
Assessing the Impact of Partial Verifications
Against Silent Data Corruptions

Aurélien Cavelan∗, Saurabh K. Raina†, Yves Robert∗‡, Hongyang Sun∗
∗Ecole Normale Superieure de Lyon & INRIA, France
†Jaypee Institute of Information Technology, India

‡University of Tennessee Knoxville, USA

Abstract—Silent errors, or silent data corruptions, constitute
a major threat on very large scale platforms. When a silent
error strikes, it is not detected immediately but only after some
delay, which prevents the use of pure periodic checkpointing
approaches devised for fail-stop errors. Instead, checkpointing
must be coupled with some verification mechanism to guarantee
that corrupted data will never be written into the checkpoint
file. Such a guaranteed verification mechanism typically incurs
a high cost. In this paper, we assess the impact of using
partial verification mechanisms in addition to a guaranteed
verification. The main objective is to investigate to which extent it
is worthwhile to use some light cost but less accurate verifications
in the middle of a periodic computing pattern, which ends with a
guaranteed verification right before each checkpoint. Introducing
partial verifications dramatically complicates the analysis, but
we are able to analytically determine the optimal computing
pattern (up to the first-order approximation), including the
optimal length of the pattern, the optimal number of partial
verifications, as well as their optimal positions inside the pattern.
Performance evaluations based on a wide range of parameters
confirm the benefit of using partial verifications under certain
scenarios, when compared to the baseline algorithm that uses
only guaranteed verifications.

Index Terms—resilience; silent error; silent data corruption;
partial/guaranteed verification; checkpoint; recall; optimal pat-
tern.

I. INTRODUCTION

As the number of components proliferate in High-
Performance Computing (HPC) systems, resilience has be-
come a major issue. Future exascale platforms are expected
to be composed of one million computing nodes [12]. Even
if each individual node provides an optimistic Mean Time
Between Failures (MTBF) of, say 100 years, the whole
platform will experience a failure around every 50 minutes
on average, which is shorter than the execution time of many
HPC applications. Failures will become part of the norm when
computing at scale, and effective resilient protocols will be the
key to achieving sustained performance.

The de-facto general-purpose error recovery technique in
HPC is checkpoint and rollback recovery [8], [15]. Such
protocols employ checkpoints to periodically save the state
of a parallel application, so that when an error strikes some
process, the application can be restored to one of its former
states. However, checkpoint and rollback recovery assumes
instantaneous error detection, and therefore applies to fail-stop
errors. Silent errors (a.k.a. silent data corruptions) constitute
another source of error in HPC, whose threat can no longer
be ignored [24], [28], [22]. The cause of silent errors could

be soft faults in L1 cache or multiple bit flips due to cosmic
radiation. In contrast to a fail-stop error whose detection is
immediate, a silent error is identified only when the corrupted
data is activated and/or leads to an unusual application behav-
ior. Such detection latency raises a new challenge: if the error
struck before the last checkpoint and is detected after that
checkpoint, then the checkpoint is corrupted and cannot be
used to restore the application.

One approach to dealing with silent errors is by maintaining
several checkpoints in memory [20]. This multiple-checkpoint
approach, however, has three major drawbacks. First, it is
very demanding in terms of stable storage: each checkpoint
typically represents a copy of the entire memory footprint
of the application, which may well correspond to several
terabytes. Second, the application cannot be recovered from
fatal failures: suppose we keep k checkpoints in memory, and
a silent error struck before all of them. Then, all live check-
points are corrupted, and one would have to re-execute the
entire application from scratch. Third, even without memory
constraints, we have to determine which checkpoint is the last
valid one, which is needed to safely recover the application
from. However, due to the detection latency, we do not know
when the silent error has occurred, hence we cannot identify
the last valid checkpoint.

An arguably more effective approach is by employing some
verification mechanism and combining it with checkpoint-
ing [9], [25], [1]. The simplest protocol with this approach
would be to execute a verification procedure just before
taking each checkpoint. If the verification succeeds, then one
can safely store the checkpoint. Otherwise, it means that an
error has struck since the last checkpoint, which was duly
verified, and we can safely recover from that checkpoint to
resume the execution of the application. This simple protocol
eliminates the drawbacks of the multiple-checkpoint approach,
provided that a guaranteed verification mechanism can be
efficiently implemented. Of course, one can also design more
sophisticated protocols by coupling multiple verifications with
one checkpoint or even interleaving multiple checkpoints and
verifications [1], [4]. The optimal pattern (i.e., number of
verifications per checkpoint) in these protocols would be
determined by the relative cost of executing a verification
compared to checkpointing.

In practice, not all verification mechanisms are 100%
accurate and at the same time admit fast implementations. In
fact, to guarantee the accurate and efficient detection of silent

errors for scientific applications is one of the hardest chal-
lenges in extreme-scale computing [2]. Indeed, thorough error
detection is usually very costly and often involves expensive
techniques, such as replication [16] or even triplication [21].
For many parallel applications, alternative techniques exist
that are capable of detecting some but not all errors. We
call these techniques partial verifications. One example is the
data dynamic monitor (DADYMO) [2], which is a lightweight
silent error detector designed to recognize anomalies in HPC
datasets based on physical laws and spatial correlations. A
similar fault filter has also been designed to detect silent
errors in the temperature data of the Orbital Thermal Imaging
Spectrometer (OTIS) [10]. Although not completely accu-
rate, these partial verification techniques nevertheless cover
a substantial amount of silent data corruptions, and more
importantly, they incur very low overhead. These properties
make them attractive candidates for designing more efficient
resilient protocols.

