
Tians Scheduling: Using Partial Processing in Best-Effort Applications

Yuxiong He, Sameh Elnikety
Microsoft Research

Hongyang Sun
Nanyang Technological University

Abstract—To service requests with high quality, interactive
services such as web search, on-demand video and online
gaming keep average server utilization low. As servers be-
come busy, queuing delays increase, and requests miss their
deadlines, resulting in degraded quality of service with poor
user experience and potential revenue loss. In this paper, we
propose Tians scheduling, a group of scheduling algorithms for
interactive services that can produce partial answers during
overload. A Tians scheduler allocates processing time to each
request based on system load with the objective of maximizing
overall quality of responses.

We propose three Tians scheduling algorithms — offline,
online clairvoyant and online nonclairvoyant. For interactive
applications with concave quality profile, we prove that the
offline algorithm is optimal. We show the effectiveness of the
online algorithms by conducting a simulation study modeling
important applications — a web search engine and video-on-
demand (VOD) system. Simulation results show a significant
improvement of Tians over traditional server models: average
response quality improves and the variance of responses
decreases.

Keywords-interactive services, best-effort applications, of-
fline, online clairvoyant, online nonclairvoyant, partial results,
quality profile, scheduling, VOD bandwidth allocation, web
search engine.

I. Introduction
Many popular web applications are interactive, such as web
search, map service, online gaming, and video-on-demand.
Today, they constitute an important fraction of data center
workloads. Service providers want to offer these services
with high quality and short response time while reducing
operational costs. To reduce cost, it is desirable to operate
servers with high utilization, rather than using many lightly-
loaded servers handling the same workload. Using fewer
servers saves hardware, energy and maintenance costs. This
is particularly challenging for interactive services: for batch
workloads, server utilization can be increased close to 100%;
however, for interactive applications, server utilization is
kept low.

An important reason behind keeping server utilization
low is that the traditional software framework cannot sup-
port a good quality of service for interactive applications
when servers are heavily loaded. A server component is
typically written to execute a request fully, or reject the
request under overload. If a request is not fully processed
by its deadline, it returns no answer on time, which results
in wasted processing time and degraded service quality. The
quality profile of a request is a step function, which requires
a request to be processed to its full service demand to return
the response. Due to stochastic nature of arrival and service
distributions, this strict software model is unable to offer

high service quality on well-loaded servers.
Let’s use a simple example from classic queuing theory to

illustrate the problem of a strict software model. We model
a simple server as an M/M/1 queue with First-In-First-Out
(FIFO) scheduling. Suppose the server needs to answer each
request with deadline 100 ms and the mean service demand
of requests is 15 ms. Each request returns a result with
quality 1 if its full service demand is satisfied within the
deadline, and 0 otherwise. We measure the overall service
quality as the average quality of responses, which is equal
to the probability that a response is computed within the
deadline. To offer a service quality of 0.99, what is the
highest request arrival rate this server can sustain? We use
queuing theory to answer this question: W denotes latency
of a request, λ denotes arrival rate, μ denotes service rate,
and Q denotes service quality. We have Q = P (W ≤ 100) =

1− e−(μ−λ)100. To satisfy quality of 0.99, the arrival rate is
at most 0.3 times of the service rate, which means that the
server utilization is at most 30%. The question we address
in this paper is how to offer the same quality of service
with higher arrival rate and server utilization using partial
results.

The intuition behind our solution comes from the fol-
lowing observation: many interactive applications find the
best available result within a predefined response time.
For example, in web search engine, such as Bing or
Google, user query should be satisfied in a few hundred
milliseconds, and similarly for other web services such
as a map service, online travel arrangement, and online
gaming. The returned response is usually not the only
correct response in the entire search space; it is, however,
the best available response given the response time limit.
In other words, processing a request partially carries a
meaningful value. Unlike the traditional server model whose
quality follows a step function of processing time, such best-
effort applications have intrinsic quality profile in which
response quality improves with received processing time.

To take advantage of the quality profile in the interactive
applications, we introduce Tians scheduling, which adopts
partial results and maximizes response quality. More pre-
cisely, when a server software applies Tians scheduling, it
accepts an allocated processing time as an input parameter
with each request, and generates the best partial (or full)
result given the amount of processing time. A Tians sched-
uler assigns processing time to each request using request
characteristics and system load. Its goal is to maximize
the overall quality of the responses subject to the deadline
of requests. We develop three Tians scheduling algorithms:
offline (known future arrivals and service demands), online

1

clairvoyant (known service demands for arrived requests)
and online nonclairvoyant (unknown service demands).

We employ a simulation study to evaluate the benefits
of Tians scheduling in two application domains: scheduling
CPU processing times in a web search engine and schedul-
ing upstream bandwidth in a video-on-demand environment.
We find that Tians scheduling (a) improves average response
quality and (b) reduces the variance of response quality.
In particular, to offer the same quality of service, in the
web search engine, Tians sustains more than 400% higher
request arrival rate than a traditional FIFO server; for the
VOD server, Tians sustains more than 40% higher load than
FIFO.

The contributions of the paper are the following: (1) We
propose Tians scheduling for best-effort interactive services,
exploiting partial results to improve average response qual-
ity. (2) We propose three Tians scheduling algorithms for
three important settings: offline, online clairvoyant, online
non-clairvoyant. (3) We prove the optimality of the Tians
offline scheduling algorithm when quality profile is concave.
(4) We conduct a simulation study to assess the benefits of
Tians online scheduling algorithms in two domains — a web
search engine, and a video-on-demand (VOD) environment.

This paper is structured as follows. Section II describes
partial results in server software. Section III gives an
overview of Tians scheduling. Section IV presents an op-
timal offline algorithm, and proves algorithm optimality.
Section V presents two online algorithms. Section VI eval-
uates our online algorithms through a simulation study.
Section VII contrasts Tians scheduling to related work, and
Section VIII concludes the paper.

II. Partial Results
This section explores the features of quality profiles in best-
effort interactive applications and discusses how to support
partial results.

