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Abstract—Both fairness and efficiency are crucial measures
for the performance of parallel applications on multiprocessor
systems. In this paper, we study online adaptive schedulingfor
multiple sets of such applications, where each set may contain
one or more jobs with time-varying parallelism profile. This
scenario arises naturally when dealing with several applications
submitted simultaneously by different users in a large parallel
system, where both user-level fairness and system-wide efficiency
are important concerns. To achieve fairness, we use the equi-
partitioning algorithm, which evenly splits the available processors
among the active job sets at any time. For efficiency, we apply
a feedback-driven adaptive scheduler, which periodicallyadjusts
the processor allocations within each set by consciously exploiting
the jobs’ execution history. We show that our algorithm is
competitive for the objective of minimizing the set response time.
For sufficiently large jobs, this theoretical result improves upon an
existing algorithm that provides only fairness but lacks efficiency.
Furthermore, we conduct simulations to empirically evaluate our
algorithm, and the results confirm its improved performanceusing
malleable workloads consisting of a wide range of parallelism
variation structures.

Index Terms—Adaptive scheduling; Online algorithms;
Feedback-driven scheduling; Parallel applications; Multiprocessor
systems; Set response time; Fairness; Efficiency

I. I NTRODUCTION

Scheduling parallel applications on multiprocessor systems
has been a fundamental area of research in computer science
for decades [8], [11], [14]. Recently, as more parallel systems
have been deployed to support high-performance computing
infrastructures, such as various cloud computing servicesin
large clusters and data centers, efficient scheduling on these
platforms will play an even more important role in boosting
application performance and increasing system utilization.

Since many parallel systems nowadays are shared by multiple
users, a natural scenario arises when each user simultaneously
submits several applications to the system. An crucial schedul-
ing goal in this scenario is to achieve efficient execution for
the applications while at the same time offering a level of
fairness among different users. In this paper, we consider such
a scenario, in which a collection of parallel job sets needs
to be scheduled on a multiprocessor system and each job set
corresponds to the set of applications submitted by a particular
user of the system. We are interested in theresponse timeof
a job set, which is defined to be the duration between when
the job set is submitted and when all jobs in the job set are
completed. The objective is to minimize the overall response
time of all job sets, or theset response time.

As pointed out by Robert and Schabanel [15], the metric
of set response time benchmarks both fairness and efficiency

of a scheduling algorithm. In fact, it represents a more gen-
eral performance measure that incorporates two widely used
metrics, namelytotal response timeand makespan, as special
cases. Suppose that each job set in the collection contains only
a single job, the set response time becomes the total response
time of all jobs in the collection. At the other extreme, if the
collection contains only a single job set, the set response time
is simply the makespan. To schedule a collection of job sets,
an algorithm needs to allocate processors at both thejob-set
level and thejob level. That is, it needs to specify the number
of processors allocated to each job set, as well as the processor
allocation for each job within the job set.

We adopt theonline adaptivescheduling model [9], which
requires an algorithm to make scheduling decisions in an online
manner without any knowledge of the jobs’ future characteris-
tics, such as their release time and remaining work, etc. This is
a natural assumption since such information is indeed generally
not available to the operating system schedulers. However,
the online scheduler is allowed to be adaptive, i.e., it can
dynamically adjust the jobs’ processor allocations at runtime.
This is in contrast to the traditionalstatic scheduling[11],
which restricts the processor allocation of a job to be constant
throughout its execution. Since modern parallel applications
often exhibit irregular and time-varying parallelism structures,
static scheduling may either under-utilize system resources or
cause job execution delays. With flexible runtime support [17],
[18], adaptive schedulingis able to benefit from the malleable
behavior of the jobs’ processor requirements and hence appears
to be a more promising approach to scheduling modern parallel
applications. The performance of an online adaptive scheduler
is measured usingcompetitive analysis[2], which compares the
online algorithm with an optimal offline scheduler.

A well-known online adaptive scheduler is Equi-partitioning
(EQUI) [22], which at any time divides the total available
processor resources equally among all jobs present in the
system. This algorithm, although simple, is able to ensure
fairness by automatically adjusting the processor allocations
whenever a new job is admitted into the system or an existing
job is completed and thus leaves the system. In fact, such
simple notion of fairness is sufficient to guarantee satisfying
performance when each user submits only one job. In particular,
Edmonds et al. [7] showed that EQUI is (2 +

√
3)-competitive

with respect to the total response time of all jobs if they are
released at the same time. Using resource augmentation anal-
ysis [10], Edmonds [6] also showed that EQUI achievesO(1)-
competitive for arbitrarily released jobs when it is augmented
with O(1) times more resources than the optimal. However,



despite its excellent performance for the total response time,
EQUI fares poorly in terms of the makespan, which to a certain
extent reflects the system efficiency when there is only one user
in the system. Since EQUI does not consider how efficiently
each job is able to utilize the allocated processors, it may under-
utilize the system resources particularly when different jobs
can have very different processor requirements. In [15], Robert
and Schabanel showed that EQUI is Θ( lnn

ln lnn
)-competitive with

respect to the makespan even if all jobs are batch released,
wheren is the total number of jobs in the system.

To schedule a collection of job sets, both user-level fairness
and system-wide efficiency turn out to be critical. In [15],
Robert and Schabanel applied EQUI to both scheduling levels
by equally dividing the total available processors among all
active job sets and within each job set equally dividing the
allocated processors to its active jobs. They showed that the
resulting algorithm EQUI◦EQUI achieves a competitive ratio of
(2+
√
3+o(1)) lnn

ln lnn
with respect to the set response time when

all job sets are batch released, wheren is the maximum number
of jobs in a set. This result suggests that the set response
time ratio of a scheduling algorithm actually combines the total
response time ratio and the makespan ratio of the corresponding
algorithms at the job-set level and the job level, respectively.
Hence, it is important to retain both fairness and efficiencyin
order to achieve satisfying performance for this more general
scheduling metric.

