Fair and Efficient Online Adaptive Scheduling for
Multiple Sets of Parallel Applications

Hongyang Suh Yangjie Cad, Wen-Jing Hsti
*School of Computer Engineering, Nanyang Technologicalvehsity, Singapore
fSchool of Electronic and Information Engineering, Xi’amdtong University, China

{sunh0007, hsp@ntu.edu.sg; caoyj@stu.xjtu.edu.cn

Abstract—Both fairness and efficiency are crucial measures
for the performance of parallel applications on multiprocessor
systems. In this paper, we study online adaptive schedulinfpr
multiple sets of such applications, where each set may corita
one or more jobs with time-varying parallelism profile. This
scenario arises naturally when dealing with several appliations
submitted simultaneously by different users in a large pardel
system, where both user-level fairness and system-wide effincy
are important concerns. To achieve fairness, we use the equi
partitioning algorithm, which evenly splits the available processors
among the active job sets at any time. For efficiency, we apply
a feedback-driven adaptive scheduler, which periodicallyadjusts
the processor allocations within each set by consciously jgboiting
the jobs’ execution history. We show that our algorithm is
competitive for the objective of minimizing the set respons time.
For sufficiently large jobs, this theoretical result improves upon an
existing algorithm that provides only fairness but lacks eficiency.
Furthermore, we conduct simulations to empirically evalude our
algorithm, and the results confirm its improved performanceusing
malleable workloads consisting of a wide range of paralleim
variation structures.

Index Terms—Adaptive scheduling; Online algorithms;
Feedback-driven scheduling; Parallel applications; Multprocessor
systems; Set response time; Fairness; Efficiency

I. INTRODUCTION

of a scheduling algorithm. In fact, it represents a more gen-
eral performance measure that incorporates two widely used
metrics, namelytotal response timeand makespanas special
cases. Suppose that each job set in the collection contaips o

a single job, the set response time becomes the total respons
time of all jobs in the collection. At the other extreme, ieth
collection contains only a single job set, the set respoinse t

is simply the makespan. To schedule a collection of job sets,
an algorithm needs to allocate processors at bothjdheset
level and thejob level That is, it needs to specify the number
of processors allocated to each job set, as well as the morces
allocation for each job within the job set.

We adopt theonline adaptivescheduling model [9], which
requires an algorithm to make scheduling decisions in amenl|
manner without any knowledge of the jobs’ future charasteri
tics, such as their release time and remaining work, etcs iBhi
a natural assumption since such information is indeed géiper
not available to the operating system schedulers. However,
the online scheduler is allowed to be adaptive, i.e., it can
dynamically adjust the jobs’ processor allocations atirmet
This is in contrast to the traditionadtatic scheduling11],
which restricts the processor allocation of a job to be comst
throughout its execution. Since modern parallel appliceti

Scheduling parallel applications on multiprocessor syste often exhibit irregular and time-varying parallelism stiwres,
has been a fundamental area of research in computer scieste@ic scheduling may either under-utilize system resssiar

for decades [8], [11], [14]. Recently, as more parallel sy

cause job execution delays. With flexible runtime support,[1

have been deployed to support high-performance computin®], adaptive schedulings able to benefit from the malleable
infrastructures, such as various cloud computing servioes behavior of the jobs’ processor requirements and hencesappe
large clusters and data centers, efficient scheduling osethe be a more promising approach to scheduling modern phralle
platforms will play an even more important role in boostingpplications. The performance of an online adaptive sdeedu

application performance and increasing system utiliratio

is measured usingompetitive analysif2], which compares the

Since many parallel systems nowadays are shared by multipidine algorithm with an optimal offline scheduler.
users, a natural scenario arises when each user simulipeou A well-known online adaptive scheduler is Equi-partitiogi

submits several applications to the system. An crucial dighe

(EQul) [22], which at any time divides the total available

ing goal in this scenario is to achieve efficient execution fgrocessor resources equally among all jobs present in the
the applications while at the same time offering a level afystem. This algorithm, although simple, is able to ensure
fairness among different users. In this paper, we consigehn s fairness by automatically adjusting the processor allonat
a scenario, in which a collection of parallel job sets needghenever a new job is admitted into the system or an existing
to be scheduled on a multiprocessor system and each jobjebtis completed and thus leaves the system. In fact, such
corresponds to the set of applications submitted by a pdatic simple notion of fairness is sufficient to guarantee satigfy
user of the system. We are interested in thgponse timef performance when each user submits only one job. In paaticul
a job set, which is defined to be the duration between wh&gimonds et al. [7] showed thatdB! is (2 4 /3)-competitive
the job set is submitted and when all jobs in the job set awdth respect to the total response time of all jobs if they are
completed. The objective is to minimize the overall respongeleased at the same time. Using resource augmentation anal
time of all job sets, or theet response time ysis [10], Edmonds [6] also showed thaQ& achievesD(1)-

As pointed out by Robert and Schabanel [15], the metraompetitive for arbitrarily released jobs when it is augteen
of set response time benchmarks both fairness and efficiemdgyh O(1) times more resources than the optimal. However,

despite its excellent performance for the total response,ti « EQUIcAGDEQ achievesO(1)-competitive with respect to
EQui fares poorly in terms of the makespan, which to a certain the set response time when all job sets are batch released.
extent reflects the system efficiency when there is only ose us This result improves the competitive rat@(-32) of

Inlnn

in the system. Since @JI does not consider how efficiently EQuioEQuI [15] for sufficiently large jobs, where: is

each job is able to utilize the allocated processors, it nmaet the maximum number of jobs in a set.

utilize the system resources particularly when differestisi « EQUIcAGDEQ achieves O(1)-speed O(1)-competitive
can have very different processor requirements. In [15heRio with respect to the set response time for arbitrarily reddas
and Schabanel showed thap& is @(%)—competitive with job sets. This result extends the same ratio obtained in [16]
respect to the makespan even if all jobs are batch released, from jobs with specific parallelism structure to sufficigntl
wheren is the total number of jobs in the system. large jobs with any parallelism profile.