Many best-effort applications such as web search, video
streaming, online gaming, etc., have several responses for a
request. They implicitly use a response quality function, in
which response quality improves with request processing
time. For example, in web search, when a user submits
a search request for certain keywords, the search engine
scans a distributed inverted index looking for webpages that
match the keywords, and ranks the matching webpages. An
inverted index lists important (e.g., popular) web pages first;
therefore webpages searched earlier are more likely to rank
higher and contribute more to total quality of the request.
If the search engine does not finish identifying and ranking
all matching webpages, it can still return the best matches
found so far. Here, the quality of the response improves
with processing time, and exhibits diminishing returns.

Response quality profiles are likely to be concave or close
to concave because of the effect of diminishing returns and
the iterative nature of the best-effort algorithms. A function
f is concave if f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y) for
any 0 < α < 1 and valid input x and y. This function
is strictly concave if the inequality always holds, i.e.,

f(αx + (1 − α)y) > αf(x) + (1 − α)f(y). For example,
Figure 1(a) shows a quality profile example used in search
engine simulation. This profile is monotonically increasing
and concave. The phenomena of diminishing returns appear
in many domains. For example, in video streaming, basic
layers are much more important than refinements layers; the
quality of received video streams improves monotonically
with the number of received layers but exhibits diminishing
returns. In this paper, we exploit the properties of concavity
in our scheduling algorithms.

In best-effort applications, there are various techniques
to support partial results. Such techniques are beyond the
scope of this paper but we point out that in many domains,
a response is computed iteratively and therefore controlling
the number iterations is an attractive technique. Servers
would accept an additional parameter with each request
specifying the allowed processing time. Such a parameter
can be used to select the appropriate algorithm or dataset
to compute or approximate the response.

III. Overview of Tians Scheduling
Compared to a traditional scheduling system, Tians schedul-
ing has additional responsibility of allocating the processing
time to each job (or request) based on system load, and job
deadline.

Motivating Example: Consider this simple scenario,
two jobs arrive at the system simultaneously, each with
processing requirement of 100 ms. The deadline for each
job is also 100 ms. Using FIFO, the first job meets the
deadline while the second one misses it. Suppose that the
job quality follows the quality profile in Figure 1(a). FIFO
gets total quality 1. Due to the concavity of the quality
profile, we can do better by partially executing the first job
for 50 ms, and allocating the remaining time to the second
one, resulting in 0.96 quality for each job and total quality
1.92. This example illustrates the benefit of an enhanced
scheduler for maximizing overall quality of responses.

Scheduling Model: We use the following scheduling
model. There is set J = {J1, J2, . . . , Jn} of n jobs. Each
job Ji ∈ J is characterized by an arrival time ri, deadline
di, and service demand (aka total work) wi. For each job
Ji, a scheduling algorithm starts to execute the job at time
si and completes it at ci, where si ≥ ri and ci ≤ di. Let
pi denote the processing time job Ji receives during [si, ci],
and it may not be processed to its full service demand,
that is, partial execution is allowed with pi ≤ wi. A quality
function f : R → R maps the processing time a job receives
to a quality value gained by executing the job. Moreover, we
assume that the same quality function f applies identically
to all jobs in J . Table 1 summarizes the main notations
used in the paper.

The objective is to maximize the total quality gained by
executing all jobs in the job set, i.e.,

∑n
i=1 f(pi). Without

loss of generality, we assume that the arrival times of the
jobs satisfy r1 ≤ r2 ≤ · · · ≤ rn. In addition, we assume
that the deadlines of the jobs are agreeable, that is, a job
that arrives later naturally has a later deadline, i.e., d1 ≤

2

Table I
TERMINOLOGY AND NOTATION.

Terminology Notation
job set J

num of jobs in J n

quality function f

parameters for job Jk:
arrival time rk

deadline dk
service demand wk

start time sk
completion time ck
processing time pk

d2 ≤ · · · ≤ dn. Tians scheduling algorithms target quality
functions that are monotonically increasing and concave as
discussed in Section II.

IV. Offline Scheduling
This section presents an offline scheduling algorithm: Tians-
Optimal. We show that Tians-Optimal is an optimal offline
algorithm when the quality function f is monotonically in-
creasing and strictly concave. The optimal solution does not
depend on the shape of the profile. Moreover, the optimal
scheduler is non-preemptive, executing jobs in their arrival
order. Implementing such a non-preemptive scheduler in
server software is simpler than preemptive ones.

The intuition behind Tians-Optimal is that when qual-
ity profile of an application is concave, an optimal al-
gorithm would allocate to each job an equal amount of
time subject to job’s service demand unless the allocation
violates job’s deadline. We define an allocation policy —
Service-time Oriented Equal Partitioning (SOEP) — to
apply the equal allocation principle of this observation.
Roughly speaking, an optimal schedule is a sequence of
segments, where the jobs inside the segment are scheduled
by SOEP and the boundary of segments is decided by job
deadline constraints. Applying this principle, we use the
following three steps in Tians-Optimal. First, it identifies
independent blocks of adjacent jobs, such that each block
can be scheduled independently of others. Second, inside
each independent block, it searches for the busiest segment.
Once the busiest segment is identified, we schedule its
jobs using SOEP. Here SOEP always produces a feasible
schedule. Third, we remove this scheduled segment from
the containing independent block, producing two smaller
independent blocks that are scheduled recursively using the
second step. We elaborate the concepts and algorithm in the
remainder of this section.

A. Definitions and Notations
Before presenting Tians-Optimal and its analysis, we start
this section by formalizing some basic concepts about a
job block. Two jobs are adjacent if there is no job arriving
between them. A block of jobs, represented by J [i, j], is
a sequence of adjacent jobs from Ji to Jj . The span of
J [i, j] is the interval [ri, dj], which is the maximum time

interval we can use to execute J [i, j]. An independent block
is defined as follows:

Definition 1: Two adjacent jobs Ji and Ji+1 are related
if ri+1 < di. Otherwise, they are not related since job Ji+1

arrives after job Ji expires. The block J [i, j] is defined as an
independent block if the following three conditions hold:

1. Jk and Jk+1 are related for all k where i ≤ k < j,
2. i = 1 or Ji−1 is not related to Ji,
3. j = n or Jj+1 is not related to Jj .