To improve application efficiency, feedback-driven adaptive
schedulers [1], [9], [20] were recently introduced. UnlikeEQUI,
which obliviously allocates processors to jobs regardlessof
their actual resource requirements, feedback-driven schedulers
periodically adjust processors among the jobs by consciously
exploiting the jobs’ execution history. In particular, Agrawal et
al. [1] introduced the A-GREEDY scheduler that periodically
collects the resource utilization of each job, and based on this
information estimates the job’s future processor requirement.
It has been shown that A-GREEDY wastes at most a con-
stant fraction of a job’s allocated processors, and thus indeed
achieves efficient processor utilization [1]. Furthermore, by
combining A-GREEDY with a conservative resource allocator,
such as Dynamic Equi-partitioning (DEQ) [12], He et al. [9]
showed that the feedback-driven algorithm AGDEQ achieves
O(1)-competitive with respect to the makespan regardless of
the number of jobs, provided that the jobs under consideration
are sufficiently large. Recently, Sun et al. [20] proposed another
adaptive scheduler ACDEQ, which uses a control-theoretical
approach to estimate the jobs’ processor requirements and it
has been shown to improve upon AGDEQ in terms of both
feedback stability and system efficiency.

In this paper, aiming at both user-level fairness and system-
wide efficiency, we bring together the benefit of the EQUI

algorithm and that of the feedback-driven algorithm AGDEQ,
and propose a fair and efficient online adaptive scheduler
EQUI◦AGDEQ for any collection of job sets. Using competitive
analysis, we show that the set response time ratio of our
algorithm indeed combines the total response time ratio and
the makespan ratio of the respective algorithms in a non-trivial
manner. Specifically, we prove that EQUI◦AGDEQ possesses
the following desirable properties:

• EQUI◦AGDEQ achievesO(1)-competitive with respect to
the set response time when all job sets are batch released.
This result improves the competitive ratioΘ( lnn

ln lnn
) of

EQUI◦EQUI [15] for sufficiently large jobs, wheren is
the maximum number of jobs in a set.

• EQUI◦AGDEQ achieves O(1)-speed O(1)-competitive
with respect to the set response time for arbitrarily released
job sets. This result extends the same ratio obtained in [16]
from jobs with specific parallelism structure to sufficiently
large jobs with any parallelism profile.

Furthermore, we also conduct simulations to empirically
evaluate the performance of EQUI◦AGDEQ, and to compare it
with EQUI◦EQUI and another algorithm EQUI◦ACDEQ which
combines EQUI with the feedback-driven scheduler ACDEQ.
The simulations are carried out usingmalleable jobs [8]
generated from Downey’s parallel workload model [5] and
augmented with a wide range of internal parallelism structures
[3]. The results confirm that the algorithms which utilize
feedback-driven schedulers indeed achieve better performances
than EQUI◦EQUI in terms of set response time as well as
processor utilization. The improvement is a direct result that
these algorithms exhibit both fairness and efficiency while
EQUI◦EQUI provides only fairness but lacks efficiency.

The rest of this paper is organized as follows. Section II
formally defines the scheduling problem. Section III describes
the EQUI◦AGDEQ algorithm, followed by its analysis for both
batched and arbitrarily released job sets in Section IV. Thesim-
ulation results are presented in Section V. Finally, Section VI
concludes the paper.

II. PROBLEM DEFINITIONS

A. Job Model and Scheduling Model

We adopt the job model used in [19], [20] to represent a par-
allel application that consists of a series of phases with different
degrees of parallelism. Specifically, we consider a collection
J = {J1,J2, · · · ,Jm} of m job sets, which correspond tom
different users. Each job setJi = {Ji1, Ji2, · · · , Jini

} contains
ni jobs, which correspond to the applications submitted by
the i-th user. Each jobJij = 〈J1

ij , J
2
ij , · · · , J

kij

ij 〉 contains
kij phases with each phaseJk

ij having an amount ofwork
wk

ij , wherewk
ij > 0, and a maximum parallelismhk

ij , where
hk
ij ≥ 1. Suppose that at timet job Jij is in its k-th phase and

is allocatedaij processors, then its effectivespeedupis given
by Γk

ij(t) = min{aij , hk
ij}. Hence, on processors of speeds for

any s > 0, the execution rateof the job at timet is given by
sΓk

ij(t). Thespanlkij of phaseJk
ij , which represents the amount

of time to execute the phase withhk
ij or more processors of

unit speed, is thereforelkij = wk
ij/h

k
ij . Thework w(Jij) of job

Jij is given byw(Jij) =
∑kij

k=1 w
k
ij , and thespanl(Jij) of the

job is l(Jij) =
∑kij

k=1 l
k
ij . Moreover, for each job setJi, we

define itsset workto bew(Ji) =
∑ni

j=1 w(Jij) and define its
set spanto be l(Ji) = maxj=1···ni

l(Jij).
At any time t, given a total numberP of processors, a

scheduling algorithm needs to decide the processor allocation
a(Ji, t) for each job setJi, as well as the processor allocation
a(Jij , t) for each jobJij within job setJi, where1 ≤ i ≤ m
and1 ≤ j ≤ ni. We require that the total processor allocation
cannot exceed the total number of available processors, i.e.,