To schedule a collection of job sets, both user-level faisne Furthermore, we also conduct simulations to empirically
and system-wide efficiency turn out to be critical. In [15]¢valuate the performance ofQEIcAGDEQ, and to compare it
Robert and Schabanel appliedy& to both scheduling levels With EQUIcEQuI and another algorithm @iocACDEQ which
by equally dividing the total available processors amorlg #&lombines BuUI with the feedback-driven schedulercAeQ.
active job sets and within each job set equally dividing thEhe simulations are carried out usingalleable jobs [8]
allocated processors to its active jobs. They showed theat generated from Downey's parallel workload model [5] and
resulting algorithm BulocEQUI achieves a competitive ratio ofaugmented with a wide range of internal parallelism stmgstu
(24+/3+0(1)) 222 with respect to the set response time whef8]. The results confirm that the algorithms which utilize

Inlnn

all job sets are batch released, wheris the maximum number feedback-driven schedulers indeed achieve better peafoces

of jobs in a set. This result suggests that the set respoiid@n EQUICEQUI in terms of set response time as well as
time ratio of a scheduling algorithm actually combines thtalt processor utilization. The improvement is a direct reshit t
response time ratio and the makespan ratio of the corregmpndhese algorithms exhibit both fairness and efficiency while
algorithms at the job-set level and the job level, respegtiv EQUIOEQUI provides only fairness but lacks efficiency.
Hence, it is important to retain both fairness and efficiemcy ~ The rest of this paper is organized as follows. Section Il
order to achieve satisfying performance for this more ganeformally defines the scheduling problem. Section Ill dézesi
scheduling metric. the EQUICAGDEQ algorithm, followed by its analysis for both
batched and arbitrarily released job sets in Section IV. Site
ulation results are presented in Section V. Finally, Seci®
concludes the paper.

To improve application efficiency, feedback-driven adapti
schedulers [1], [9], [20] were recently introduced. Unlkeul,
which obliviously allocates processors to jobs regardiess
their actual resource requirements, feedback-drivendedbes Il. PROBLEM DEFINITIONS
periodically adjust processors among the jobs by conskyioui_ Job Model and Scheduling Model

exploiting the jobs’ execution history. In particular, Agval et , .
al. [1] introduced the A-@EEDY scheduler that periodically Ve adopt the job model used in [19], [20] to represent a par-

collects the resource utilization of each job, and basechin t2/l€! application that consists of a series of phases wifiergint

information estimates the job’s future processor requietn degrees of parallelism. Spgcifically, we consider a caliect
It has been shown that A4GEDY wastes at most a con-J = 1J1;J2:-- » Jm} Of m job sets, which correspond te

stant fraction of a job’s allocated processors, and thusedd different users. Each job sgf = {Ji1; Jig, -+, Jin; } coNtains
achieves efficient processor utilization [1]. Furthermobg " 100S. which correspond to the applications submitted by
combining A-GREEDY with a conservative resource allocatorthe i-th user. Each jobJi; = (Jj;, Jj;,--- . J;;*) contains
such as Dynamic Equi-partitioning €m) [12], He et al. [9] ki; Phases with each phasg; having an amount ofvork
showed that the feedback-driven algorithne®eQ achieves wj;, Wherew}; > 0, and a maximum parallelisth};, where
O(1)-competitive with respect to the makespan regardless /o > 1. Suppose that at timejob J;; is in its k-th phase and
the number of jobs, provided that the jobs under consideratilS allocateda;; processors, then its effectigpeedugs given
are sufficiently large. Recently, Sun et al. [20] proposeatiaer by I'f;(t) = min{as;, hf;}. Hence, on processors of speefbr
adaptive scheduler @EQ, which uses a control-theoretical@ny s > 0, the execution rateof the job at timet is given by
approach to estimate the jobs’ processor requirements tandlif; (1) Thespanif; of phase/f;, which represents the amount
has been shown to improve uporGBEQ in terms of both Of time to execute the phase Witkfj or more processors of
feedback stability and system efficiency. unit speed, is therefor; = w}; /hY;. Thework w(.J;;) of job

In this paper, aiming at both user-level fairness and systerfi; IS given byw(J;;) = Sk, wl, and thespani(J;;) of the
wide efficiency, we bring together the benefit of the@w® job is I(J;;) = ZZZI lfj Moreover, for each job set;, we
algorithm and that of the feedback-driven algorithne#eQ, define itsset workto bew(7;) = Z?;l w(J;;) and define its
and propose a fair and efficient online adaptive scheduksst spanto bel(J;) = max;=1...n, {(Ji;).
EQuIicAGDEQ for any collection of job sets. Using competitive At any time ¢, given a total numberP of processors, a
analysis, we show that the set response time ratio of cagheduling algorithm needs to decide the processor aibocat
algorithm indeed combines the total response time ratio aafl7;,t) for each job sety;, as well as the processor allocation
the makespan ratio of the respective algorithms in a newatri a(J;;,t) for each jobJ;; within job set.7;, wherel < i <m
manner. Specifically, we prove thatQHIcAGDEQ possesses and1 < j < n;. We require that the total processor allocation
the following desirable properties: cannot exceed the total number of available processors, i.e

doimy 2jty a(Jij,t) < P. Letry; denote therelease timeof C. Lower Bounds for Set Response Time

job J;; and letr; denote theelease timeof job set7;. In this For any job set collection7, we define itstotal span
paper, we assume that all jobs in a job set are released at{g,e WJ) = Y7, 1), and define itssquashed work
same time, i.ex;; = r; forall 1 < j < n;. Moreover, ifall job {5 pe W(J) = & Zi;jli - w(Tn(s)), Wheren(-) denotes a
sets are released in a sindjatch their release times are equabermutation of the job_sets sorted in non-increasing wodenr