An independent block does not have any influence on
other independent blocks. Therefore, we can identify them
and compute optimal solution for each independent block
separately. The identification of independent blocks takes
only a linear scan of jobs. Thus, without loss of generality,
we assume that the job set J consists of only one indepen-
dent block, and our algorithm is applied to one independent
block of jobs.

Next we present the idea of SOEP, which performs equal
partitioning of total available processing time to jobs subject
to job’s service demand (and not the deadlines). SOEP does
not consider deadline of individual job during allocation,
therefore a SOEP schedule is not always feasible for any
job block. However, when SOEP is feasible, it produces an
optimal schedule for the block. As an important observation
leading to Tians-Optimal, we formalize and prove it in
Lemma 4.

Assume that all jobs are available to run in a given time
interval I , SOEP allocates to each job an equal share of
processing time unless the job’s service demand is less.
In other words, small jobs get what they demand, and
large jobs get an equal share of processing time. For
example, suppose the length of interval I is 10, and there
are three jobs J1, J2, and J3 with total demand 2, 7, and
10 respectively. SOEP allocates to these jobs 2, 4 and 4 as
their assigned processing time. Here, a job Ji is satisfied if
pi ≥ wi; otherwise if pi < wi, the job is deprived. A formal
definition of SOEP condition is:

Definition 2: A schedule for a job block J [i, j] on in-
terval I = [ri, dj] satisfies the SOEP condition if all the
following three conditions hold:

• Equal deprived condition: All deprived jobs are as-
signed the same processing time p̄(J [i, j]), which we
call the mean deprived time.

• Smaller satisfied condition: All satisfied jobs have
their assigned processing time less than or equal to
the mean deprived time.

• Fully occupied condition: If there exists any deprived
job, the sum of processing time over all jobs is equal
to the length dj − ri of the block span I .

We define SOEP segment to represent a block of jobs where
SOEP is feasible.

B. Algorithm
The major challenge of Tians-Optimal is to identify SOEP
segments and split the total available processing time of
the job set among them to maximize overall job quality. To
achieve the goal, we identify the busiest segment of jobs and

3

assign the entire span interval (maximum available process-
ing time considering deadline) to these jobs using SOEP.
The intuition comes from concavity of quality profile: an
optimal schedule wants to give jobs similar processing time
whenever possible. Since jobs in a busier segment is likely
to have smaller processing time because of the deadline
constraint, the job segment in the busiest interval should
take over its entire span to maximize the processing time
of jobs inside the segment. After we make allocation for
jobs at the busiest segment, we remove the segment from
the containing block, producing two smaller independent
blocks, and perform scheduling recursively in a divide-and-
conquer fashion.

Algorithm 1 shows the pseduocode of Tians-Optimal,
which is initially invoked with start = 1 and end = n

for a job set J consisting of n jobs. Tians-Optimal finds
the busiest block using FindBusiestUnmarkedBlock, which
return two cases — all-satisfied and some-deprived. In the
all-satisfied case, all jobs can be satisfied. FindBusiestUn-
markedBlock marks all jobs and return the flag found =

false. Tians-Optimal starts each job Jk at its earliest possi-
ble time and processes it to its full service demand. In some-
deprived case, there exist jobs that cannot be satisfied and
found is set to true. FindBusiestUnmarkedBlock finds the
busiest block containing deprived jobs, and Tians-Optimal
schedules the jobs in the busiest unmarked block J [i, j] by
applying SOEP condition on the entire span interval [r i, dj].
Here the busiest block is defined as the block with smallest
u-mean value, where u-mean is defined as follows:

Definition 3: Given a job block J [i, j], the unmarked
mean or u-mean of the block measures the average available
processing time for unmarked jobs in the block, which is
given by the available length of the interval after satisfying
all marked jobs divided by the total number of unmarked
jobs, i.e.,

p̃(J [i, j]) =
dj − ri −

∑
Jk∈M(J [i,j]) wk

|U(J [i, j])|
where M(J [i, j]) and U(J [i, j]) denote the set of marked
jobs and the set of unmarked jobs in block J [i, j], respec-
tively.

To calculate u-mean of a block, satisfied jobs must be
marked; in other words, any job whose work is less than
or equal to this u-mean will be marked. FindBusiestUn-
markedBlock marks jobs and computes u-mean in a while
loop. Due to the connection between marked jobs and u-
mean, after marking some jobs the smallest u-mean may
get increased in the next iteration of the while loop and
hence more jobs can possibly be marked. When all jobs
are marked, all jobs can be satisfied, and FindBusiestUn-
markedBlock returns false to indicate all-satisfied case to
its caller; otherwise, FindBusiestUnmarkedBlock returns a
busiest unmarked block J [i, j] with u-mean p̃(J [i, j]). Any
job Jk whose work satisfies wk ≤ p̃(J [i, j]) must be marked
and thus satisfied by the algorithm; those jobs in J [i, j]

that are not marked will be deprived and share the same
processing time, which is equal to the u-mean of the block.

Algorithm 1 Tians-Optimal
Require: start, end
Ensure: start time sk and complete time ck for each job

Jk, where k ∈ [start, end].

1: if end < start then
2: return
3: (found, i, j, p̃) = FindBusiestUnmarkedBlock(start,

end)
4: if (!found) then
5: // all jobs are marked and can be satisfied.
6: for k = start : end do
7: sk = max{rk, ck−1}
8: ck = sk + wk

9: return
10: else
11: // schedule jobs in busiest unmarked block by SOEP.
12: for k = i : j do
13: sk = max{rk, ck−1}
14: ck = sk +min{wk, p̃}

// update other jobs’ arrival time or deadline
15: for (start ≤ k ≤ i− 1 and dk > ri) do
16: dk = ri
17: for (j + 1 ≤ k ≤ end and rk < dj) do
18: rk = dj

// recursively schedule other jobs
19: Tians-Optimal (start, i− 1)
20: Tians-Optimal (j + 1, end)

Algorithm 2 FindBusiestUnmarkedBlock
Require: start, end
Ensure: The busiest unmarked block.