The objective of this paper is to assess the potential benefits
of using partial verifications against silent errors. The error
detection accuracy of a partial verification is characterized
by its recall r, which is the ratio between the number of
detected errors and the total number of errors occurred during
a computation. For example, the DADYMO tool has been
shown to have a recall around 50% measured on synthetic
scientific benchmarks, with negligible overhead [2]. Note that
a guaranteed verification can be considered as a special type
of partial verification with a recall r = 1. Each partial
verification also has an associated cost V , which is typically
much smaller than that of a guaranteed verification.

The problem under study can then be stated as follows:
given the costs of checkpointing C and guaranteed verification
V ∗ for an application, as well as the recall r and cost V of a
partial verification, what is the optimal pattern that minimizes
the expected execution time? As checkpointing is usually
more expensive in terms of both time and space required, to
avoid the risk of saving corrupted data, we only keep verified
checkpoints by placing a guaranteed verification right before
each checkpoint. Hence, a pattern refers to a work segment
that repeats over time, and that is delimited by verified
checkpoints, possibly with a sequence of partial verifications
in between. Figure 1 shows a periodic pattern with two partial
verifications followed by a verified checkpoint.

Timew1 w2 w3 w1 w2 w3

V ∗ C V V V ∗ C V V V ∗ C

Figure 1: A periodic pattern (highlighted in red) with two
partial verifications and a verified checkpoint.

Intuitively, including more partial verifications in a pattern
increases the error detecting probability, thus reduces the
waste due to re-executions, but that comes at the price of
additional overhead in an error-free execution. Therefore, an
optimal strategy must seek a good tradeoff between error-
induced waste and error-free overhead. Of course, the length

of a pattern should also depend on the platform MTBF µ.
For example, in the classical protocol for fail-stop errors
where verification is not needed, the optimal checkpointing
period is known to be

√
2µC as given by Young [27] and

Daly [11]. A similar result is also known for silent errors, and
the optimal period in that case is

√
µ(C + V ∗) if only verified

checkpoints are used [4], [3]. These formulas provide first-
order approximations to the optimal patterns in the respective
scenarios, and are valid when the resilient parameters satisfy
C, V ∗ � µ.

In this paper, we focus on the design of resilient protocols
for silent errors while embracing partial verifications. Given
the values of C, V ∗, V and r, and when the platform MTBF
µ is large in front of these parameters, we derive an optimal
pattern that characterizes: (1) the optimal length of the pattern;
(2) the optimal number of partial verifications in the pattern;
and (3) the optimal position of each partial verification inside
the pattern. Furthermore, we determine the optimal configu-
ration of a partial verification when its cost and recall can
be traded off with each other. These results provide important
extensions to the classical formulas in the field [27], [11], [4],
[3], and to the best of our knowledge, are the first to include
partial verifications. Unlike in the classical case, however, a
silent error may not be detected by a partial verification and
could get propagated to the subsequent work segments inside
a pattern, thus significantly complicating the analysis. Our
evaluation results based on a wide range of parameters also
demonstrate that employing partial verifications indeed lead
to performance gains compared to the baseline algorithm that
relies only on guaranteed verifications.

The rest of this paper is organized as follows. Section II
surveys the related work. Section III introduces the model,
notations and assumptions. Section IV derives the optimal
pattern using partial verifications and verified checkpoints.
Performance evaluations are presented in Section V. Finally,
Section VI provides concluding remarks and hints for future
directions.

II. RELATED WORK

Most traditional resilient approaches maintain a single
checkpoint. If the checkpoint file contains corrupted data,
the application faces an irrecoverable failure and must restart
from scratch. This is because error detection latency is ignored
in traditional rollback and recovery schemes, which assume
instantaneous error detection (therefore mainly targeting fail-
stop errors) and are unable to accommodate silent errors. This
section describes some related work on detecting and handling
silent errors. A more comprehensive list of techniques and
references is provided by Lu, Zheng and Chien [20].

Considerable efforts have been directed at detection tech-
niques to reveal silent errors. Hardware mechanisms, such
as ECC memory, can detect and even correct a fraction of
errors, but in practice they are complemented with software
techniques. Guaranteed error detection is very costly, and
usually involves expensive redundancy or replication tech-
niques. The simplest technique is triple modular redundancy
and voting [21]. Elliot et al. [14] propose combining partial

redundancy and checkpointing, and confirm the benefit of dual
and triple redundancy. Fiala et al. [16] apply process replica-
tion (each process is equipped with a replica, and messages are
quadruplicated) in the RedMPI library for high-performance
scientific applications. Ni et al. [23] use checkpointing and
replication to detect and enable fast recovery of applications
from both silent errors and hard errors.

Application-specific information can be very useful to en-
able ad-hoc solutions, which dramatically decrease the cost
of detection. Besides the fault filtering technique applied
in DADYMO [2] and OTIS [10] as mentioned previously,
algorithm-based fault tolerance (ABFT) [18], [6], [26] is
another well-known technique, which uses checksums to
detect up to a certain number of errors in linear algebra
kernels. Other techniques have also been advocated. Benson,
Schmit and Schreiber [5] compare the result of a higher-order
scheme with that of a lower-order one to detect errors in the
numerical analysis of ODEs and PDEs. Sao and Vuduc [25]
investigate self-stabilizing corrections after error detection in
the conjugate gradient method. Heroux and Hoemmen [17]
design a fault-tolerant GMRES capable of converging despite
silent errors, and Bronevetsky and de Supinski [7] provide a
comparative study of detection costs for iterative methods.

Theoretically, various protocols that couple verification and
checkpointing have been studied. Aupy et al. [1] propose
and analyze two simple patterns: one with k checkpoints
and 1 verification, and the other with k verifications and
1 checkpoint. The latter pattern, which needs to maintain
only one checkpoint, is also analyzed in [3] to accommodate
both fail-stop and silent errors. Benoit, Raina and Robert [4]
extend the analysis of [1] by including p checkpoints and
q verifications that are interleaved to form arbitrary patterns.
All of these results assume the use of guaranteed verifications
only. In this paper, we provide the first theoretical analysis that
includes partial verifications.