to 0. Otherwise, we can assume without loss of generality th_aé_’w(jﬂ(l)) > w(Tr(2) > -+ > W(Tn(my). Lemma 1 below
the first released job set arrives at tifdeLet cj; denote the giates that the total span and the squashed work can sewe as t
completion time of the:-th phase of jobJ;;, and letc;; = CZJ lower bounds for the set response time of any job set cotlecti
denote thecompletion timeof job J;;. The completion time where the latter one only applies to batched job sets. In fact
¢; of job set7; is given byc; = max;—; ., c;;. We also these two lower bounds resemble the well-known lower bounds
require that a valid schedule cannot begin to execute a phésethe total response time of a single job set [7], [6], [9leD

of a job unless it has completed all its previous phases. #® space constraint, the detailed proofs for all lemmas isf th
simplify analysis as in many previous work [6], [9], [15]9]l paper are omitted, and can be found in the full version.

[20], we allow the processor allocation of a job to take non- Lemma 1:To schedule any job set collectioy on P

integer values. The fractional allocation can be consill@® processors of unit speed, the optimal set response time is at

time-sharing a processor with other jobs. least the total span qff, i.e., Hi (J) > I(7); if all job sets
are batch released, the optimal set response time als@iesatis
B. Objective Function Hy(J) > w(J), wherew(7) is the squashed work of. ®
Theresponse timer flow time f;; of job J;; is the duration I1l. THE EQUICAGDEQALGORITHM

between the completion time and the release time of the J.Ob’ln this section, we introduce an online adaptive algorithm

8., fij = cij —rij, and theresponse timef; of job Set7; is o, oacpEQ, which combines the well-known algorithm
given by f; = ¢; —r;. Thetotal response timé"(7) of all jobs g0, 122] with the feedback-driven scheduleGAEQ [9] for

in 7 is F(J) = >, 2252, fij and themakespan\/(.7) of = sohaquling any collection of job sets.

all jobs in 7 is M(J) = maxi=1...;m,j=1.-n; Cij. OUr Objective

is to minimize the total response time of all job sets, or th&. EQUI Algorithm

set response timé (7), which is given byH (7) = > 1, fi. EQui (Equi-partitioning) algorithm [22] simply divides the

A job J;; is said to beactiveat timet if it has been released total number of processors evenly among all active job sets
but not completed at, i.e., ri; < ¢ < c¢;;. A job set7; is at any time. Suppose that at time there arem, active
said to beactive at time ¢ if it contains at least one active job sets, then each active job sg} receives an allocation
job at¢. An alternative expression for the set response tin&q$7t) = P/m, of processors. Hence gl only reallocates

is thus given byH(J) = [;~ mudt, wherem, denotes the the processors whenever a new job set is released or amexisti
number of active job sets at timie As pointed out in [15], the jop set is completed. Although simple, this algorithm does
set response time of a job set collectighhas the following ensure absolute fairness among the competing job sets by

interesting property: iff = {7;} contains a single job set, thengjying each of them the same processor resources.
the set response time is simply the makespan of all johg;in

it 7 = {77, ,Jn} contains a collection of singletonB. AGDEQ Algorithm
job sets, where for each= 1---m, we havey;, = {Ji1}, Within each job set, the efficiency of the allocated processo
then the set response time is the total response time oftal jare guaranteed by consciously exploiting the jobs’ exeouti
in 7. Hence, the objective of set response time in some semgstory and periodically adjusting the processor allanzi
combines both makespan and total response time. among the jobs. This is realized by the feedback-driven al-
We usecompetitive analysif2] to compare the set responsegorithm AGDEQ [9], which works based on the interaction
time of an online algorithm with that of an optimal offlinebetween the A-GEEDY [1] scheduler and the BQ [12] allo-
scheduler. An online algorithm is said to b&ompetitivelf its cator after eaclscheduling quantunSpecifically, A-GREEDY
set response time satisfiés(7) < ¢- H*(7) for any job set collects the execution statistics of a job in each quantased
collection .7, whereH*(7) denotes the set response timef on which it calculates the job’processor desirethat is, how
under an optimal offline scheduler. Since an online algorithmany processors the job needs, for the next quantum. B D
does not have any prior knowledge about the jobs while tladlocator then decides@ocessor allocatiorfior each job in the
optimal offline scheduler knows everything in advance, it isext quantum according to the processor desires of all jabs.
generally not possible to get good competitive ratios whnen tthis process only involves the execution history of the jbbs
job sets can have arbitrary release time [6], [16]. In sudegcanot their future characteristics,GEQ can be considered as a
we use theresource augmentation analydqi$0], which gives non-clairvoyantalgorithm [13], [9]. In the following, we will
the online algorithm extra resources and in a sense limés ttiescribe the desire calculation strategy of &&&DY and the
power of the adversary. An online algorithm is then said torocessor allocation policy of EQ separately.
be s-speedc-competitiveif its set response timéi;(7) on 1) A-GREEDY Scheduler: The A-GREEDY scheduler [1]
processors of speed wheres > 1, satisfiesH,(7) < ¢- calculates the processor desires of a job using a sim-
Hi(g) for any job set collection7, where H;(7) denotes ple multiplicative-increase multiplicative-decreaseategy. For
the set response time gf under the optimal offline schedulereach job.J;; in a scheduling quantung, let d(J;;,q) and
using unit-speed processors. a(J;;,q) denote its processor desire and processor allocation,

respectively. We say that job;; is satisfiedin quantumg extra quanta on the execution time of a job can be practically
if its processor allocation is at least its processor desiignored.