∑m
i=1

∑ni

j=1 a(Jij , t) ≤ P . Let rij denote therelease timeof
job Jij and letri denote therelease timeof job setJi. In this
paper, we assume that all jobs in a job set are released at the
same time, i.e.,rij = ri for all 1 ≤ j ≤ ni. Moreover, if all job
sets are released in a singlebatch, their release times are equal
to 0. Otherwise, we can assume without loss of generality that
the first released job set arrives at time0. Let ckij denote the

completion time of thek-th phase of jobJij , and letcij = c
kij

ij

denote thecompletion timeof job Jij . The completion time
ci of job set Ji is given by ci = maxj=1...ni

cij . We also
require that a valid schedule cannot begin to execute a phase
of a job unless it has completed all its previous phases. To
simplify analysis as in many previous work [6], [9], [15], [19],
[20], we allow the processor allocation of a job to take non-
integer values. The fractional allocation can be considered as
time-sharing a processor with other jobs.

B. Objective Function

The response timeor flow timefij of job Jij is the duration
between the completion time and the release time of the job,
i.e., fij = cij − rij , and theresponse timefi of job setJi is
given byfi = ci−ri. Thetotal response timeF (J ) of all jobs
in J is F (J ) =

∑m
i=1

∑ni

j=1 fij and themakespanM(J ) of
all jobs inJ is M(J ) = maxi=1···m,j=1···ni

cij . Our objective
is to minimize the total response time of all job sets, or the
set response timeH(J ), which is given byH(J ) =

∑m
i=1 fi.

A job Jij is said to beactiveat time t if it has been released
but not completed att, i.e., rij ≤ t ≤ cij . A job set Ji is
said to beactive at time t if it contains at least one active
job at t. An alternative expression for the set response time
is thus given byH(J ) =

∫∞

0 mtdt, wheremt denotes the
number of active job sets at timet. As pointed out in [15], the
set response time of a job set collectionJ has the following
interesting property: ifJ = {J1} contains a single job set, then
the set response time is simply the makespan of all jobs inJ ;
if J = {J1,J2, · · · ,Jm} contains a collection of singleton
job sets, where for eachi = 1 · · ·m, we haveJi = {Ji1},
then the set response time is the total response time of all jobs
in J . Hence, the objective of set response time in some sense
combines both makespan and total response time.

We usecompetitive analysis[2] to compare the set response
time of an online algorithm with that of an optimal offline
scheduler. An online algorithm is said to bec-competitiveif its
set response time satisfiesH(J ) ≤ c ·H∗(J ) for any job set
collectionJ , whereH∗(J ) denotes the set response time ofJ
under an optimal offline scheduler. Since an online algorithm
does not have any prior knowledge about the jobs while the
optimal offline scheduler knows everything in advance, it is
generally not possible to get good competitive ratios when the
job sets can have arbitrary release time [6], [16]. In such case,
we use theresource augmentation analysis[10], which gives
the online algorithm extra resources and in a sense limits the
power of the adversary. An online algorithm is then said to
be s-speedc-competitiveif its set response timeHs(J ) on
processors of speeds, wheres > 1, satisfiesHs(J ) ≤ c ·
H∗

1 (J ) for any job set collectionJ , whereH∗
1 (J ) denotes

the set response time ofJ under the optimal offline scheduler
using unit-speed processors.

C. Lower Bounds for Set Response Time

For any job set collectionJ , we define its total span
to be l(J ) =

∑m
i=1 l(Ji), and define itssquashed work

to be ŵ(J ) = 1
P

∑m
i=1 i · w(Jπ(i)), where π(·) denotes a

permutation of the job sets sorted in non-increasing work order,
i.e.,w(Jπ(1)) ≥ w(Jπ(2)) ≥ · · · ≥ w(Jπ(m)). Lemma 1 below
states that the total span and the squashed work can serve as two
lower bounds for the set response time of any job set collection,
where the latter one only applies to batched job sets. In fact,
these two lower bounds resemble the well-known lower bounds
for the total response time of a single job set [7], [6], [9]. Due
to space constraint, the detailed proofs for all lemmas of this
paper are omitted, and can be found in the full version.

Lemma 1:To schedule any job set collectionJ on P
processors of unit speed, the optimal set response time is at
least the total span ofJ , i.e., H∗

1 (J ) ≥ l(J ); if all job sets
are batch released, the optimal set response time also satisfies
H∗

1 (J ) ≥ ŵ(J ), whereŵ(J ) is the squashed work ofJ .

III. T HE EQUI◦AGDEQ ALGORITHM

In this section, we introduce an online adaptive algorithm
EQUI◦AGDEQ, which combines the well-known algorithm
EQUI [22] with the feedback-driven scheduler AGDEQ [9] for
scheduling any collection of job sets.

A. EQUI Algorithm

EQUI (Equi-partitioning) algorithm [22] simply divides the
total number of processors evenly among all active job sets
at any time. Suppose that at timet there aremt active
job sets, then each active job setJi receives an allocation
a(Ji, t) = P/mt of processors. Hence, EQUI only reallocates
the processors whenever a new job set is released or an existing
job set is completed. Although simple, this algorithm does
ensure absolute fairness among the competing job sets by
giving each of them the same processor resources.