III. MODEL

In this section, we state the problem and the assumptions,
and present an analytical model for assessing the performance
of a pattern.

A. Problem Statement

Consider the execution of a parallel application on a
platform subject to silent errors. Let r denote the recall of
a verification, which is defined as the fraction of detected
errors over the total number of errors. We distinguish a partial
verification with recall r < 1 and the guaranteed verification
with recall r = 1. Then 1− r is the probability that an error
remains undetected by the partial verification, in which case
the execution of the application goes on and reaches the next
partial verification, and possibly further on, eventually leading
to a rollback and recovery from the last valid checkpoint.

In this paper, we focus on the divisible-load application
model, where checkpoints and verifications can be inserted
at any point in execution of the application. We enforce
resilience through the use of a periodic pattern as shown
in Figure 1. A set of partial verifications can be placed at

arbitrary locations within the pattern, but the pattern should
always end with a verified checkpoint, that is, a guaranteed
verification followed immediately by a checkpoint. This is to
ensure that only one checkpoint needs to be maintained and
that it is always valid, thereby ruling out the risk of a fatal
failure.

Let C denote the cost of checkpointing, R the cost of
recovery, V ∗ the cost of the guaranteed verification and V
the cost of the partial verification with recall r. The objective
is to find an optimal pattern that minimizes the expected
execution time (or makespan) of the application. In particular,
the optimal pattern should specify:
• The length of the pattern;
• The number of partial verifications in the pattern;
• The positions of partial verifications inside the pattern.

B. Assumptions

We assume that the platform MTBF µ is large in front of
the resilience parameters C, R, V and V ∗. This assumption
is commonly made in the literature (see, e.g., [27], [11], [1],
[3], [4]), which allows to make first-order approximations in
the analysis to obtain close-form solutions.

As in [1], [4], we assume that the length W of a pattern also
satisfies W � µ, thus implicitly ruling out the possibility that
more than one error could occur in the same period, including
the re-executions. Moreover, the error distribution is assumed
to be uniform inside a pattern, which is again a consequence of
the first-order approximation to the Poisson process typically
used to model the occurrence of failures.

Finally, we assume that errors only strike during computa-
tions, while verifications and I/O transfers (checkpointing and
recovery) are protected and are thus error-free.

C. Analytical Model

Suppose a pattern with work W contains m partial verifi-
cations. Thus, the total length of the pattern is S =W + off,
where off = mV + V ∗ + C is the overhead in a fault-free
execution. The pattern is divided into n = m + 1 segments,
each followed by a partial verification, except the last one,
which is followed by a guaranteed verification.

Let Tbase denote the base time of the application without
any overhead due to resilience techniques (without loss of
generality, assume unit-speed execution). First, imagine a
fault-free execution: for every pattern of length S, only W
units of work get executed, so the execution time Tff in a
fault-free execution is given by Tff =

S
W Tbase.

Now, let Tfinal denote the expected execution time (or
makespan) of the application when silent errors are taken into
account. On average, errors occur every µ time units, where µ
denotes the platform MTBF. For each error, suppose F time
units are lost on average (where F will be computed later).
Based on the first-order assumption, we expect Tbase

µ errors
during the entire execution of the application. Therefore, we

derive that

Tfinal = Tff +
Tbase

µ
F =

(
S

W
+
F
µ

)
Tbase

=

(
1 +

off

W
+
F
µ

)
Tbase . (1)

It remains to determine F , the expected time loss due to
each failure. The value of F depends on the pattern used
and it includes three components: re-executing a fraction of
the total work W of the pattern, recovering from the last
checkpoint, and re-executing some of the verifications in the
pattern. Hence, the general form of F can be expressed as
F = freW +R+ β, where fre denotes the expected fraction
of work that is re-executed, and β is a linear combination of
V and V ∗. Plugging the expression of F back into Equation
(1), we get

Tfinal =

(
off

W
+
fre

µ
W + 1 +

R+ β

µ

)
Tbase . (2)

For a given pattern, the optimal work length that minimizes
Tfinal can then be computed from Equation (2) as

W ∗ =

√
µ · off

fre
, (3)

and the optimal period is S = W ∗ + off. The expectation of
the optimal execution overhead H can be expressed as

H =
T ∗final − Tbase

Tbase
= 2

√
offfre

µ
+
R+ β

µ
.

When the platform MTBF µ is large in front of all resilience
parameters, we can identify the dominant term in the above
expression. Indeed, in that case, the value R + β becomes
negligible in front of µ, and we have

H = 2
√
offfre

√
1

µ
+ o(

√
1

µ
) . (4)

Equation (4) shows that the optimal pattern when µ is large is
obtained when the product offfre is minimized. This calls for
a tradeoff, as a smaller value of off with fewer verifications
leads to a larger re-execution time, thus a larger value of fre.
In the next section, we show how to compute fre for a given
pattern, and use this characterization in terms of the product
offfre to derive the optimal pattern.

IV. OPTIMAL PATTERN WITH PARTIAL VERIFICATIONS

We present the optimal pattern in this section. First, we
compute the value of fre for a give pattern (Section IV-A).
Then, we derive the optimal positions of partial verifications
(Section IV-B), followed by the optimal number of them
in a pattern (Section IV-C). After that, we determine the
optimal tradeoff between the cost and recall of a partial
verification (Section IV-D). We end this section with an
example illustrating the benefit of using partial verifications
(Section IV-E).

A. Computing fre

Consider a pattern with W work, m partial verifications and
a verified checkpoint. The pattern is divided into n = m+ 1

segments, whose work sizes are denoted by w1, w2, . . . , wn.
For each segment i, we define αi = wi/W to be the fraction
of its work in the pattern. Hence, we have

∑n
i=1 αi = 1.