i.e., a(Jij,q) > d(Jij,q). Otherwise, the job igleprived if

a(Jij,q) < d(Jij, q). Lett, denote the time when quantum IV. PERFORMANCE ANALYSIS

starts and leL denote the duration of the quantum. AREEDY A. Preliminaries

collects the amount of worlo(J;;, ¢) completed for jobJ;; in To analyze the performance ofdEIcAGDEQ, we need to

quantumg, i.e., w(Jij,q) = tzqu sTy (t)dt, wherek; is the gefine some preliminary concepts. First of all, we extend the
phase job.J;; is executing at timet and s is the processor notions of “satisfied” and “deprived” from quantum to time:
speed. Given that the total allocated processor cyclesofor j5 jop is said to be satisfied (deprived) at timé ¢ is within
Jij in quantumg is a(Ji;,q)sL, job Ji; is said to beefficient 5 satisfied (resp., deprived) quantum for the job. In addjtio
if its completed work is at least fraction of the total allocated \ye extend these notions from an individual job to a job set as
processor cycles, i.ew(Ji;, q) = 6-a(Jij, q)sL, whered < 1is fo|iows: a job set7; is said to besatisfiedat timet if all jobs
called theutilization parameterOtherwise, the job igefficient J; are satisfied at; otherwise,7; is said to bedeprived
if w(Jij, q) < 6-a(Jij,q)sL. The processor desitf.J;;, ¢+1) it it containsat least onedeprived job att. Let 7;(t) denote
of job J;; for the next quantung + 1 is then calculated basedjob setJ; at timet, and let.7(t) denote the set of all active
on v_vhether. the. jpb i§ satisfied or deprived and whether it j@b sets att. Moreover, let7,(t) and J75(¢) denote the set
efficient or inefficient in quantum as shown below: of deprived job sets and the set of satisfied job sets{f),
respectively. Throughout the execution of job get we define
a4(J;) to be the amount of processor allocatigh receives
when it is deprived, or itsleprived processor allocatign.e.,
aa(Ji) = [;° a(Tist)s - [Ti(t) € Ja(t)]dt, and definet5(7;)
wherep > 1 is called theresponsiveness parametdihe initial to be the amount of processor time {gy when it is satisfied,
desire of the job when it first entered the system is simply set its satisfied processor timé.e., tp(7;) = [~ s - [Ji(t) €
as1 to start with. Jz(t)]dt, wheres is the processor speed oQHIcAGDEQ, and

2) DEQ Allocator: The DEQ (Dynamic Equi-partitioning) [z] is 1 if propositionz is true and0 otherwise. To simplify
allocator [12] distributes the processors among the joba innotations, letm;* = |74(¢)] and mf = |75(t)| denote the
set based on the processor desires of all jobs. SimilatiolE number of deprived job sets and the number of satisfied jab set
DEQ attempts to ensure fairness among the active jobs Bitimet, respectively. Since an active job set is either satisfied
giving each of them an equal processor allocation. However, deprived, we havens* + mf = m,, wherem; = | 7(t)| is
DEQ never allocates more processors to a job than the joltge total number of active job sets at
desire, since otherwise the extra processors are likelyeto b We now introduce the concepts sfiuashed deprived proces-
wasted in the following quantum. The surplus processork wior allocationa 4 (7) andtotal satisfied processor timg;(7)
instead be shared among the other jobs with higher desirtss.the entire job set collectioy as follows:

d(Ji;,q) - p if efficient and satisfied iy,
d(Jij,q+1) =< d(Ji;,q)/p if inefficient in g,
d(Jij,q) if efficient and deprived iny,

Suppose that at timé when a quantum starts, there atg m

active jobs in sety;. If the total processor desire of these jobs aalg) = 1 i aa(Tsei))s (1)
is not more tharu(7;,t), the processor allocation for sg} at P i—1

time ¢, then all active jobs in7; will be satisfied. Otherwise, m

DEQ calculates the fair shaeg 7;, t) /n; of processors, and the tg(J) = Z VAR 2)

1

.
Il

jobs whose desires are less than this fair share will befigatis
The fair share is then recomputed by excluding the jobs @jreayhere +(-) denotes a permutation of the job sets sorted in
satisfied and the processors already allocated. The samessronon-increasing order of deprived processor allocatioe,, i.
continues until no job can be satisfied with the fair share, mA(j'y(l)) > aa(Ty@2) =+ = aa(Tym)- Itis not difficult
which case th_e remaining processors will be split evenlyr;ggnoto see thaty(-), among all permutations of the job sets,
the deprived jobs. In general,EQ tends to satisfy those jobsgives the minimum value for the squashed formulation, i.e.,
with low desires while the jobs with high desires are likaly ty~ ;. aa(Tyeiy) < ity i aa(Txq)) for any permutation

be deprived and share an equal processor allocation. 7(-) of the job sets. The following lemma derives the upper
o) bounds for the squashed deprived processor allocation and
C. Simplifying Assumption the total satisfied processor time respectively in termshef t

To ease analysis, we assume that a job set is only releag@dashed work and the total span of a job set collection.€lhes
or completed at the beginning of a scheduling quantum. Sine@unds will be used later in the analysis.
EQui is not quantum-based but rather reallocates the processors€mma 2: Suppose that QUIcAGDEQ schedules a collec-
based on the release and the completion of job sets, fi J of m job sets onP processors of speed Then the
assumption ensures that the scheduling decision madeyby Esquashed deprived processor allocation7) and the total
at the job-set level and the decision bgBEQ at the job level satisfied processor timg;(.7) for the collection7 satisfy

are well synchronized. This assumption can be easily jedtifi . 14+p .
since most computation-intensive workloads take muchdong aa(J) < 5 ~(J), 3)
to execute compared to any realistic quantum size, which is 2

normally in the order of milliseconds. Hence, the effect tdwa tp(J) < 1 A(T) + mSL(logp P+1), (4)

