoint interval
for restart dumps. FGCS, 22(3):303–312, 2006.

[7] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello. Optimiza-
tion of multi-level checkpoint model for large scale HPC applications.
In Proc. IPDPS’14, 2014.

[8] S. Di, Y. Robert, F. Vivien, and F. Cappello. Toward an optimal online
checkpoint solution under a two-level HPC checkpoint model. IEEE
Trans. Parallel & Distributed Systems, 2016, preprint available on the
IEEE digital library.

[9] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold. Evaluating
the Viability of Process Replication Reliability for Exascale Systems.
In Proc. SC’11, pages 44:1–44:12, 2011.

[10] R. G. Gallager. Stochastic Processes: Theory for Applications. Cambridge
University Press, New York, NY, USA, 2014.

[11] D. Hakkarinen and Z. Chen. Multilevel diskless checkpointing. IEEE
Transactions on Computers, 62(4):772–783, 2013.

[12] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cap-
pello. Modeling and tolerating heterogeneous failures in large parallel
systems. In Proc. ACM/IEEE Supercomputing’11. ACM Press, 2011.

[13] T. Hérault and Y. Robert, editors. Fault-Tolerance Techniques for High-
Performance Computing, Computer Communications and Networks.
Springer Verlag, 2015.

[14] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System. In Proc. SC’10, 2010.

[15] J. Plank, K. Li, and M. Puening. Diskless checkpointing. IEEE Trans.
Parallel Dist. Systems, 9(10):972–986, 1998.

[16] L. Silva and J. Silva. Using two-level stable storage for efficient
checkpointing. IEE Proceedings - Software, 145(6):198–202, 1998.

[17] N. H. Vaidya. A case for two-level distributed recovery schemes.
SIGMETRICS Perform. Eval. Rev., 23(1):64–73, 1995.

[18] J. W. Young. A first order approximation to the optimum checkpoint
interval. Comm. of the ACM, 17(9):530–531, 1974.

Anne Benoit received the PhD degree from Institut
National Polytechnique de Grenoble in 2003, and
the Habilitation à Diriger des Recherches (HDR)
from École Normale Supérieure de Lyon (ENS Lyon)
in 2009. She is currently an associate professor in
the Computer Science Laboratory LIP at ENS Lyon,
France. She is the author of 38 papers published
in international journals, and 78 papers published
in international conferences. She is the advisor of 7
PhD theses. Her research interests include algorithm
design and scheduling techniques for parallel and

distributed platforms, and also the performance evaluation of parallel sys-
tems and applications, with a focus on energy awareness and resilience. She
is Associate Editor of IEEE TPDS, JPDC, and SUSCOM. She is the program
chair of several workshops and conferences, in particular she is program
chair for HiPC’2016, program co-chair for ICPP’2017, and technical papers
chair for SC’2017. She is a senior member of the IEEE, and she has been
elected a Junior Member of Institut Universitaire de France in 2009.

Aurélien Cavelan completed his master at the Uni-
versity of Orléans in 2014, and then moved to École
Normale Supérieure de Lyon (ENS Lyon), where
he is currently a PhD candidate under the super-
vision of Anne Benoit and Yves Robert. As part of
completing his PhD, he is also a visiting student at
Argonne National Laboratory, where he is working
with Franck Cappello on optimizing the execution
of large application workflows subject to faults. His
main topics of interest include fault tolerance, en-
ergy efficiency and scheduling techniques for large

scale platforms.

Valentin Le Fèvre received the M.S. degree in
fundamental computer science from École Normale
Supérieure de Lyon (ENS Lyon, France) in 2016,
where he also received his B.S. degree in 2014. He is
mainly interested in high-performance computing,
in particular resilience and scheduling problems.

Yves Robert received the PhD degree from Institut
National Polytechnique de Grenoble. He is currently
a full professor in the Computer Science Laboratory
LIP at ENS Lyon. He is the author of 7 books,
147 papers published in international journals, and
219 papers published in international conferences.
He is the editor of 11 book proceedings and 13
journal special issues. He is the advisor of 30 PhD
theses. His main research interests are scheduling
techniques and resilient algorithms for large-scale
platforms. Yves Robert served on many editorial

boards, including IEEE TPDS and JPDC. He was the program chair of
HiPC’2006 in Bangalore, IPDPS’2008 in Miami, ISPDC’2009 in Lisbon,
ICPP’2013 in Lyon and HiPC’2013 in Bangalore. He is a Fellow of the
IEEE. He has been elected a Senior Member of Institut Universitaire de
France in 2007 and renewed in 2012. He has been awarded the 2014
IEEE TCSC Award for Excellence in Scalable Computing, and the 2016
IEEE TCPP Outstanding Service Award. He holds a Visiting Scientist
position at the University of Tennessee Knoxville since 2011. Contact him
at Yves.Robert@inria.fr.

Hongyang Sun received his Ph.D. in Computer
Science from Nanyang Technological University,
Singapore in 2011. Prior to that, he completed his
B.Eng. in Computer Engineering from the same
university, and his M.Sc. in Computer Science from
the National University of Singapore under the
Singapore-MIT Alliance program. He has held re-
search position at the Toulouse Institute Computer
Science Research, France. Currently, he is a Postdoc
Researcher at ENS de Lyon and INRIA, France. His
main research interests include high-performance

computing, scheduling and resource management, energy efficiency, design
and analysis of algorithms, and fault tolerance. He has published over 30
peer-reviewed papers in international journals and conferences, and has
served in the program committee of SBAC-PAD’15, IPDPS’16.