B. AGDEQ Algorithm

Within each job set, the efficiency of the allocated processors
are guaranteed by consciously exploiting the jobs’ execution
history and periodically adjusting the processor allocations
among the jobs. This is realized by the feedback-driven al-
gorithm AGDEQ [9], which works based on the interaction
between the A-GREEDY [1] scheduler and the DEQ [12] allo-
cator after eachscheduling quantum. Specifically, A-GREEDY

collects the execution statistics of a job in each quantum, based
on which it calculates the job’sprocessor desire, that is, how
many processors the job needs, for the next quantum. The DEQ

allocator then decides aprocessor allocationfor each job in the
next quantum according to the processor desires of all jobs.As
this process only involves the execution history of the jobsbut
not their future characteristics, AGDEQ can be considered as a
non-clairvoyantalgorithm [13], [9]. In the following, we will
describe the desire calculation strategy of A-GREEDY and the
processor allocation policy of DEQ separately.

1) A-GREEDY Scheduler: The A-GREEDY scheduler [1]
calculates the processor desires of a job using a sim-
ple multiplicative-increase multiplicative-decreasestrategy. For
each jobJij in a scheduling quantumq, let d(Jij , q) and
a(Jij , q) denote its processor desire and processor allocation,



respectively. We say that jobJij is satisfied in quantumq
if its processor allocation is at least its processor desire,
i.e., a(Jij , q) ≥ d(Jij , q). Otherwise, the job isdeprived if
a(Jij , q) < d(Jij , q). Let tq denote the time when quantumq
starts and letL denote the duration of the quantum. A-GREEDY

collects the amount of workw(Jij , q) completed for jobJij in
quantumq, i.e., w(Jij , q) =

∫ tq+L

tq
sΓkt

ij (t)dt, wherekt is the
phase jobJij is executing at timet and s is the processor
speed. Given that the total allocated processor cycles for job
Jij in quantumq is a(Jij , q)sL, job Jij is said to beefficient
if its completed work is at leastδ fraction of the total allocated
processor cycles, i.e.,w(Jij , q) ≥ δ·a(Jij , q)sL, whereδ ≤ 1 is
called theutilization parameter. Otherwise, the job isinefficient
if w(Jij , q) < δ ·a(Jij , q)sL. The processor desired(Jij , q+1)
of job Jij for the next quantumq + 1 is then calculated based
on whether the job is satisfied or deprived and whether it is
efficient or inefficient in quantumq as shown below:

d(Jij , q+1) =







d(Jij , q) · ρ if efficient and satisfied inq,
d(Jij , q)/ρ if inefficient in q,
d(Jij , q) if efficient and deprived inq,

whereρ > 1 is called theresponsiveness parameter. The initial
desire of the job when it first entered the system is simply set
as1 to start with.

2) DEQ Allocator: The DEQ (Dynamic Equi-partitioning)
allocator [12] distributes the processors among the jobs ina
set based on the processor desires of all jobs. Similar to EQUI,
DEQ attempts to ensure fairness among the active jobs by
giving each of them an equal processor allocation. However,
DEQ never allocates more processors to a job than the job’s
desire, since otherwise the extra processors are likely to be
wasted in the following quantum. The surplus processors will
instead be shared among the other jobs with higher desires.
Suppose that at timet when a quantum starts, there arent

active jobs in setJi. If the total processor desire of these jobs
is not more thana(Ji, t), the processor allocation for setJi at
time t, then all active jobs inJi will be satisfied. Otherwise,
DEQ calculates the fair sharea(Ji, t)/nt of processors, and the
jobs whose desires are less than this fair share will be satisfied.
The fair share is then recomputed by excluding the jobs already
satisfied and the processors already allocated. The same process
continues until no job can be satisfied with the fair share, in
which case the remaining processors will be split evenly among
the deprived jobs. In general, DEQ tends to satisfy those jobs
with low desires while the jobs with high desires are likely to
be deprived and share an equal processor allocation.

C. Simplifying Assumption

To ease analysis, we assume that a job set is only released
or completed at the beginning of a scheduling quantum. Since
EQUI is not quantum-based but rather reallocates the processors
based on the release and the completion of job sets, the
assumption ensures that the scheduling decision made by EQUI

at the job-set level and the decision by AGDEQ at the job level
are well synchronized. This assumption can be easily justified
since most computation-intensive workloads take much longer
to execute compared to any realistic quantum size, which is
normally in the order of milliseconds. Hence, the effect of afew

extra quanta on the execution time of a job can be practically
ignored.

IV. PERFORMANCE ANALYSIS

A. Preliminaries

To analyze the performance of EQUI◦AGDEQ, we need to
define some preliminary concepts. First of all, we extend the
notions of “satisfied” and “deprived” from quantum to time:
a job is said to be satisfied (deprived) at timet if t is within
a satisfied (resp., deprived) quantum for the job. In addition,
we extend these notions from an individual job to a job set as
follows: a job setJi is said to besatisfiedat timet if all jobs
in Ji are satisfied att; otherwise,Ji is said to bedeprived
if it contains at least onedeprived job att. Let Ji(t) denote
job setJi at time t, and letJ (t) denote the set of all active
job sets att. Moreover, letJA(t) and JB(t) denote the set
of deprived job sets and the set of satisfied job sets inJ (t),
respectively. Throughout the execution of job setJi, we define
aA(Ji) to be the amount of processor allocationJi receives
when it is deprived, or itsdeprived processor allocation, i.e.,
aA(Ji) =

∫∞

0 a(Ji, t)s · [Ji(t) ∈ JA(t)]dt, and definetB(Ji)
to be the amount of processor time forJi when it is satisfied,
or its satisfied processor time, i.e., tB(Ji) =