-9

where w(7) and I(7) denote the squashed work and the Theorem 1:Suppose that &uIcAGDEQ schedules a collec-
total span of7, 6 and p denote A-QREEDY's utilization and tion 7 of m batched job sets o# processors of unit speed.
responsiveness parameters, dne the quantum length. B Then its set response time satisfies

Finally, we introduce the notions o)fpr(gfix and¢-suffix. For 21+ p+6— pb)
EQUIcAGDEQ, we define the-prefix 7;(¢) for job set.7; to H(J) < 51 =3)
be the portion of the job set executed before and at tineend
define itst-suffix 7;(¢') to be the portion executed after timewhere H;(7) denotes the set response time pfunder the
t. We then extend the notions trefix andz-suffix to the job optimal scheduler on unit-speed processorsand p denote
set collection as f(o_llows thepreflx of job set collection7 A-GREEDY's utilization and responsiveness parameters, And
is defined to be7 ('t):> {T:(t)_;71 € J andr; >t} and is the quantum length.
the ¢-suffix of 7 is 7(<_) ={J(t): J; € J andr; > t}. Proof: As mentioned in Section II-B, the set response
Similarly, we define7*(t) and 7*(t) to be thet-prefix and time of job set collection7 scheduled by Bul o AGDEQ
the t-suffix for the job set collectiog executed by the optimal can be expressed d%;,(7) = j;)OO mydt. Similarly, the total

H{(J) 4+ 2mL(log, P + 1),

offline scheduler. satisfied processor time @f under EQul o AGDEQ is given
by tg(J) = fooo mPdt. Integrating the running condition
B. Analysis for Batched Job Sets in Lemma 3, we haveH:(7) < 2(aa(J)+ts(J)).

Substituting the bounds of a4(J) and tp(J)

We first analyze the set response time of theUEPAGDEQ g%m Lemma 2 into the above inequality, we get

algorithm when all job sets are batch released. The analysi N)
relies onlocal competitiveness argumefit4], which bounds Hi(TJ) < 2(Eow(T) + 155 - UT) +mL(log, P+ 1))'
the performance of an online algorithm at any time in ternfased on Lemma 1, both squashed waik7) and total
of the optimal offline scheduler, or rather its two lower bdsn spani(7) are lower bounds for the set response timejof

presented in Section II-C. The performance of &UIcAGDEQ thus satisfiesH;(7) <
For any job set collectiog7, we focus on itg-prefix 7(7), 2 (% ‘Hi(J)+ %5 - Hi (J) + mL(log, P + 1)) =
which according to definition always contains sets of jobs 2(1;5:56;,95) H{ () +2mL(log, P +1). -

for any ¢t > 0. R(gcall that the squashgj deprived processor
allocation for 7 () is given by aa(7 (1)) = 5> ,i- C. Analysis for Arbitrarily Released Job Sets

aa(Jyi)(1)), wherey(-) denotes a permutation of the job sets \we now analyze the set response time GUE-AGDEQ

in 7('t) sorted in non-increasing order of deprived process@en the job sets can have arbitrary release time. Notehbat t
allocation. At any time/, let m(z) denote the number of job squashed work is no longer a lower bound for the set response
sets in7(t) whose deprived processor allocation is at leagiine in this scenario. Hence, the analysis use®rtized local

z under BQUICAGDEQ, i.e., my(2) = 31" [aa(J;(t)) > 2. competitiveness argumefit4], which bounds the amortized
Apparently,m.(z) is a staircase-like decreasing functionzof performance of an online algorithm at any time in terms of the
From the definition of squashed deprived processor allogati optimal offline scheduler through a potential function.

an alternative expression fary ((7(t)) is given by We adopt the potential function used in [19] for the response
) time analysis of &DEQ. However, compared to the previous
N —n L[" potential function, where only processor allocations qfrded
aa(J(t)) = ﬁ/o Z i) dz ®) jobs are considered, the one used here needs to incorplogate t

=t whole job set collection instead of a single job set. Hence,

< for each deprived job set at any time, the potential function
)) for : ;
onsiders its entire processor allocation, including etl>o$
f%?tisfied jobs. In particular, we focus on theuffix 7(t)

which is a more convenient representationaof(7 (¢
analyzing batched job sets. Note that the expression pexte
in Eg. (5) gives a much simpler perspective for squash
deprived processor allocation than the one conceived in [) 7 . T
hence can be applied to simplify the batched response ti job Sleﬁ in7(¢) whose deprived processor allocation is
analysis therein. For our analysis on set response time juee tJn east=" iat tm:ft under EQUICAGDEQ, i.e., my(2) =
both EQUICAGDEQ and the optimal schedulé? processors of 2-i= 1[“14(«71() =z = J Moreover, letm;(z) denote the
unit speed. The local performance o&oAGDEQ is shown number of job sets ”37 (t) whose Worgs at least under
in the following lemma. the optimal, i.e.,m;(z) = >7%[w(J;7(t)) > z]. Hence,
Lemma 3:Suppose that &UlcAGDEQ schedules a collec- Poth m.(z) and mj(z) are staircase-like decreasing functions
tion 7 of batched job sets off processors of unit speed. TherPf z. We give EQUICAGDEQ P processors of speed where

the execution of the job sets satisfies the following = 2120) 4 ¢ for any e > 0, while the optimal scheduler uses
daa(7(1) un|t speed processors. The potential function is defined as
« Running conditionm; < 2 (AT +my)

job set collection7, and definem.(z) to be the number

my(z)

wher.eM{(“) denotes the rate of change for the squashed D(t) = n/oo Z i| —mez)miz)| dz, (6)
deprived processor allocation in an infinitesimal intechating 0 =1
which no job set completes.]

We can now combine the results of Lemmas 2 and 3 for téherern = (1+”) . We now prove the amortized local perfor-

set response time of @IocAGDEQ in batched scenario. mance of I;‘QmoAGDEQ in the following lemma.