The following proposition expresses the expected re-execution
fraction when an error occurs in the pattern.

Proposition 1. Suppose a pattern contains m partial veri-
fications, thus n = m + 1 segments, followed by a verified
checkpoint. Then, the expected re-execution fraction in case
of an error is given by

fre = αTAα , (5)

where α =
[
α1 α2 . . . αn

]T
is a vector containing the

fraction of work of each segment and A is the symmetric
matrix defined by Aij = 1

2

(
1 + (1− r)|i−j|

)
.

Proof. First, note that if no error occurs during the execution
of a pattern, then the execution time is exactly the size of
the pattern itself and there is no re-execution. When an error
does occur, we assumed in Section III-B that no other error
would occur again in the same pattern, including during the re-
execution, because of the large platform MTBF µ. Moreover,
the occurrence of the error is uniformly distributed.

With partial verifications, an error occurred in a segment
may not be detected immediately, and may propagate to the
following segments, thereby increasing the execution time
until it gets eventually detected (in the worst case by the
guaranteed verification at the end). Once the error is detected,
all the previous work is lost, and we have to recover from
the last checkpoint and re-execute the whole pattern again.
Therefore, in order to express fre, we need to compute the
expected amount of time between the moment when the error
strikes and the moment when it is actually detected.

Consider the pattern given in Figure 1 as an example.
Suppose an error strikes in the pattern. We have the following
scenarios:

• with probability α1, the error strikes in the first segment
and we lose α1W work. With probability 1−r, the error
is not detected by the first verification, so we further
lose α2W work executing the second segment. With
probability (1− r)2, the error remains undetected by the
second verification; in this case, it propagates to the third
and last segment, where it is eventually detected by the
guaranteed verification, so we lose an additional amount
of work α3W .

• with probability α2, the error strikes in the second
segment and we lose (α1+α2)W work. With probability
1−r, the error is not detected by the second verification,
so we further lose α3W work executing the last segment.

• with probability α3, the error strikes in the third and
last segment. In this case, the error will be detected by
the guaranteed verification, and the whole work pattern
(α1 + α2 + α3)W is lost.

Altogether, the total expected re-execution fraction for this

pattern with three segments can be expressed as

fre = α1

(
α1 + (1− r)α2 + (1− r)2α3

)
+α2 (α1 + α2 + (1− r)α3)

+α3(α1 + α2 + α3) .

More generally, for a pattern with m partial verifications and
n = m+ 1 segments, we can derive

fre =

n∑
i=1

αi

 i∑
j=1

αj +

n∑
j=i+1

(1− r)j−iαj

 ,

which can be rewritten in the following matrix form:

fre = αTBα, (6)

where B is the following n× n Toeplitz matrix

B =


1 1− r (1− r)2 . . . (1− r)n−1
1 1 1− r . . . (1− r)n−2
...

...
...

. . .
...

1 1 1 . . . 1

 .

Replacing B by A = B+BT

2 in Equation (6), we have the
same result, and we obtain

A = 1
2


2 1 + (1− r) . . . 1 + (1− r)n−1

1 + (1− r) 2 . . . 1 + (1− r)n−2
...

...
. . .

...
1 + (1− r)n−1 1 + (1− r)n−2 . . . 2


which concludes the proof.

B. Optimal positions of partial verifications

For a given number m of partial verifications to be used in
a pattern, the following theorem shows their optimal positions
and the corresponding expected re-execution fraction.

Theorem 1. Consider a pattern with m partial verifications
thus n = m+1 work segments. Suppose the work fraction of
the i-th segment is αi, so

∑n
i=1 αi = 1. Then, the expected

fraction of work fre that is re-executed in case of error is
minimized when α = α∗, where

α∗i =

{
1

(n−2)r+2 for i = 1 and i = n
r

(n−2)r+2 for 2 ≤ i ≤ n− 1
, (7)

and the minimal re-execution fraction is

f∗re =
1

2

(
1 +

2− r
(n− 2)r + 2

)
. (8)

Somewhat unexpectedly, the n segments do not share the
same length in the optimal solution: the first and last segments
are longer than the others. When r = 1, we retrieve equal-
length segments, which is in accordance with the results of [4].

Proof. The goal is to minimize fre = αTAα (from Equa-
tion (5)) subject to the constraint

∑n
i=1 αi = 1. We rewrite

the constraint as cTα = 1, where c =
[
1 1 . . . 1

]T
.

Hence, we have a quadratic minimization problem under
a linear constraint. If the matrix A is symmetric positive

definite, it can be shown that this minimization problem
admits a unique solution

f opt
re =

1

cTA−1c
, (9)

which is obtained at

αopt =
A−1c

cTA−1c
. (10)

In the following, we first show that A is indeed symmetric
positive definite. Then we prove Equations (9) and (10).
Finally, we prove that αopt = α∗ and f opt

re = f∗re, where α∗

and f∗re are given by Equations (7) and (8). This will conclude
the proof of Theorem 1.

1) A is symmetric positive definite (SPD): In this section,
we write An instead of simply A for a problem of size n (with
n segments). We know that An is symmetric by construction.
To show that An is positive definite, we show that all its
principal minors are strictly positive. Recall that the principal
minor of order k of An is the determinant of the submatrix of
size k that consists of the first k rows and columns of An. But
this submatrix is exactly Ak, the matrix for the problem of
size k, so the result will follow if we show that det(An) > 0
for all n ≥ 1. We prove by induction on n that

det(An) =
rn−1(2− r)n−2((n− 3)r + 4)

2n
. (11)

For n = 1, Equation (11) gives det(A1) = 1, which is correct.
Assume that the result holds up to n− 1. Computing the first
coefficient (A−1n)11 of the inverse of An using the co-factor
method, we get that(

A−1n
)
11

=
det(An−1)

det(An)
.