1: numMarked = 0

2: while (numMarked < end− start+ 1) do

3: // find block with smallest u-mean.
4: p̃smallest = ∞, i = j = start

5: for k = start : end do
6: for s = k : end do
7: compute u-mean p̃(J [k, s]) for block J [k, s].
8: if p̃(J [k, s]) < p̃smallest then
9: p̃smallest = p̃(J [k, s])

10: i = k, j = s

// mark jobs whose work is less than p̃smallest

11: marked = false

12: for each unmarked job Jk ∈ J [start, end] do
13: if wk ≤ p̃smallest then
14: marked = true and mark job Jk
15: numMarked++
16: if (!marked) then
17: return (true, i, j, p̃smallest)

18: return (false, 0, 0, 0)

The schedule produced for J [i, j] in [ri, dj] satisfies the
SOEP condition, where the mean deprived time is equal to
the u-mean of the block. (The feasibility of the schedule
will be proven in Section IV-C.)

4

The complexity of this offline algorithm is O(n4). Finding
smallest u-mean takes O(n3) time because of the pair-wise
comparison of the job blocks and a linear time search for the
marked jobs to compute u-mean of each block. In the worst
case, only 1 job is marked each time and therefore finding
smallest u-mean needs to be invoked n time, resulting in
the stated complexity.

C. Optimality Proof
Theorem 1 shows the optimality of Tians-Optimal.

Theorem 1: Given any job set J and a monotonically-
increasing and strictly-concave quality profile f , Tians-
Optimal produces an optimal schedule.
Proof sketch: The key ideas of the proof are as follows. We
present their formal analysis one-by-one in the remaider of
the section.

• It is sufficient for Tians-Optimal to consider non-
preemptive FIFO (First-In First-Out) schedules, be-
cause for any feasible schedule, there exists a fea-
sible non-preemptive schedule that executes all jobs
in the FIFO manner with the same overall quality.
(Lemma 2).

• If a feasible schedule of a job block satisfies SOEP
condition, this schedule is optimal. (Lemma 4).

• The busiest unmarked block J [i, j] returned from
FindBusiestUnmarkedBlock is a SOEP segment, thus
SOEP produces a feasible schedule in J [i, j]. (Claim
2).

• An optimal FIFO schedule must assign the entire span
interval [ri, dj] to the segment as Tians-Optimal does;
and it would assign the jobs inside the segment using
SOEP as Tians-Optimal does. (Claim 3).

• Since the busiest unmarked block divides the remain-
ing jobs into two smaller blocks, we can apply Find-
BusiestUnmarkedBlock again. We apply mathematical
induction to complete the proof.

As the first step of the analysis, we show that, although
preemption is allowed, it is sufficient to consider non-
preemptive schedules that execute jobs in the FIFO manner.
These schedules are attractive in practice because of their
simple implementation without preemption overhead.

Lemma 2: For any feasible schedule, there exists a fea-
sible non-preemptive schedule that executes all jobs in the
FIFO manner with the same overall quality.

Proof: Given a feasible schedule, consider any two jobs
Ji and Jj that do not follow the FIFO order. Without loss
of generality, we assume that Ji arrives first thus has early
deadline. Without affecting the execution of other jobs, we
can execute Ji before Jj , both for the same amount of
processing time as the original schedule, hence the overall
quality gained is the same. Apparently, the new schedule
is also feasible since the deadlines of both jobs are not
violated. Applying the same argument to all pair of jobs
in the original schedule gives us a FIFO schedule that is
non-preemptive.

We know that the schedule produced by the Tians-
Optimal algorithm is a non-preemptive FIFO schedule. We
need to define more notations for the subsequent analysis.

Definition 4: A job Jh is said to be the head of job Jk

in a schedule if h is the largest job index that satisfies the
following conditions:

1. 1 ≤ h ≤ k,
2. sh = rh,
3. sl = cl−1 for each h < l ≤ k.

Similarly, a job Jt is the tail of job Jk in a schedule if t is the
smallest job index that satisfies the following conditions:

1. k ≤ t ≤ n,
2. ct = dt,
3. cl = sl+1 for each k ≤ l < t.

Moreover, the block J [h, t] is said to be the tight block of
job Jk in this schedule.

Intuitively, the tight block of a job forms a continuous
sequence of job execution containing the job. In a given
schedule, not every job has the head or the tail, hence the
tight block. However, in the following lemma, we show that
such a tight block can always be found for deprived jobs
in OPT, where OPT is an optimal FIFO schedule. We use
p∗k to denote the processing time job Jk receives in OPT.

Lemma 3: Any deprived job Jk in OPT belongs to a tight
block J [h, t] and its processing time is not less than that of
any other job in the block, i.e., p∗

l ≤ p∗k for all h ≤ l ≤ t.
Proof: We first show that given a deprived job Jk in

OPT, its head Jh must exist. Suppose that Jh does not exist,
then there must be a continuous sequence of jobs in front
of Jk with the leading job starting after its arrival. In this
case, we can shift the starting and completion times of these
jobs earlier by a small amount of time δ, which can then
be assigned to Jk so that we gain more quality from it.
This contradicts the fact that OPT is an optimal schedule.
Therefore, Jh must exist. Now, suppose that there exists a
job Jl ∈ J [h, k] whose processing time is more than that of
Jk. In this case, we can reduce the processing time of J l by
a small amount of time δ, shift the starting and completion
times of all jobs from Jl to Jk by δ, and then increase the
processing time of Jk by δ. Since the quality function is
strictly concave, the quality increase at Jk is larger than the
quality decrease at Jk; the new schedule has higher quality
than the original one. This again contradicts the fact the
original schedule is optimal. Thus, we have p∗

l ≤ p∗k.
Similarly, we can show that the tail Jt of job Jk also

exists and any job Jl ∈ J [k, t] satisfies p∗l ≤ p∗k.
The following lemma shows the optimality of the SOEP

condition, provided that it is feasible for a block of jobs.
Lemma 4: If SOEP is feasible for a job block J [i, j] in

interval I = [ri, dj], it is also an optimal schedule for J [i, j].
Proof: Let us consider a relaxed case, where all jobs

in J [i, j] are eligible to run in the entire interval I . An
optimal quality for this case is apparently an upper bound
on the optimal quality for the original problem. For the
relaxed problem, we will show that SOEP offers an optimal
schedule. Therefore, when SOEP is also feasible for the
original problem, it offers an optimal schedule as well.