Lemma 4:Suppose that &UIcAGDEQ schedules a collec- to the set response time [15]. Hence, the competitive ratio
tion 7 of job sets onP processors of speed wheres = of EQUICAGDEQ obtained here is in thesymptoticsense
2(%”) + ¢ for any ¢ > 0. Then with the potential function based on the assumption that the jobs under consideration
defined in Eq. (6), the execution of the job sets satisfies thee sufficiently large. Thus, the optimal set response time

following H;y(7) will denominate the additive factors shown in the
« Boundary condition®(0) = 0 and ®(cc) = 0; inequalities of Theorems 1 and 2, which can then be considere
« Arrival condition: ®(¢) does not increase when a new jols constants. For instance, when job sets are batched and the
set arrives; optimal set response time is much larger than the additive
« Running conditionmn, + 420 < 25 (x4, B), factor 2mL(log, P + 2), which is commonly satisfied by

Wheredi};gt) denotes the rate of change for the potential functighoSt computation-intensive workloads with realistic quam
size and practical number of processors, the performance of

in an infinitesimal interval during which no job set arrivess o X
EQUIcAGDEQ shown in Theorem 1 then becomég (7) <

completes under either@icAGDEQ or optimal. [| (14 pt5po)
The following theorem gives the set response time f(f# + 0(1)) Hi(J)=0Q) H{(J).
EQUIoAGDEQ for arbitrarily released job sets. While both EQUICAGDEQ and EQUIcEQUI use Kul at the

Theorem 2:Suppose that @UlocAGDEQ schedules a collec- job-set level to ensure fairness, the performance imprevem
tion 7 of m job sets onP processors of speed, where of EQUIocAGDEQ for sufficiently large jobs is essentially be-
= _2(1;” + ¢ for any ¢ > 0. Then its set response timecause the processors are utilized more efficiently ®pAQ

satisfies at the job level. On the other handQH! obliviously allocates
4(1 4 p — péb) i} 2ms processors to jobs, which will inevitably incur a large veast
Hy(TJ) < <2 + 00 Hi(J)+ (log, P+1), resources when the parallelism of the jobs can vary with time

.) Hence, both fairness among the job sets and efficiency within
where Hi(7) denotes the set response time gfunder the ¢5ch job set play important roles when scheduling for mieltip
optimal scheduler on unit-speed processérsand p denote

el o k sets of parallel applications.

A-GREEDY's utilization and responsiveness parameters, &nd
is the quantum length. E. EQUIcACDEQ and Its Performance

Proof: As the set response time ofQEIcAGDEQ is
given by Hy(7) = f0°° mqdt, and the set response time ofSC
the optimal isH;(7) = [,° mjdt, integrating the running
condition in Lemma 4 and applying the boundary and arriv
conditions, we haveH,(7) < 2 . H{(J) + 2 - tg(J),
wheretp(7) = f0°° s -mPdt is the total satisfied processo
time for 7 under BQUICAGDEQ. From Lemma 2, the total
satisfied processor time fq is also given bytg(J) <
2 UJ) + msL(log, P + 1). The set response time of
J scheduleg by EU'OAGQDEQL thus satisfiest,(7) < 2 - particular value for sufficiently long time. Because of the
Hi(T) + =gy - 1(J) + == (log, P + 1). Since the total n, iplicative-increase multiplicative-decrease gt the pro-
spani(.7) is a lower bound for the set response timedfon cessor desires produced by AREEDY tend to oscillate around
unit-speed processors, the theorem is directly implied. ™ he target parallelism of the job without settling down. To
D. Discussions avoid this problem, A-©NTRoOL provides feedbacks directly

In the preceding two subsections, we have analyzed the g§eq_on the job’s average parallehsm in the previous guant
pecifically, for each jobJ;; in a quantumg, let ¢, denote

response time of the @10AGDEQ algorithm for both batched .
and nonbatched job sets. As Theorem 1 shows, when all jt(t\? time when the quantum starts. /ofTROL callects the

sets are batched, @IoAGDEQ achievesO(1)-competitive, amount of WOL|:+(3L0mFI)€|eted for the job m_the quantum, i.e.,
since bothy andé can be considered as constants. This resdit/is:@) = Ji,' "~ sI3j(t)dt, as well as its span reduced
improves upon the)(2)-competitiveness of @UloEQUI in the quantum, i.e.i(Ji;,q) = fq"“ sTi (t) /R dt, where
obtained in [15], where: is the maximum number of jobs in k: represents the phase job; is executing at timet, s
a set. For small values of, however, the competitive ratio denotes the processor speed used by @NCrRoOL and L is the
of EQUIcEQUI can be considered as constant as well, amglantum length. The average parallelistgJ;;, ¢) of the job
thus it will perform comparably to @UIocAGDEQ, which are in quantumg is then given byA(J;;, ¢) = w(Ji;,¢)/1(Ji5, q).
confirmed by our simulation results to be shown in Section \he processor desire of the job in the next quanium 1
For nonbatched job sets, Theorem 2 shows thaIEAGDEQ is set directly to the average parallelism in quantgmi.e.,
achievesO(1)-speed O(1)-competitive. This result extendsd(J;;,q + 1) = A(J;;, q). Apparently, this strategy makes the
the same asymptotic performance of theukoY algorithm processor desire more representative of the job’s immegdiat-
obtained in [16] from jobs with specific parallelism strugty cessor requirement, and it effectively eliminates the beeé
namely, a sequential phase followed by a fully-parallelggha instability of A-GREEDY [20]. The simulations conducted in
to jobs with any parallelism profile. [19], [20] showed that ADEQ indeed outperforms ADEQ in
Note that, for jobs with arbitrary sizes, any non-clairvoiya terms of both stability of the desires and total response tiin
algorithm has been shown to bg1)-competitive with respect the jobs. In the next section, we will evaluat&@&EoACDEQ

In this subsection, we introduce an improved adaptive
heduling algorithm BuiocACDEQ, which combines Bul