And now comes the magic! It turns out that An is an extended
KMS matrix (such that Aij = u + vσ|i−j| with u = v = 1

2
and σ = 1−r in our case). Dow [13, Section 1.5] provides the
inverse of such matrices and shows that they can be expressed
using only seven coefficients. In particular, we have(

A−1n
)
11

=
2((n− 4)r + 4)

r(2− r)((n− 3)r + 4)
.

Thus, we can derive

det(An) =
det(An−1)(
A−1n

)
11

=
det(An−1)r(2− r)((n− 3)r + 4)

2((n− 4)r + 4))

=
rn−2(2− r)n−3((n− 4)r + 4)r(2− r)((n− 3)r + 4)

2n−12((n− 4)r + 4)

=
rn−1(2− r)n−2((n− 3)r + 4)

2n
,

where the third line uses the inductive hypothesis for
det(An−1). This shows that Equation (11) holds for det(An)
and completes the proof that An is SPD.

2) Optimal solution: We aim at minimizing fre = αTAα
subject to cTα = 1. Let αopt = f opt

re A−1c, where f opt
re =

1
cTA−1c

, as in Equations (9) and (10). We check that cTαopt =

f opt
re (cTA−1c) = 1, so αopt is indeed a valid solution.

Because A is SPD, we have X = (α−αopt)TA(α−αopt) ≥
0 for any valid vector α, and X = 0 if and only if α = αopt.
Developing X , we get

X = αTAα− 2αTAαopt + (αopt)TAαopt .

We have αTAαopt = f opt
re αT c = f opt

re because cTα = 1.
Similarly, we get (αopt)TAαopt = f opt

re . Hence, we derive that
X = αTAα−f opt

re ≥ 0, with equality if and only if α = αopt.
This shows that the optimal value of fre is achieved at αopt,
and is equal to f opt

re .
3) αopt = α∗ and f opt

re = f∗re: We now show that Aα∗ =
f∗rec. From that we can directly derive α∗ = f∗reA

−1c and
1 = cTα∗ = f∗re(c

TA−1c) hence f opt
re = f∗re, and finally

αopt = α∗.
To show that Aα∗ = f∗rec, we proceed as follows. Since

α∗ =
1

(n− 2)r + 2

[
1 r . . . r 1

]T
=
rc+ (1− r)d

Dn
,

where Dn = (n− 2)r+2 and d =
[
1 0 . . . 0 1

]T
, we

can compute

Aα∗ =
rAc+ (1− r)Ad

Dn
.

For 1 ≤ i ≤ n, we get

(Ac)i =
1

2

i−1∑
j=1

(
1 + (1− r)i−j

)
+

n−i∑
j=0

(
1 + (1− r)j

)
=

1

2

(
n+

(1− r)− (1− r)i

r
+

1− (1− r)n−i+1

r

)
and

r(Ac)i =
nr + (1− r)− (1− r)i + 1− (1− r)n−i+1

2
.

Then, we get

(Ad)i =
1 + (1− r)i−1 + 1 + (1− r)n−i

2

and

(1− r)(Ad)i =
2(1− r) + (1− r)i + (1− r)n−i+1

2
.

Finally, we can compute

(Aα∗)i =
nr + (1− r) + 1 + 2(1− r)

2Dn
=
nr + 3(1− r) + 1

2Dn

=
1

2
· (n− 3)r + 4

(n− 2)r + 2
=

1

2

(
1 +

2− r
(n− 2)r + 2

)
= f∗re .

This concludes the proof of Theorem 1.

C. Optimal number of partial verifications

The following theorem shows the number of partial verifi-
cations used in an optimal pattern.

Theorem 2. If r
2−r > 2V

C+V ∗ , then the optimal number of
partial verifications in a pattern is either bm∗c or dm∗e,

where

m∗ = −2− r
r

+

√(
2− r
r

)(
C + V ∗

V
− 2− r

r

)
. (12)

If r
2−r ≤

2V
C+V ∗ , then the optimal pattern contains no partial

verification.

Proof. Consider a pattern containing m partial verifications,
thus n = m + 1 work segments. The fault-free overhead is
off(m) = mV + V ∗ + C. From Theorem 1, the minimum
re-execution fraction is

f∗re(m) =
1

2

(
1 +

2− r
(m− 1)r + 2

)
.

Define F (m) = off(m)f∗re(m). From the analysis outlined in
Section III-C, the optimal m should minimize F (m).

Differentiating F (m) with respect to m and setting
∂F (m)/∂m = 0, we get

m2+2

(
2− r
r

)
m+2

(
2− r
r

)2

−
(
2− r
r

)(
C + V ∗

V

)
= 0 .

Solving the above equation gives us a critical point m∗ as
shown in Equation (12), which is positive (hence a potential
solution) if r

2−r >
2V

C+V ∗ .
Now, taking the second-order derivative of F (m), we get

∂2F (m)

∂m2
=
r(2− r) ((C + V ∗)r − V (2− r))

(2 + (m− 1)r)
3 ,

which is positive (hence ensures the solution is minimum) for
all m ∈ [0,∞) if r

2−r >
V

C+V ∗ .
In practice, the number of partial verifications can only be

an integer. Thus, the optimal number, if m∗ > 0, is either
dm∗e or bm∗c, whichever leads to a smaller F (m).

Altogether, we have completely characterized the optimal
pattern of length S =W + off:
• The number m of partial verifications in the pattern is

given by Theorem 2, so that off = mV + V ∗ + C;
• The positions of these partial verifications within the

pattern, together with the optimal value of fre, are given
by Theorem 1;

• The work length W of the pattern is given by Equa-
tion (3).