5

For the relaxed problem, let S(J [i, j]) and D(J [i, j])

denote the set of satisfied jobs and the set of deprived jobs in
SOEP. In addition, let p̄(J [i, j]) denote its mean deprived
time. Now, consider any other fully occupied schedule χ

that does not assign more processing time to a job than
the job’s total work. We will show how to transform χ to
SOEP without decreasing the overall quality, thus proves
that SOEP is optimal.

Suppose that in χ there exists a job Jk ∈ S(J [i, j]) that
is deprived, so we have pk < p̄(J [i, j]). Since χ is fully
occupied and does not assign more time to a job than
its work, the total processing time allocated to all jobs in
D(J [i, j]) by χ is more than that by SOEP. Let Jl denote
the job in D(J [i, j]) whose processing time is the largest in
χ. Therefore, we should have p l > p̄(J [i, j]) > pk. Since
the quality function is identical for all jobs and strictly
concave, reducing a small amount of processing time δ for
Jl and assigning it to Jk will lead to better overall quality.
Repeating this process till all jobs in S(J [i, j]) are satisfied
produces schedule χ′. To transform χ′ to SOEP, repeatedly
reassign a small amount δ from the job with the largest
processing time to the job with the smallest processing
time in D(J [i, j]) till all jobs in D(J [i, j]) have the same
processing time. Again, the overall quality only increases
due to the concavity of the quality function.

Now, we focus on Tians-Optimal and claim some useful
properties. In particular, these properties apply to Tians-
Optimal from the very beginning of its invocation to the
time when it either finds the first busiest unmarked block
or marks all jobs in the job set.

Claim 1: Any marked job is satisfied in OPT.

Proof: We prove the claim by contradiction. Suppose
that there exists a marked job Jk that is deprived in OPT.
According to Lemma 3, Jk belongs to a tight block J [h, t]

in OPT and we have p∗l ≤ p∗k ≤ wk for all h ≤ l ≤ t.
Moreover, since J [h, t] is a tight block and OPT will not
assign more processing time to a job than its total work,
we have

∑t
l=h p∗l = dt − rh and p∗l ≤ wl for h ≤ l ≤ t.

Let M(J [h, t]) and U(J [h, t]) denote the set of marked
jobs and the set of unmarked jobs in block J [h, t] imme-
diately before job Jk is marked by FindBusiestUnmarked-
Block. The u-mean of the block is then given by

p̃(J [h, t]) =
dt − rh −∑

Jl∈M(J [h,t]) wl

|U(J [h, t])|

≤
dt − rh −∑

Jl∈M(J [h,t]) p
∗
l

|U(J [h, t])|

=

∑
Jl∈U(J [h,t]) p

∗
l

|U(J [h, t])| ≤ p∗k ≤ w∗
k . (1)

When FindBusiestUnmarkedBlock decides whether Jk

should be marked, it evaluates every block including J [h, t].
According to Algorithm 2 and Inequality (1), Jk should not
be marked. This contradicts the fact that it is marked.

Claim 2: The schedule produced by Tians-Optimal is
feasible.

Proof: We will prove the feasibility by showing that the
completion time assigned to each job by Tians-Optimal is
no later than its deadline. We prove the claim by contradic-
tion. Suppose that Jk is the first job violating its deadline,
i.e., ck > dk. Since Tians-Optimal always starts the job
at the earliest possible time decided by max{ck−1, rk}, the
head Jh of job Jk always exists. As mentioned previously,
there are two cases depending on whether all jobs in the
job set are marked or a busiest unmarked block is found.
We consider these two cases separately in the following.

In the first case, where all jobs are marked, the processing
time assigned to each job by Tians-Optimal is equal to its
full service demand. Since we assumed ck > dk, according
to Tians-Optimal, we have dk − rh <

∑k
l=h wl. Hence, the

total work in block J [h, k] is more than the length of the
span [rh, dk] of the block. Thus, no schedule can possibly
satisfy all jobs in the block. However, since all jobs are
marked, according to Claim 1, they are all satisfied by
OPT. This introduces contradiction. Therefore, the schedule
produced by Tians-Optimal is feasible in this case.

In the second case, the busiest unmarked block is found.
Let Jh denote the head of Jk. We have h ≥ i since otherwise
Ji will be the head of job Jk . Consider the subblock
J [h, k] ⊆ J [i, j], and let M(J [h, k]) and U(J [h, k]) denote
the set of marked jobs and the set of unmarked jobs in
J [h, k]. Since we assumed ck > dk, according to Tians-
Optimal, we have dk − rh < ck − rh =

∑
Jl∈M(J [h,k]) wl +

|U(J [h, k])| p̃(J [i, j]). The u-mean of block J [h, k] is then
given by

p̃(J [h, k]) =
dk − rh −∑

Jl∈M(J [h,k]) wl

|U(J [h, k])|
<

|U(J [h, k])| p̃(J [i, j])

|U(J [h, k])| = p̃(J [i, j]) .

Since the u-mean of J [h, k] is less than that of J [i, j],
it contradicts the fact that J [i, j] is the busiest unmarked
interval. Thus, the schedule is also feasible in this case.

Claim 3: OPT assigns the same interval [ri, dj] to the
busiest unmarked block J [i, j] as Tians-Optimal does.