V\iith the feedback-driven algorithm @®EQ [20]. As with
%GDEQ, the ACDEQ algorithm also uses the € allocator to
distribute processors among the jobs in a set. For the desire
'calculation strategy, it relies on the Ae®TROL scheduler
proposed in [21] to mitigate the feedback instability peshl

of A-GREEDY, which is briefly described in the following.
Suppose that the parallelism of a job stays constantly at

o]
o
o

each time. Moreover, to make sure that all jobs within a set
are batched, we adjust the release time of each job in a job
Exp set to when the first job of the set is released. Because of such

o
o o
o o

Impulse

£ 500 adjustment, the gap between the releases of consecutwe set

2 400t are also correspondingly increased. Hence, it turns otitttiea

& 300/ Ramp Poly() system load, i.e., number of active job sets at any time,ilis st
200 siep "oV - Log light when the total number of sets reaches 100. To simulate

[
o
o

heavy system loads, therefore, we readjust the releasedime
all jobs to0, which then corresponds to the batched scenario
Time considered in Section IV-B. In this case, the number of sets i
only increased from 5 to 50, and a quick convergence on the
performances of the three algorithms can already be olgerve
from the simulation results.

Fig. 1. Seven parallelism variation curves described bp,Steg, Poly(ll),
Ramp, Poly(l), Exp and Impulse functions.

together with BUIcAGDEQ and EQUIcEQUI in terms of the C. Set Response Time

set response time of multiple job sets. We first focus on the set response time of the three scheduling
As for the theoretical analysis, the performance afikqis algorithms, which is shown in Figure 2. First of all, when

bounded in terms of thizansition factorof the jobs. This factor the number of sets is fixed, the relative set response time is

captures a job’s maximum parallelism transition betweep aflosely related to the number of jobs within each set. In gen-

two consecutive quanta, and to a certain extent better tefle@ral, QUIAGDEQand EQUIoACDEQ outperform BUICEQUI

the degree of difficulty to schedule the job in an online atapt When there is a moderate to large number of jobs in each

manner. Due to space constraint, we refer interested reaolerset. The reason is that, given the same number of processors,

[20], [21] for more details about the analysis oEBEQ. feedback-driven algorithms make use of jobs’ execution his
tory to efficiently guide processor allocations, whil®@& is
V. EMPIRICAL EVALUATIONS oblivious to jobs’ parallelism variations thus results owi

In this section, we conduct simulations to compare trgystem efficienc_y. However, when each set only contains a
performances of three online adaptive schedulers, name&all number of jobs, the performance op& becomes better,

EQUIcAGDEQ, EQUIcACDEQ, and EQUIcEQUI. since all jobs can be easily satisfied by in this case.
The results also show that the relative set response time is
A. Parallel Workload significantly impacted by the system loads. In particuladrew

The simulations are performed using synthatialleable the load is light, i.e., the sets are nonbatcheQUEAGDEQ
jobs, which are generated based on Downey'’s parallel wackloand EQuUIocACDEQ perform much better than@ioEQuI. On
model [5]. However, Downey’s model only specifies somthe other hand, when all the sets are batch released, rafirese
external characteristics for the jobs such as their artina¢, heavy system load, the performances afutocAGDEQ and
total work and average parallelism. To add internal stmestu EQUIocACDEQ quickly converge to that of @ulocEQuI. This is
each job is divided into a series of segments and each segnimtause in this case each set only receives very few prasesso
is identified by one of the seven parallelism variation carvenost of the time, hence frequent processor reallocatiottgrwi
shown in Figure 1. These variation curves are first propasedthe sets have no apparent benefit. These results demonstrate
[3] and are specifically designed to capture a range of @hrallhat feedback-driven schedulers are particularly effector
programming patterns that could represent different @masti systems with light loads and a moderate number of jobs in the
of an application. (More details on the interpretationstafse sets, while BUIcEQUI can perform comparably well in other
curves can be found in [3].) Note that, when augmenting tltases. In addition, the performance aflHoACDEQ is always
jobs with these parallelism variations, we carefully makees better than that of BuloAGDEQ, which is due to the more
that the total work and the average parallelism of a job ovstable desire calculation strategy of the ACrroL scheduler.
all segments are not altered from those initially generéted

Downey’s model. D. Processor Utilization

_ _ Figure 3 shows the relative processor utilizations of tmedh

B. Simulation Setup scheduling algorithms. The results show that the utilrai

We simulate a system with 64 processors, and the aim isabthe two feedback-driven schedulers are always better tha
study the performances of the scheduling algorithms when weat of EQUIcEQuUI under all system loads. When there are
vary the number of sets, the number of jobs in a set, as well\ay few jobs in each set, @I0cEQuUI has particularly bad
the jobs’ arrival patterns. Following advices from [1], [#19], utilization, since it is blind to the jobs’ parallelism vations
the utilization and responsiveness parameters of Re&dY thus eventually wastes a large amount of resources. Figure 2
are set ta) = 0.8 andp = 2, respectively. Based on Downey’sshows that BUlcEQUI actually achieves better set response
model, the arrival rate of the jobs is set proportionallyte t time in this case at the cost of poor system utilization. With
number of sets, and hence is tied to the load of the system. iNereases in the system load and the number of jobs, the
group consecutively released jobs together to form job. setsilization advantage of the feedback-driven schedulegirs
In our simulation, both the number of sets and the number f diminish, since nearly all processors are well utilized b
jobs in a set are varied from 5 to 100 at an increment ofthe three schedulers as more jobs are present in the system.