D. Optimal cost-recall tradeoff

Now, we determine the optimal tradeoff between the cost
and recall of a partial verification. Consider a partial verifi-
cation, whose cost V and recall r could be traded off against
each other by adjusting the parameters of the verification
mechanism. For instance, the error detection capability of
ABFT can be improved by adding more checksums to the
matrices at the cost of additional computations [19]. The
question is to determine the optimal configuration in order
to minimize the execution overhead.

To find the optimal tradeoff, we define a = r
2−r to be the

accuracy of the partial verification, and define b = V
C+V ∗ to

be its normalized cost. The following theorem states that the

optimal configuration is achieved when the accuracy-to-cost
ratio (ACR) is maximized.

Theorem 3. Suppose the cost V and recall r of a partial
verification can be traded off against each other. Then, the
minimum execution overhead is achieved when the accuracy-
to-cost ratio a/b is maximized.

Proof. Consider a partial verification configuration with fixed
cost V and recall r.

Suppose r
2−r ≥

2V
C+V ∗ , then Theorem 2 gives the optimal

number m∗ of partial verifications that minimizes F (m) =
off(m)f∗re(m). From Equation (12), we have

m∗ = −1

a
+

√
1

a

(
1

b
− 1

a

)
.

Plugging the above Equation into F (m) = off(m)f∗re(m) and
simplifying, we can get the optimal value of F as follows:

F ∗ = off(m
∗)f∗re(m

∗)

=
C + V ∗

2
(bm∗ + 1)

(
1 +

1

am∗ + 1

)
=

C + V ∗

2

(√
1− b

a
+

√
b

a

)2

.

When the platform MTBF µ is large, the optimal execution
overhead (ignoring the lower-order term in Equation (4)) can
then be expressed as

H∗ =

√
2(C + V ∗)

µ

(√
1− b

a
+

√
b

a

)
. (13)

Since r
2−r ≥

2V
C+V ∗ , we have 0 ≤ b/a ≤ 1/2. As the func-

tion f =
√
1− x+

√
x is increasing in [0, 1/2], the minimum

execution overhead in Equation (13) is achieved when b/a is
minimized, or equivalently when a/b is maximized.

We point out that the derivation in Theorem 3 is based on
the fractional number m∗ of partial verifications instead of the
optimal integer value. As a result, the optimal configuration
and overhead are subject to rounding error. The magnitude of
such error has been evaluated numerically in Section V-B and
is shown to be small for practical parameter settings.

E. An example

The analysis in the preceding subsections has completely
characterized the optimal pattern and configuration using
partial verifications. To demonstrate the results, let us consider
an example.

Suppose a platform consists of 105 nodes, each with a
MTBF of 100 years. Then, the overall MTBF of the system
is µ = 100×365×24×3600/105 = 31536 seconds. Suppose
the costs of checkpointing and guaranteed verification are
C = 600 seconds and V ∗ = 300 seconds, respectively. A
partial verification has three configurations with a cost-recall
(V, r) tradeoff given by (20, 0.5), (30, 0.8) and (50, 0.9). The
following computes the optimal pattern.

First, we calculate the accuracy-to-cost ratio (ACR)

a

b
=
r(C + V ∗)

(2− r)V
for the three partial verifications, which are 15, 20, and
14.73, respectively. Theorem 3 suggests to configure the
partial verification with the highest ACR, i.e., V = 30 and
r = 0.8. Then, Theorem 2 states that the minimum overhead
in this configuration is achieved when m∗ ≈ 5.0383, and the
optimal integer number of partial verifications in a pattern is
bm∗c = 5. The optimal period, according to Equation (3), is
computed to be W ∗ =

√
µ · off(5)/f∗re(5) ≈ 7335 seconds,

and Theorem 1 indicates that the six segments in the optimal
pattern are approximately 1411, 1128, 1128, 1128, 1128, 1411
seconds, respectively. Finally, Equation (13) shows that the
optimal expected overhead (ignoring the lower-order term) is
about 28.6%.

When the application uses only guaranteed verifications,
which is a special case of our analysis with V = V ∗ and
r = 1, the optimal pattern contains roughly

√
C/V − 1 equi-

distanced verifications followed by a verified checkpoint. In
this example, the optimal pattern uses either 0 or 1 guaranteed
verification as intermediate verification. Both cases turn out
to lead to the same execution overhead around 33.8% with a
checkpointing period of 5328 seconds.

This example illustrates that the use of partial verifications
provides more than 5% improvement in the expected exe-
cution time of the application. This means saving 1 hour
for every 20 hours of execution on the platform, which is
significant in terms of cost and resource usage. In the next
section, we will evaluate the impact of partial verifications
with a wider range of parameters.

V. PERFORMANCE EVALUATION

In order to assess the impact of partial verifications and to
determine the performance improvement they can provide, we
evaluate the performance of the optimal algorithm described
in the preceding section that employs partial verifications.
Experiments are conducted using Maple for two different
scenarios exhibiting a wide and realistic gamut of parame-
ters. The usefulness of partial verifications is evaluated by
comparing with the baseline algorithm that uses only guar-
anteed verifications. Section V-A describes the experimental
setup, including the scenarios and range of parameter values.
Section V-B presents the results through various plots and
highlights the improvements over the baseline algorithm.

A. Evaluation framework

We present two scenarios used for instantiating the perfor-
mance model for the algorithm with partial verifications. The
target platform consists of 105 components whose individual
MTBF is 100 years, which depicts a typical large-scale
platform. This amounts to a platform MTBF of µ = 31536
seconds. The other parameters depend on the scenario. For
scenario 1, the checkpointing time is fixed at 600 seconds
(10 minutes) and the guaranteed verification mechanism (with
recall r = 1) takes 300 seconds to detect all the errors. For

this scenario, performance is estimated by varying the cost V
of partial verifications from 20 to 300 and varying the recall
r from 0.1 to 0.9. Scenario 2, being more optimistic, fixes the
parameter values at C = 100 seconds, V ∗ = 30 seconds and
varies V from 3 to 30. For both scenarios, we also conduct
evaluations by varying the number m of partial verifications
(from 0 up to 15) to be able to monitor the behavior of the
overhead in its entirety.