∫∞

0 s · [Ji(t) ∈
JB(t)]dt, wheres is the processor speed of EQUI◦AGDEQ, and
[x] is 1 if propositionx is true and0 otherwise. To simplify
notations, letmA

t = |JA(t)| and mB
t = |JB(t)| denote the

number of deprived job sets and the number of satisfied job sets
at timet, respectively. Since an active job set is either satisfied
or deprived, we havemA

t +mB
t = mt, wheremt = |J (t)| is

the total number of active job sets att.
We now introduce the concepts ofsquashed deprived proces-

sor allocationâA(J ) andtotal satisfied processor timetB(J )
for the entire job set collectionJ as follows:

âA(J ) =
1

P

m
∑

i=1

i · aA(Jγ(i)), (1)

tB(J ) =
m
∑

i=1

tB(Ji), (2)

where γ(·) denotes a permutation of the job sets sorted in
non-increasing order of deprived processor allocation, i.e.,
aA(Jγ(1)) ≥ aA(Jγ(2)) ≥ · · · ≥ aA(Jγ(m)). It is not difficult
to see thatγ(·), among all permutations of the job sets,
gives the minimum value for the squashed formulation, i.e.,
∑m

i=1 i · aA(Jγ(i)) ≤
∑m

i=1 i · aA(Jπ(i)) for any permutation
π(·) of the job sets. The following lemma derives the upper
bounds for the squashed deprived processor allocation and
the total satisfied processor time respectively in terms of the
squashed work and the total span of a job set collection. These
bounds will be used later in the analysis.

Lemma 2:Suppose that EQUI◦AGDEQ schedules a collec-
tion J of m job sets onP processors of speeds. Then the
squashed deprived processor allocationâA(J ) and the total
satisfied processor timetB(J ) for the collectionJ satisfy

âA(J ) ≤ 1 + ρ

δ
· ŵ(J ), (3)

tB(J ) ≤ 2

1− δ
· l(J ) +msL(logρ P + 1), (4)



where ŵ(J ) and l(J ) denote the squashed work and the
total span ofJ , δ and ρ denote A-GREEDY’s utilization and
responsiveness parameters, andL is the quantum length.

Finally, we introduce the notions oft-prefix andt-suffix. For
EQUI◦AGDEQ, we define thet-prefixJi(

←−
t ) for job setJi to

be the portion of the job set executed before and at timet, and
define itst-suffixJi(

−→
t ) to be the portion executed after time

t. We then extend the notions oft-prefix andt-suffix to the job
set collection as follows: thet-prefix of job set collectionJ
is defined to beJ (←−t ) = {Ji(

←−
t ) : Ji ∈ J andri ≥ t} and

the t-suffix of J is J (−→t ) = {Ji(
−→
t ) : Ji ∈ J andri ≥ t}.

Similarly, we defineJ ∗(
←−
t ) andJ ∗(

−→
t ) to be thet-prefix and

thet-suffix for the job set collectionJ executed by the optimal
offline scheduler.

B. Analysis for Batched Job Sets

We first analyze the set response time of the EQUI◦AGDEQ

algorithm when all job sets are batch released. The analysis
relies on local competitiveness argument[14], which bounds
the performance of an online algorithm at any time in terms
of the optimal offline scheduler, or rather its two lower bounds
presented in Section II-C.

For any job set collectionJ , we focus on itst-prefixJ (←−t ),
which according to definition always containsm sets of jobs
for any t > 0. Recall that the squashed deprived processor
allocation for J (←−t ) is given by âA(J (

←−
t )) = 1

P

∑m
i=1 i ·

aA(Jγ(i)(
←−
t )), whereγ(·) denotes a permutation of the job sets

in J (←−t ) sorted in non-increasing order of deprived processor
allocation. At any timet, let mt(z) denote the number of job
sets inJ (←−t ) whose deprived processor allocation is at least
z under EQUI◦AGDEQ, i.e., mt(z) =

∑m
i=1[aA(Ji(

←−
t )) ≥ z].

Apparently,mt(z) is a staircase-like decreasing function ofz.
From the definition of squashed deprived processor allocation,
an alternative expression for̂aA(J (

←−
t )) is given by

âA(J (
←−
t )) =

1

P

∫ ∞

0





mt(z)
∑

i=1

i



 dz, (5)

which is a more convenient representation ofâA(J (
←−
t )) for

analyzing batched job sets. Note that the expression presented
in Eq. (5) gives a much simpler perspective for squashed
deprived processor allocation than the one conceived in [9],
hence can be applied to simplify the batched response time
analysis therein. For our analysis on set response time, we give
both EQUI◦AGDEQ and the optimal schedulerP processors of
unit speed. The local performance of EQUI◦AGDEQ is shown
in the following lemma.

Lemma 3:Suppose that EQUI◦AGDEQ schedules a collec-
tion J of batched job sets onP processors of unit speed. Then
the execution of the job sets satisfies the following

• Running condition:mt ≤ 2
(

dâA(J (t))
dt

+mB
t

)

,

where dâA(J (t))
dt

denotes the rate of change for the squashed
deprived processor allocation in an infinitesimal intervalduring
which no job set completes.

We can now combine the results of Lemmas 2 and 3 for the
set response time of EQUI◦AGDEQ in batched scenario.

Theorem 1:Suppose that EQUI◦AGDEQ schedules a collec-
tion J of m batched job sets onP processors of unit speed.
Then its set response time satisfies

H1(J ) ≤
2(1 + ρ+ δ − ρδ)

δ(1− δ)
H∗

1 (J ) + 2mL(logρ P + 1),

whereH∗
1 (J ) denotes the set response time ofJ under the

optimal scheduler on unit-speed processors,δ and ρ denote
A-GREEDY’s utilization and responsiveness parameters, andL
is the quantum length.