Proof: We again prove the claim by contradiction.
Suppose that OPT assigns a sub-interval [x, y] ⊂ [ri, dj] to
the busiest unmarked block J [i, j] found by Tians-Optimal.
Since the schedule produced by Tians-Optimal for J [i, j]

satisfies the SOEP condition, and according to Claim 2 it is
feasible, the interval [ri, dj] is fully occupied. Moreover, all
unmarked jobs in J [i, j] are deprived and they receive the
same processing time equal to the u-mean p̃(J [i, j]). Since
OPT assigns a sub-interval [x, y] to J [i, j], there must be
deprived jobs for J [i, j] in OPT, too. According to Claim
1, all marked jobs are satisfied by OPT. Hence, the total
processing time given to the unmarked jobs by OPT is less
than that by Tians-Optimal. Let Jk denote the unmarked
job in J [i, j] whose processing time is the smallest given
by OPT, and let M(J [i, j]) and U(J [i, j]) denote the set of

6

marked jobs and the set of unmarked jobs. We have

p∗k ≤
y − x−∑

Jl∈M(J [i,j]) wl

|U(J [i, j])|

<
dj − ri −

∑
Jl∈M(J [i,j]) wl

|U(J [i, j])| = p̃(J [i, j]) .

Moreover, since Jk is unmarked by Tians-Optimal, we
have pk = p̃(J [i, j]) ≤ wk. We can conclude that p∗k <

p̃(J [i, j]) ≤ wk, and Jk is deprived in OPT.
Based on Lemma 3, job Jk belongs to a tight block

J [h, t] in OPT, and clearly we have J [h, t] 	= J [i, j] since
otherwise it will be the case that [x, y] = [ri, dj]. Let
M(J [h, t]) and U(J [h, t]) denote the set of marked jobs and
the set of unmarked jobs in block J [h, t] immediately before
J [i, j] is identified as the busiest unmarked block. Based
on the same argument for proving Claim 1, in particular
Inequality (1), we have that the u-mean of block J [h, t]

satisfies p̃(J [h, t]) ≤ p∗k < p̃(J [i, j]). This contradicts the
fact that J [i, j] is the busiest unmarked block.

With the help of these claims, we can now complete the
optimality proof of Theorem 1.

Theorem 1: Given any job set J and a monotonically-
increasing and strictly-concave quality profile f , Tians-
Optimal produces an optimal schedule.

Proof: We consider two cases. In the first case, all jobs
in job set J are marked. Based on Tians-Optimal, each job
will receive its full service demand, and according to Claim
2, the schedule produced by Tians-Optimal is feasible.
Hence, the overall quality is the maximum possible, so the
schedule is optimal.

In the second case, a busiest unmarked blocks is found.
We prove the optimality of Tians-Optimal in this case using
mathematical induction with respect to the number of jobs
in J . When J contains only one job, Tians-Optimal clearly
produces an optimal schedule. Hence, the base case is
trivial. The following shows the inductive step.

Inductive hypothesis: When |J | < n, Tians-Optimal
produces an optimal schedule.

Inductive step: We will show that when |J | = n, Tians-
Optimal also produces an optimal schedule. Let J [i, j]

denote the first busiest unmarked block found by Tians-
Optimal. According to Claim 3, both Tians-Optimal and
OPT will assign interval [ri, dj] to this block. Moreover,
the schedule for J [i, j] in [ri, dj] also satisfies the SOEP
condition and according to Claim 2, it is feasible. Therefore,
based on Lemma 4, Tians-Optimal produces an optimal
schedule for J [i, j]. After that, Tians-Optimal divides the
remaining jobs into two independent blocks J [1, i− 1]

and J [j + 1, n], both of which according to the induc-
tive hypothesis are scheduled optimally by Tians-Optimal.
Therefore, Tians-Optimal produces an optimal schedule for
the entire job set J .

Although the analysis of Theorem 1 is based on strict
concavity, it is not hard to see that Tians-Optimal offers
an optimal solution for any concave quality profile. When
the profile is concave but not strictly concave, the optimal
solution may not be unique and Tians-Optimal finds one of

them.

V. Online Scheduling
Online algorithms do not possess future information of the
jobs, such as arrival and service demand information. So
a scheduler makes decisions based on arrived jobs. There
are two types of online schedulers — online clairvoyant
and online nonclairvoyant. An online clairvoyant scheduler
knows complete information of arrived jobs, which includes
a job’s arrival time, deadline and service demand in our
model; in contrast, an online nonclairvoyant scheduler pos-
sesses information only on the executed part of the job, and
it does not know the job service demand. We develop two
online algorithms that employ Tians-Optimal to simplify the
presentation.

A. Online Clairvoyant Algorithm
Tians-Clairvoyant applies Tians-Optimal to the set of
ready jobs (jobs that have arrived and not expired). Tians-
Clairvoyant runs Algorithm 3 to assign processing time
to jobs. This algorithm can be applied in both preemptive
and non-preemptive scenarios depending on server software
implementation: (1) the processing time of a job is assigned
once before execution and cannot be changed (no preemp-
tion); (2) the scheduler can change the assigned processing
time of a job by interrupting the job at any time. For case
(1), the algorithm is invoked when the system has ready
jobs in the queue with no active job. A job is executed
until it completes or its assigned processing time elapses.
For case (2), a newly arrived job may change the assigned
processing time of the current active job. Therefore, the
assigned processing time of the active job is recomputed
with upon each new arrival. If the job’s elapsed processing
time is greater than or equal to its assigned processing
time, the scheduler terminates the job immediately. Tians-
Clairvoyant adjusts arrival time of jobs in the ready queue
(Line 1 to 3) so that Tians-Optimal assigns processing time
from current time onwards.

Algorithm 3 Tians-Clairvoyant (Jobs[] queue, Job active,
double curtime)
Require: active denotes the current running job;

queue denotes list of ready jobs (including active job
at queue[0] if active is not null);
curtime represents current time stamp;

1: timeBase = (active == null)? curtime : sactive
2: for (k ∈ queue && rk < timeBase) do
3: rk = timeBase

4: Tians-Optimal (queue)
5: pqueue[0] = cqueue[0] − timeBase

6: return queue[0]

B. Online Nonclairvoyant Algorithm
Since a nonclairvoyant scheduler cannot foresee the service
demand of jobs, we optimize over expected service demand.