Regarding the accuracy of the performance model, we point
out that, for the considered platform MTBF, the total length of
the optimal interval S is always bounded by 0.3µ for scenario
1 and by 0.1µ for scenario 2, thereby resulting in a high
accuracy of approximation.

B. Results and analysis

Based on the above framework, we report the evaluation
results through various plots highlighting the behavior of
the overhead, and the improvements achieved by employing
partial verifications.

1) Impact of m: We first evaluate the impact of the number
m of partial verifications on the expected execution overhead.
Figure 2 shows the overhead behavior when fixing the cost
of the partial verification to be V = 20 for scenario 1 and
V = 3 for scenario 2. For both scenarios, the overhead is
greatly diminished by employing partial verifications, except
when r = 0.1, in which case the overhead almost overlaps
with that of the baseline algorithm before rising. However,
forcing too many verifications eventually makes the error-
free overhead rise, while forcing too few increases the error-
induced overhead. The range of m shows that the overhead
indeed falls down to the optimal value and then starts rising.
A similar behavior can be observed among the curves with
different recall values. The plots indicate an improvement in
overhead of approximately 6% for scenario 1 and 3% for
scenario 2 over the baseline algorithm for the verification with
the highest recall r = 0.9.

2) Impact of r and V : Figures 3 and 4 illustrate, for
scenarios 1 and 2 respectively, as a function of r and V , the
optimal expected overhead (on the left) and the corresponding
optimal number of partial verifications (on the right). We can
see in both 3D plots that the optimal overhead is the same for
many r, V combinations, which is obtained when no partial
verification is used, either due to an expensive cost or due to
a low recall value. In such cases, the baseline algorithm has
better performance. On the other hand, there exist many cases
where partial verifications should be used. This is evident from
the improvements in the expected overhead, which in scenario
1 is up to 6.3% and in scenario 2 is up to 2.3%.

It can also be inferred from the contour plots that employing
partial verifications in a pattern is beneficial for scenario 1 in
40% of the cases and for scenario 2 in 60% of the cases.
For all these cases, the optimal pattern uses at least one
partial verification. Although an increase in verification cost
adversely influences the optimal overhead and we quickly
move to the yellow region (representing all r, V combinations
for which m = 0) in both scenarios, a sufficiently high recall
value would still offset that impact. For example, Figure 4

shows that, for r ≥ 0.7, it is always beneficial to use partial
verification(s) irrespective of its cost.

3) Impact of ACR: Figure 5 shows, for scenario 1, the
expected execution overhead as a function of the accuracy-to-
cost ratio (ACR) discussed in Section IV-D. In Figure 5(a),
both the optimal and worst-case overheads are plotted as ACR
is varied from 0 to 30. The optimal overhead is computed
based on Equation (13), which gives the ideal value by
using the optimal fractional m∗ as shown in Equation (12).
However, since practical number of partial verifications can
only be an integer, the worst overhead reflects the maximum
possible overhead for each ACR value. This is obtained by
varying r from 0.01 to 0.99 and V from 20 to 300, and by
computing among them the worst optimal integer solution.
We can see that the two curves exhibit almost negligible
difference, especially for higher ACR values. This provides
a strong support to the result of Theorem 3 on the selection
of optimal partial verification configuration.

Figure 5(b) further shows, between the optimal and worst
overhead curves, multiple overheads that can be obtained as
scattered points. For the sake of clarity, the number of data
points has been reduced in the plot to show the configuration
with m = 0 up to m = 5 only within the ACR range of 2 to 5.
This plot shows, for each ACR value, the existence of multiple
configurations that lead to different expected overheads and
number of partial verifications. For example, for ACR = 2.85,
one configuration results in an overhead of 33.8% without
using any partial verification while another configuration has
an overhead of 33.4% with three partial verifications. In
this case, a difference of 0.4% is observed in terms of the
overhead, and the gap becomes smaller as ACR increases.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have evaluated the impact of partial
verifications in the detection of silent data corruptions. Since
silent errors are only identified when the corrupted data is
activated, enforcing some verification mechanism is a promis-
ing approach to tackling them. For many parallel applica-
tions, partial verification offers a low-overhead alternative
to the guaranteed counterpart, at the expense of reduced
error detection accuracy. By incorporating partial verifications,
we have derived the optimal pattern (up to the first-order
approximation) in a resilient protocol, including the optimal
configuration, the optimal checkpointing period, the optimal
number of verifications, as well as their optimal positions
inside the pattern. These results provide dramatic extensions
to the existing formulas in the field. Evaluations based on
a wide range of parameters confirm the benefit of using
partial verifications in certain scenarios, when compared to
the baseline algorithm that uses only guaranteed verifications.

In future work, we will investigate the use of multiple
configurations of a partial verification with different costs and
recalls. Note that Theorem 3 does not consider the case where
different configurations can be mixed together in a single
pattern. The question is whether better performance can be
achieved by utilizing more than one configuration simultane-
ously. Another direction is to consider “false positives”, which

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

m

E
x
p

ec
te

d
 O

v
er

h
ea

d

r = 0.9

r = 0.7

r = 0.5

r = 0.3

r = 0.1

(a) Scenario 1: C = 600, V ∗ = 300 and V = 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

m

E
x
p

ec
te

d
 O

v
er

h
ea

d

r = 0.9

r = 0.7

r = 0.5

r = 0.3

r = 0.1

(b) Scenario 2: C = 100, V ∗ = 30 and V = 3

Figure 2: Expected overhead for two scenarios with different recall r and number m of partial verifications.