Proof: As mentioned in Section II-B, the set response
time of job set collectionJ scheduled by EQUI ◦ AGDEQ

can be expressed asH1(J ) =
∫∞

0
mtdt. Similarly, the total

satisfied processor time ofJ under EQUI ◦ AGDEQ is given
by tB(J ) =

∫∞

0
mB

t dt. Integrating the running condition
in Lemma 3, we haveH1(J ) ≤ 2 (âA(J ) + tB(J )).
Substituting the bounds of âA(J ) and tB(J )
from Lemma 2 into the above inequality, we get
H1(J ) ≤ 2

(

1+ρ
δ
· ŵ(J ) + 2

1−δ
· l(J ) +mL(logρ P + 1)

)

.

Based on Lemma 1, both squashed workŵ(J ) and total
span l(J ) are lower bounds for the set response time ofJ .
The performance of EQUI◦AGDEQ thus satisfiesH1(J ) ≤
2
(

1+ρ
δ
·H∗

1 (J ) + 2
1−δ
·H∗

1 (J ) +mL(logρ P + 1)
)

=
2(1+ρ+δ−ρδ)

δ(1−δ) H∗
1 (J ) + 2mL(logρ P + 1).

C. Analysis for Arbitrarily Released Job Sets

We now analyze the set response time of EQUI◦AGDEQ

when the job sets can have arbitrary release time. Note that the
squashed work is no longer a lower bound for the set response
time in this scenario. Hence, the analysis usesamortized local
competitiveness argument[14], which bounds the amortized
performance of an online algorithm at any time in terms of the
optimal offline scheduler through a potential function.

We adopt the potential function used in [19] for the response
time analysis of AGDEQ. However, compared to the previous
potential function, where only processor allocations of deprived
jobs are considered, the one used here needs to incorporate the
whole job set collection instead of a single job set. Hence,
for each deprived job set at any time, the potential function
considers its entire processor allocation, including those of
satisfied jobs. In particular, we focus on thet-suffix J (−→t )
of job set collectionJ , and definemt(z) to be the number
of job sets inJ (−→t ) whose deprived processor allocation is
at least 1+ρ

δ
· z at time t under EQUI◦AGDEQ, i.e., mt(z) =

∑m
i=1[aA(Ji(

−→
t )) ≥ 1+ρ

δ
· z]. Moreover, letm∗

t (z) denote the
number of job sets inJ ∗(

−→
t ) whose work is at leastz under

the optimal, i.e.,m∗
t (z) =

∑m
i=1[w(J ∗

i (
−→
t )) ≥ z]. Hence,

both mt(z) andm∗
t (z) are staircase-like decreasing functions

of z. We give EQUI◦AGDEQ P processors of speeds, where
s = 2(1+ρ)

δ
+ ǫ for any ǫ > 0, while the optimal scheduler uses

unit-speed processors. The potential function is defined as

Φ(t) = η

∫ ∞

0









mt(z)
∑

i=1

i



−mt(z)m
∗
t (z)



 dz, (6)

whereη = 2(1+ρ)
δǫP

. We now prove the amortized local perfor-
mance of EQUI◦AGDEQ in the following lemma.



Lemma 4:Suppose that EQUI◦AGDEQ schedules a collec-
tion J of job sets onP processors of speeds, where s =
2(1+ρ)

δ
+ ǫ for any ǫ > 0. Then with the potential function

defined in Eq. (6), the execution of the job sets satisfies the
following

• Boundary condition:Φ(0) = 0 andΦ(∞) = 0;
• Arrival condition:Φ(t) does not increase when a new job

set arrives;
• Running condition:mt +

dΦ(t)
dt
≤ 2s

ǫ

(

m∗
t +mB

t

)

,

wheredΦ(t)
dt

denotes the rate of change for the potential function
in an infinitesimal interval during which no job set arrives or
completes under either EQUI◦AGDEQ or optimal.

The following theorem gives the set response time of
EQUI◦AGDEQ for arbitrarily released job sets.

Theorem 2:Suppose that EQUI◦AGDEQ schedules a collec-
tion J of m job sets onP processors of speeds, where
s = 2(1+ρ)

δ
+ ǫ for any ǫ > 0. Then its set response time

satisfies

Hs(J ) ≤
(

2 +
4(1 + ρ− ρδ)

δ(1− δ)ǫ

)

H∗
1 (J )+

2msL

ǫ
(logρ P +1),

whereH∗
1 (J ) denotes the set response time ofJ under the

optimal scheduler on unit-speed processors,δ and ρ denote
A-GREEDY’s utilization and responsiveness parameters, andL
is the quantum length.

Proof: As the set response time of EQUI◦AGDEQ is
given by Hs(J ) =

∫∞

0
mtdt, and the set response time of

the optimal isH∗
1 (J ) =

∫∞

0
m∗

tdt, integrating the running
condition in Lemma 4 and applying the boundary and arrival
conditions, we haveHs(J ) ≤ 2s

ǫ
· H∗

1 (J ) + 2
ǫ
· tB(J ),

where tB(J ) =
∫∞

0 s · mB
t dt is the total satisfied processor

time for J under EQUI◦AGDEQ. From Lemma 2, the total
satisfied processor time forJ is also given bytB(J ) ≤
2

1−δ
· l(J ) + msL(logρ P + 1). The set response time of

J scheduled by EQUI◦AGDEQ thus satisfiesHs(J ) ≤ 2s
ǫ
·

H∗
1 (J ) + 4

(1−δ)ǫ · l(J ) + 2msL
ǫ

(logρ P + 1). Since the total
spanl(J ) is a lower bound for the set response time ofJ on
unit-speed processors, the theorem is directly implied.