15— 1.1 ‘
—EQUI’EQUI / EQUI°PACDEQ —EQUI’EQUI / EQUI°’ACDEQ
o 14" EQUI’EQUI / EQUIPAGDEQ o - - EQUIPEQUI / EQUIPAGDEQ
8 e
o 1.
g 3 ug) 1.05
$12 3 r\
2 S -
811y g 1f--- D\’—‘\.- T
5 1 g P
1 7]
0.9 0.95"
10 20 30 40 50 60 70 80 90 100 5 10 15 20 25 30 35 40 45 50
Number of sets Number of sets

(@) (b)

Fig. 2. Set response time ofgdplocAGDEQand EQuioACDEQ normalized by that of BuloEQuUI when (a) job sets are nonbatched (b) job sets are batched.

3 2
—EQUI°’ACDEQ / EQUI’EQUI — EQUI°ACDEQ / EQUI’PEQUI
- - EQUI°’AGDEQ / EQUI’PEQUI - - EQUI’AGDEQ / EQUIPEQUI

=
©

2.5

=
)}

Utilization ratio
N
Utilization ratio
I
~

&)
=
[N}

R

1kkLkaLLu;

10 20 30 40 50 60 70 80 90 100 5 10 15 20 25 30 35 40 45 50
Number of sets Number of sets

(@) (b)

Fig. 3. Processor utilization of @JlcoAGDEQand EQuioAcDEQnormalized by that of BulocEQUI when (a) job sets are nonbatched (b) job sets are batched.

ity Wi,
R ', A A0 “, \‘, “ h “ 2 R R ‘\N‘vk\y\\\\ﬁ.:\,»
1

The results confirm that the feedback-driven algorithmsgctvh [7] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. Non-siayant
take advantage of parallelism correlations of the jobsedmti multiprocessor scheduling of jobs with changing executibaracteristics.

R .. In STOG EIl Paso, USA, 1997.
achieve better overall system eff|C|ency thaQUE-EQuUI. [8] D. G. Feitelson. Job scheduling in multiprogrammed paraystemsI|BM

Research Report RC19790(87657) 2nd Revjsi®97.
VI. CONCLUSION [9] Y.He, W.-J. Hsu, and C. E. Leiserson. Provably efficiemdevel adaptive
scheduling. INISSPPR Saint-Malo, France, 2006.
In this paper, we have studied online adaptive schedulifi@] B. Kalyanasundaram and K. Pruhs. Speed is as poweritiaasoyance.

to minimize the response time for multiple sets of parall\(f Journal of the ACM47(4):617-643, 2000.

| . . ,
licati It h hi 1H Y.-K. Kwok, and I. Ahmad. Static scheduling algorithnfier allocat-
applications on multiprocessor systems. We have achieve ing directed task graphs to multiprocessorBCM Computing Surveys

both fairness and efficiency by applying the equi-partitign 31(4):406-471, 1999.
algorithm and the feedback-driven algorithms at the jdb-§é2] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic prsoeslloca-

. . . . tion policy for multiprogrammed shared-memory multipresers. ACM
level and the job level, respectively. Both theoreticallgsia Transactions on Computer Systertid(2):146-178, 1993.

and empirical simulations have confirmed the improved perfd13] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyastheduling. In

mances of our algorithms compared to an existing schedaler, SODA Austin, USA, 1993. .
f h | dv hi hical sch l 114] K. Pruhs. Competitive online scheduling for serverteyss. Performance
our future research, we plan to study hierarchical scheguli ™ " gyauation Reviewda(a):52-58, 2007.

where jobs are organized into more than two levels. Whi[&5] J. Robert and N. Schabanel. Non-clairvoyant batch séeduling:

feedback-driven scheduling has been shown to be effeative f _Fairmess is fair enough. IBSA Eilat, Israel, 2007. .
S . . . 16] J. Robert and N. Schabanel. Pull-based data broaddtisti@pendencies:
minimizing makespan under this setting [4], we believe that™ ¢ i 10 users, not to items. BODA New Orleans, USA, 2007.

will perform well with respect to other related objectives. [17] S. Sen. Dynamic processor allocation for adaptivelyajpel jobs.
Master's thesis, Massachusetts Institute of technolo@942

REFERENCES [18] R. Sudarsan and C. J. Ribbens ReSHAPE: A framework foradyc
resizing and scheduling of homogeneous applications inrallpbenvi-
[1] K. Agrawal, Y. He, W.-J. Hsu, and C. E. Leiserson. Adagtischeduling ronment. InICPP, Xi'an, China, 2007. _ _
with parallelism feedback. I®PoPP, New York, USA, 2006. [19] H. Sun, Y. Cao, and W.-J. Hsu. Competitive two-leveltil@ scheduling
[2] A.Borodin and R. El-Yaniv.Online computation and competitive analysis __Using resource augmentation. JSSPP Rome, Italy, 2009. _
Cambridge University Press, New York, NY, USA, 1998. [20] H. _Sun, Y. Cao,_ and W.-J. Hsu._ Efficient Adaptive schertg,l_lof
[3] Y. Cao, H. Sun, and W.-J. Hsu. Malleable-Lab: A tool forakiating multiprocessors with stable parallelism feedback. IEEE Transactions
adaptive online schedulers on malleable jobsPDP, Pisa, Italy, 2010. on Parallel and Distributed System82(4), 594-607, 2011.

[4] Y. Cao, H. Sun, D. Qian, and W. Wu. Scalable hierarchicilesluling for [21] H. Sun and W.-J. Hsu. Adaptive B-Greedy (ABG): A simpket gfficient

multiprocessor systems using adaptive feedback-drivéiciga In ISPA scheduling algorithm. IHPDPS Miami, USA, 2008. o
Taipei, Taiwan, 2010. [22] A. Tucker and A. Gupta. Process control and schedulsgugs for

[5] A. B. Downey. A parallel workload model and its implicatis for multiprogrammed shared-memory multiprocessors.S@®SP New York,
processor allocation. 1HPDC, Portland, USA, 1997. USA, 1989.
[6] J. Edmonds. Scheduling in the dark. 85TOG Atlanta, USA, 1999.