Figure 3: Optimal expected overhead on the left and a contour plot on the right showing the optimal number of partial
verification(s) for varying r and V values when C = 600 and V ∗ = 300. The contour plot also shows the r and V
combinations for each value of the optimal m.

are present in many fault filters, such as the ones described in
[2], [10]. False positives are measured by the precision value,
defined as the number of actual errors over the total number
of detected errors. Indeed, there exists a tradeoff between
the recall and precision by adjusting the range parameters,
based on which the computed data is examined by such filters.
Analyzing the performance of verification mechanisms in the
presence of both false positives and false negatives will be a
challenge.

ACKNOWLEDGMENT

This research was funded in part by the European project
SCoRPiO, by the LABEX MILYON (ANR-10-LABX-0070)
of Université de Lyon, within the program “Investissements
d’Avenir” (ANR-11-IDEX-0007) operated by the French Na-
tional Research Agency (ANR), by the PIA ELCI project, and
by the ANR RESCUE project. Yves Robert is with Institut
Universitaire de France.

REFERENCES

[1] G. Aupy, A. Benoit, T. Hérault, Y. Robert, F. Vivien, and D. Zaidouni.
On the combination of silent error detection and checkpointing. In
Proceedings of the 19th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC), pages 11–20, 2013.

[2] L. Bautista Gomez and F. Cappello. Detecting silent data corruption
through data dynamic monitoring for scientific applications. SIGPLAN
Notices, 49(8):381–382, 2014.

[3] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Assessing general-
purpose algorithms to cope with fail-stop and silent errors. In Pro-
ceedings of the 5th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS), pages 215–236, 2014.

[4] A. Benoit, Y. Robert, and S. K. Raina. Efficient checkpoint/verification
patterns for silent error detection. ICL Research report RR-1403, 2014.

[5] A. R. Benson, S. Schmit, and R. Schreiber. Silent error detection in
numerical time-stepping schemes. Int. J. High Performance Computing
Applications, DOI: 10.1177/1094342014532297, 2014.

[6] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based
fault tolerance applied to high performance computing. J. Parallel
Distrib. Comput., 69(4):410–416, 2009.

[7] G. Bronevetsky and B. de Supinski. Soft error vulnerability of iterative
linear algebra methods. In Proceedings of the International Conference
on Supercomputing (ICS), pages 155–164, 2008.

[8] K. M. Chandy and L. Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer
Systems, 3(1):63–75, 1985.

[9] Z. Chen. Online-ABFT: An online algorithm based fault tolerance
scheme for soft error detection in iterative methods. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 167–176, 2013.

[10] E. Ciocca, I. Koren, Z. Koren, C. M. Krishna, and D. S. Katz.
Application-level fault tolerance in the orbital thermal imaging spec-
trometer. In Proceedings of the 10th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC’04), pages 43–48, 2004.

Figure 4: Optimal expected overhead on the left and a contour plot on the right showing the optimal number of partial
verification(s) for varying r and V values when C = 100 and V ∗ = 30. The contour plot also shows the r and V combinations
for each value of the optimal m.

(a) (b)

Figure 5: Optimal and worst overhead curves against accuracy-to-cost ratio (ACR) when C = 600 and V ∗ = 300.

[11] J. T. Daly. A higher order estimate of the optimum checkpoint interval
for restart dumps. Future Generation Comp. Syst., 22(3):303–312, 2006.

[12] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka,
P. Messina, T. Moore, R. Stevens, A. Trefethen, and M. Valero. The
international exascale software project: a call to cooperative action by
the global high-performance community. HJPCA, 23(4):309–322, 2009.

[13] M. Dow. Explicit inverses of toeplitz and associated matrices. ANZIAM
J., 44(E):185–215, 2003.

[14] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. En-
gelmann. Combining partial redundancy and checkpointing for HPC.
In Proceedings of the IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 615–626, 2012.

[15] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM
Computing Survey, 34:375–408, 2002.

[16] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and
R. Brightwell. Detection and correction of silent data corruption for
large-scale high-performance computing. In Proc. SC’12, page 78,
2012.

[17] M. Heroux and M. Hoemmen. Fault-tolerant iterative methods via se-
lective reliability. Research report SAND2011-3915 C, Sandia National
Laboratories, 2011.

[18] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for
matrix operations. IEEE Trans. Comput., 33(6):518–528, 1984.

[19] J. Jou and J. Abraham. Fault tolerant matrix operations on multiple
systems using weighted checksums. In Proc. SPIE 0495, Real-Time
Signal Processing VII, pages 94–101, 1984.

[20] G. Lu, Z. Zheng, and A. A. Chien. When is multi-version checkpointing
needed? In Proc. 3rd Workshop on Fault-tolerance for HPC at extreme
scale (FTXS), pages 49–56, 2013.

[21] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy
to improve computer reliability. IBM J. Res. Dev., 6(2):200–209, 1962.

[22] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System. In Proc. of the ACM/IEEE SC Conf., pages 1–11, 2010.

[23] X. Ni, E. Meneses, N. Jain, and L. V. Kalé. ACR: Automatic
Checkpoint/Restart for Soft and Hard Error Protection. In Proc. SC’13.
ACM, 2013.

[24] T. O’Gorman. The effect of cosmic rays on the soft error rate of a
DRAM at ground level. IEEE Trans. Electron Devices, 41(4):553–557,
1994.

[25] P. Sao and R. Vuduc. Self-stabilizing iterative solvers. In Proceedings
of the Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems (ScalA), 2013.

[26] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault tolerant
preconditioned conjugate gradient for sparse linear system solution. In
Proceedings of the ACM International Conference on Supercomputing
(ICS), pages 69–78, 2012.

[27] J. W. Young. A first order approximation to the optimum checkpoint
interval. Comm. of the ACM, 17(9):530–531, 1974.

[28] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin.
IBM experiments in soft fails in computer electronics. IBM J. Res. Dev.,
40(1):3–18, 1996.