D. Discussions

In the preceding two subsections, we have analyzed the set
response time of the EQUI◦AGDEQ algorithm for both batched
and nonbatched job sets. As Theorem 1 shows, when all job
sets are batched, EQUI◦AGDEQ achievesO(1)-competitive,
since bothρ andδ can be considered as constants. This result
improves upon theO( lnn

ln lnn
)-competitiveness of EQUI◦EQUI

obtained in [15], wheren is the maximum number of jobs in
a set. For small values ofn, however, the competitive ratio
of EQUI◦EQUI can be considered as constant as well, and
thus it will perform comparably to EQUI◦AGDEQ, which are
confirmed by our simulation results to be shown in Section V.
For nonbatched job sets, Theorem 2 shows that EQUI◦AGDEQ

achievesO(1)-speedO(1)-competitive. This result extends
the same asymptotic performance of the EQUI◦Y algorithm
obtained in [16] from jobs with specific parallelism structure,
namely, a sequential phase followed by a fully-parallel phase,
to jobs with any parallelism profile.

Note that, for jobs with arbitrary sizes, any non-clairvoyant
algorithm has been shown to beω(1)-competitive with respect

to the set response time [15]. Hence, the competitive ratio
of EQUI◦AGDEQ obtained here is in theasymptoticsense
based on the assumption that the jobs under consideration
are sufficiently large. Thus, the optimal set response time
H∗

1 (J ) will denominate the additive factors shown in the
inequalities of Theorems 1 and 2, which can then be considered
as constants. For instance, when job sets are batched and the
optimal set response time is much larger than the additive
factor 2mL(logρ P + 2), which is commonly satisfied by
most computation-intensive workloads with realistic quantum
size and practical number of processors, the performance of
EQUI◦AGDEQ shown in Theorem 1 then becomesH1(J ) ≤
(

2(1+ρ+δ−ρδ)
δ(1−δ) + o(1)

)

H∗
1 (J ) = O(1) ·H∗

1 (J ).
While both EQUI◦AGDEQ and EQUI◦EQUI use EQUI at the

job-set level to ensure fairness, the performance improvement
of EQUI◦AGDEQ for sufficiently large jobs is essentially be-
cause the processors are utilized more efficiently by AGDEQ

at the job level. On the other hand, EQUI obliviously allocates
processors to jobs, which will inevitably incur a large waste of
resources when the parallelism of the jobs can vary with time.
Hence, both fairness among the job sets and efficiency within
each job set play important roles when scheduling for multiple
sets of parallel applications.

E. EQUI◦ACDEQ and Its Performance

In this subsection, we introduce an improved adaptive
scheduling algorithm EQUI◦ACDEQ, which combines EQUI

with the feedback-driven algorithm ACDEQ [20]. As with
AGDEQ, the ACDEQ algorithm also uses the DEQ allocator to
distribute processors among the jobs in a set. For the desire
calculation strategy, it relies on the A-CONTROL scheduler
proposed in [21] to mitigate the feedback instability problem
of A-GREEDY, which is briefly described in the following.

Suppose that the parallelism of a job stays constantly at
a particular value for sufficiently long time. Because of the
multiplicative-increase multiplicative-decrease strategy, the pro-
cessor desires produced by A-GREEDY tend to oscillate around
the target parallelism of the job without settling down. To
avoid this problem, A-CONTROL provides feedbacks directly
based on the job’s average parallelism in the previous quantum.
Specifically, for each jobJij in a quantumq, let tq denote
the time when the quantum starts. A-CONTROL collects the
amount of work completed for the job in the quantum, i.e.,
w(Jij , q) =

∫ tq+L

tq
sΓkt

ij (t)dt, as well as its span reduced

in the quantum, i.e.,l(Jij , q) =
∫ tq+L

tq
sΓkt

ij (t)/h
kt

ij dt, where
kt represents the phase jobJij is executing at timet, s
denotes the processor speed used by A-CONTROL andL is the
quantum length. The average parallelismA(Jij , q) of the job
in quantumq is then given byA(Jij , q) = w(Jij , q)/l(Jij , q).
The processor desire of the job in the next quantumq + 1
is set directly to the average parallelism in quantumq, i.e.,
d(Jij , q + 1) = A(Jij , q). Apparently, this strategy makes the
processor desire more representative of the job’s immediate pro-
cessor requirement, and it effectively eliminates the feedback
instability of A-GREEDY [20]. The simulations conducted in
[19], [20] showed that ACDEQ indeed outperforms AGDEQ in
terms of both stability of the desires and total response time of
the jobs. In the next section, we will evaluate EQUI◦ACDEQ
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together with EQUI◦AGDEQ and EQUI◦EQUI in terms of the
set response time of multiple job sets.

As for the theoretical analysis, the performance of ACDEQ is
bounded in terms of thetransition factorof the jobs. This factor
captures a job’s maximum parallelism transition between any
two consecutive quanta, and to a certain extent better reflects
the degree of difficulty to schedule the job in an online adaptive
manner. Due to space constraint, we refer interested readers to
[20], [21] for more details about the analysis of ACDEQ.

V. EMPIRICAL EVALUATIONS

In this section, we conduct simulations to compare the
performances of three online adaptive schedulers, namely,
EQUI◦AGDEQ, EQUI◦ACDEQ, and EQUI◦EQUI.