7

Tians-NonClairvoyant applies the Tians-Clairvoyant algo-
rithm with jobs’ expected (average) service demand. We
replace the actual service demand of jobs in the queue with
their average service demand (Line 2), and assume that the
active job (or incoming active job) has its service demand
equal to the total span (Line 3) rather than expected service
demand for the two reasons: (1) When the system is lightly
loaded, if we use service demand to decide processing time
of an active job, the active job will get processing time
no larger than its average service demand even when there
is ample processing time. This raises a problem when the
active job has service demand larger than the expected
service demand; Therefore we always assume the active
job is a large job to allow it to use additional processing
time. When the active job turns out to be a small one, it
completes before its assigned processing time and scheduler
can carry on the remaining jobs. (2) When the system is
heavily loaded, a good decision is to apply something like
equal partitioning. In this case even when we assume the
active job is large, the algorithm still tries to allocate each
job an equal amount of processing time as long as it does
not violate jobs’ deadline.

Algorithm 4 Tians-NonClairvoyant (Jobs[] queue, Job
active, double curtime)
Require: active denotes the current running job;

queue denotes list of ready jobs (including active job
at queue[0] if active is not null);
curtime represents current time stamp;

1: for (k ∈ queue && k! = queue[0]) do
2: wk = average service demand of jobs
3: wqueue[0] = spanqueue[0]

4: return Tians-Clairvoyant (queue, active, curtime)

In practice, the implementation of both algorithms can
be improved to obtain better time complexity: Given m

ready jobs, the complexity of Tians-Optimal to compute
assigned processing time is O(m4). Since we consider on-
line scheduling scenarios in which a scheduler only knows
the jobs that already arrived, the busyness of an interval can
only degrade over time. Therefore, the busiest block starts
from only the current time, which reduces the triple loop
inside FindBusiestUnmarkedBlock (Algorithm 2) to double
loop. So the complexity of Tians-Clairvoyant and Tians-
NonClairvoyant is reduced to O(m3). In addition, Tians-
Clairvoyant needs to compute the assigned processing time
for jobs only when a new job arrives; during job departure,
it simply uses the assigned processing time computed when
last job arrived.

VI. Evaluation
We conduct a simulation study to assess the benefits of
Tians scheduling. We evaluate it using two applications
— web search engine, modeling a large commercial web
search engine such as Bing, and VOD, modeling a video-
on-demand system. For the search engine, to schedule CPU

processing time, the service time of a request is not known
upon its arrival, thus we apply Tians-NonClairvoyant; in
contrast, for VOD, to schedule network bandwidth, data size
of a request is known upon its arrival, thus we apply Tians-
Clairvoyant. We find that for the search engine, to offer
service quality 0.99, Tians-NonClairvoyant sustains more
than 400% increase in request arrival rate; for VOD server,
to offer service quality 0.9, Tians-Clairvoyant sustains more
than 40% increase in the number of supported clients.

We model server applications using a combination of
discrete-event simulation and queuing models. Upon the ar-
rival or departure of a request, the server scheduler performs
regular enqueue and dequeue operations, and decides if the
new status of the queue changes the assigned processing
time of the running request. The quality of a request is
calculated based on its processing time and the quality
profile of the requests.

A. Scheduling Algorithms
We implement six algorithms: three Tians algorithms
(Tians-NonClairvoyant, Tians-Clairvoyant, and Tians-
Optimal), as well as three algorithms based on FIFO:

FIFO-NonClairovyant simulates a nonclairovoyant tra-
ditional system with a FIFO queue without support for
partial results. The system does not know request service
time and discards requests that have already expired before
the processing starts. However, once it is started a request
always runs through completion. If a request i is answered
past its deadline, the result quality is 0, otherwise, the
request receives its full quality, i.e., qi = f(wi).

FIFO-Clairvoyant simulates a clairovoyant traditional
system with a FIFO queue without support for partial
results. The system knows request service time and discards
a request if the request cannot be completed before its
deadline. A discarded request has quality 0, and a completed
request receives its full quality, i.e., qi = f(wi).

FIFO-Partial uses partial processing from Tians, and uses
FIFO to schedule requests. A request is discarded if it is
already expired before processing starts. Request processing
stops upon request deadline or request completion. The
quality of a request i depends on the actual processing time
it receives, i.e., qi = f(pi).

B. Web Search Engine
1) Description: The simulation models a web search

engine back-end, which accepts user queries, searches its
index for all documents that match the query, and ranks
these documents before returning the top N documents that
match the query in the rank order. Web search is a best-
effort interactive application where the result quality im-
proves with the increased number of documents examined
and ranked, and the results need to be returned in a given
amount of time.

2) Simulation Setup: Our experiments use the following
parameters: request deadline 150 ms, and target request
quality 0.99. Service demand follows an exponential dis-
tribution with mean service demand of 26 ms but the
distribution is capped at 150 ms. Requests arrive according

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Q
u
a
l
i
t
y

Processing Time (ms)

(a) Quality profile

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u
a
l
i
t
y

Arrival Rate

FIFO-NonClairvoyant
FIFO-Partial

Tians-Clairvoyant
Tians-NonClairvoyant

Tians-Optimal

(b) Performance results

Figure 1. Web search engine (a) quality profile and (b) performance results comparison with varying normalized arrival rate.

to a Poisson process, and we vary the mean request arrival
rate, as a ratio of the service rate to control system load.

The search engine experiments are performed with a
quality profile represented by a concave quality function
as follows,

f(x) =
1− e−cx

1− e−100c
,

where c = 0.07 is a multiplier constant, and x is the actual
processing time of a request. The quality profile is drawn in
Figure 1(a), where the x-axis represents the processing time
of a request and the y-axis represents the quality (relevance)
of the returned results.