A. Parallel Workload

The simulations are performed using syntheticmalleable
jobs, which are generated based on Downey’s parallel workload
model [5]. However, Downey’s model only specifies some
external characteristics for the jobs such as their arrivaltime,
total work and average parallelism. To add internal structures,
each job is divided into a series of segments and each segment
is identified by one of the seven parallelism variation curves
shown in Figure 1. These variation curves are first proposed in
[3] and are specifically designed to capture a range of parallel
programming patterns that could represent different sections
of an application. (More details on the interpretations of these
curves can be found in [3].) Note that, when augmenting the
jobs with these parallelism variations, we carefully make sure
that the total work and the average parallelism of a job over
all segments are not altered from those initially generatedby
Downey’s model.

B. Simulation Setup

We simulate a system with 64 processors, and the aim is to
study the performances of the scheduling algorithms when we
vary the number of sets, the number of jobs in a set, as well as
the jobs’ arrival patterns. Following advices from [1], [9], [19],
the utilization and responsiveness parameters of A-GREEDY

are set toδ = 0.8 andρ = 2, respectively. Based on Downey’s
model, the arrival rate of the jobs is set proportionally to the
number of sets, and hence is tied to the load of the system. We
group consecutively released jobs together to form job sets.
In our simulation, both the number of sets and the number of
jobs in a set are varied from 5 to 100 at an increment of 5

each time. Moreover, to make sure that all jobs within a set
are batched, we adjust the release time of each job in a job
set to when the first job of the set is released. Because of such
adjustment, the gap between the releases of consecutive sets
are also correspondingly increased. Hence, it turns out that the
system load, i.e., number of active job sets at any time, is still
light when the total number of sets reaches 100. To simulate
heavy system loads, therefore, we readjust the release timeof
all jobs to 0, which then corresponds to the batched scenario
considered in Section IV-B. In this case, the number of sets is
only increased from 5 to 50, and a quick convergence on the
performances of the three algorithms can already be observed
from the simulation results.

C. Set Response Time

We first focus on the set response time of the three scheduling
algorithms, which is shown in Figure 2. First of all, when
the number of sets is fixed, the relative set response time is
closely related to the number of jobs within each set. In gen-
eral, EQUI◦AGDEQ and EQUI◦ACDEQ outperform EQUI◦EQUI

when there is a moderate to large number of jobs in each
set. The reason is that, given the same number of processors,
feedback-driven algorithms make use of jobs’ execution his-
tory to efficiently guide processor allocations, while EQUI is
oblivious to jobs’ parallelism variations thus results in low
system efficiency. However, when each set only contains a
small number of jobs, the performance of EQUI becomes better,
since all jobs can be easily satisfied by EQUI in this case.
The results also show that the relative set response time is
significantly impacted by the system loads. In particular, when
the load is light, i.e., the sets are nonbatched, EQUI◦AGDEQ

and EQUI◦ACDEQ perform much better than EQUI◦EQUI. On
the other hand, when all the sets are batch released, representing
heavy system load, the performances of EQUI◦AGDEQ and
EQUI◦ACDEQ quickly converge to that of EQUI◦EQUI. This is
because in this case each set only receives very few processors
most of the time, hence frequent processor reallocations within
the sets have no apparent benefit. These results demonstrate
that feedback-driven schedulers are particularly effective for
systems with light loads and a moderate number of jobs in the
sets, while EQUI◦EQUI can perform comparably well in other
cases. In addition, the performance of EQUI◦ACDEQ is always
better than that of EQUI◦AGDEQ, which is due to the more
stable desire calculation strategy of the A-CONTROL scheduler.

D. Processor Utilization

Figure 3 shows the relative processor utilizations of the three
scheduling algorithms. The results show that the utilizations
of the two feedback-driven schedulers are always better than
that of EQUI◦EQUI under all system loads. When there are
very few jobs in each set, EQUI◦EQUI has particularly bad
utilization, since it is blind to the jobs’ parallelism variations
thus eventually wastes a large amount of resources. Figure 2
shows that EQUI◦EQUI actually achieves better set response
time in this case at the cost of poor system utilization. With
increases in the system load and the number of jobs, the
utilization advantage of the feedback-driven schedulers begins
to diminish, since nearly all processors are well utilized by
the three schedulers as more jobs are present in the system.
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Fig. 2. Set response time of EQUI◦AGDEQ and EQUI◦ACDEQ normalized by that of EQUI◦EQUI when (a) job sets are nonbatched (b) job sets are batched.
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Fig. 3. Processor utilization of EQUI◦AGDEQ and EQUI◦ACDEQ normalized by that of EQUI◦EQUI when (a) job sets are nonbatched (b) job sets are batched.

The results confirm that the feedback-driven algorithms, which
take advantage of parallelism correlations of the jobs, indeed
achieve better overall system efficiency than EQUI◦EQUI.

VI. CONCLUSION

In this paper, we have studied online adaptive scheduling
to minimize the response time for multiple sets of parallel
applications on multiprocessor systems. We have achieved
both fairness and efficiency by applying the equi-partitioning
algorithm and the feedback-driven algorithms at the job-set
level and the job level, respectively. Both theoretical analysis
and empirical simulations have confirmed the improved perfor-
mances of our algorithms compared to an existing scheduler.In
our future research, we plan to study hierarchical scheduling,
where jobs are organized into more than two levels. While
feedback-driven scheduling has been shown to be effective for
minimizing makespan under this setting [4], we believe thatit
will perform well with respect to other related objectives.
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