3) Main result: One major benefit of using Tians
scheduling is offering the same quality of service with
higher request arrival rate. Figure 1(b) depicts quality (y-
axis) against normalized arrival rate (x-axis), which is the
arrival rate normalized to service demand, representing sys-
tem load. At quality 0.99, FIFO-NonClairvoyant supports an
arrival rate of 0.15, while Tians-NonClairvoyant can sustain
an arrival rate of 0.78. Therefore, Figure 1(b) shows that
Tians-NonClairvoyant increases the supported arrival rate
by more than 400% of FIFO-NonClairvoyant. From another
point of view, we relate quality with system utilization. To
achieve 0.99 quality, FIFO-NonClairvoyant allows server
utilization around 15% while Tians-NonClairvoyant sup-
ports server utilization around 78%. Because Tians supports
higher arrival rate and higher server utilization, it can be
exploited to deploy a smaller number of servers to process
the same workload. At quality 0.99, to support the same total
arrival rate of requests, Tians-NonClairvoyant requires less
than 1/5 of the servers required in FIFO-NonClairvoyant.

4) Discussion: To illustrate the factors contributing to
the performance gain, Figure 1(b) presents the results
using FIFO-Partial, Tians-Clairvoyant and Tians-Optimal.1

At quality 0.99, FIFO-NonClairvoyant supports an arrival
rate of 0.15, FIFO-Partial 0.60, Tians-NonClairvoyant 0.78,

1Tians-Clairvoyant and Tians-Optimal use additional information such
as query service demand and future arrival that are not available during
online processing of the web search engine. We present their results for
reference purpose.

Tians-Clairvoyant 0.90, and Tians-Optimal 0.97. To eval-
uate the benefit of partial execution, we compare FIFO-
NonClairvoyant with FIFO-Partial: partial results increase
the arrival rate by 300% (contribution of partial evaluation).
To show the importance of scheduling, we compare FIFO-
Partial with Tians-NonClairvoyant: the enhanced scheduling
algorithm further improves the arrival rate by 120% (contri-
bution of better scheduling). If predicting service demand
of requests is possible, we can use Tians-Clairvoyant to
improve the arrival rate further with another 80% (contribu-
tion of knowing service demand). Knowing future arrivals,
allows further improvement of 47%.

Tians-Clairvoyant performs close to the offline optimal,
Tians-Optimal, which can sustain arrival rate of 0.97 with
the full knowledge of future arrivals and service demands.

C. VOD Bandwidth Allocation

1) Model: A video-on-demand (VOD) server is a com-
plex distributed system that receives requests for contin-
uous media (e.g., video files) from clients and streams
the requested media back. A VOD server manages many
resources such as network upstream bandwidth and disk
I/O. One of the fundamental problems that a VOD system
faces is admission control in which a request for a new
media stream is either granted (with an implicit promise
for a certain quality of service) or declined (at a potential
revenue loss). Here we apply Tians scheduling to manage
the upstream bandwidth. We assume that the server has
an upstream network link with a limited bandwidth to
send media packets to clients. We model a modern VOD
configuration in which the data are encoded using a scalable
streaming framework [14] with quality adaptation, where
the quality of the video improves with the amount of data
received from the server before the playback deadline [23].
Table II summarizes the model parameters. We use the
quality profile depicted in Figure 2(a) (exponential quality
function) to represent the quality of video as a function
of the received data ratio (actual data received normalized
to the full service demand), which exhibits diminishing

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

V
i
d
e
o

q
u
a
l
i
t
y

Downloaded data ratio

(a) Quality profile

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100

V
i
d
e
o

q
u
a
l
i
t
y

Number of videos

FIFO-Clairvoyant
FIFO-Partial

Tians-Clairvoyant

(b) VOD Server

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8

V
i
d
e
o

q
u
a
l
i
t
y

Number of videos

FIFO-Clairvoyant
FIFO-Partial

Tians-Clairvoyant

(c) Collaborative VOD environment

Figure 2. Quality profile and key results of VOD: : (a) quality profile of VOD application; (b) quality of the video streams at VOD server with varying
the number of supported clients. (c) quality of the video streams at a collaborative environment with varying the number of supported clients.

Table II
MODEL PARAMETERS FOR VOD SERVER

Parameter Value
Upstream bandwidth 1Gbps
Video rate uniform (5Mpbs, 40Mpbs)
Deadline 2secs
Video quanta 2secs · video rate

returns.2

The input to the scheduler is a sequence of requests for
video quanta with their sizes and deadlines. The scheduler
assigns to each request a permitted size of data to send
on the upstream link. If the system is under-loaded, most
requests are granted. As the system is under high load
and the upstream bandwidth becomes insufficient to satisfy
all requests fully, the scheduler may allocate less data to
send than demanded on the upstream link. The objective of
the scheduler is to allocate the upstream bandwidth among
requests to maximize the overall system quality. This model
uses a clairvoyant scheduler since the data size of a video
quantum is known: the information of data size can be
obtained by adding metadata to the video stream.

2) Main result: Figure 2(b) shows the average video
stream quality against system load. The x-axis is the number
of clients, each viewing a single video. The y-axis is the
average quality of received video streams. The figure has
two curves for FIFO-Clairvoyant and Tians-Clairvoyant. At
light load, the two curves are identical because bandwidth
is an abundant resource. As the VOD server streams more
video clips (at 40 Clients), scheduling improves the sup-
ported video stream quality; in particular, at 90% quality
Tians supports an additional 23 video streams.

3) Collaborative VOD environment: Next, we apply
Tians scheduling to a collaborative VOD environment in
which a client may send video streams to other clients
as proposed in prior work [21], [24]. Clients use Tians
to schedule requests on their upstream links. We assume
that the bandwidth of a client upstream is 1 Mpbs and

2When the quality profile takes normalized processing time instead of
absolute processing time as input, the optimal solution depends on the
shape of the profile and Tians-Optimal may not be optimal. However,
experiments in this section show that online Tians model still outperforms
traditional significantly.

video streams have variable bit rates following a uniform
distribution from 100 Kbps to 400 Kbps. A request asks for
a video quantum of 2 seconds.

Figure 2(c) shows the effect of Tians clairvoyant schedul-
ing. There are noticeable performance differences between
FIFO-Clairvoyant and Tians-Clairvoyant at low loads since
the upstream bandwidth is a scare resource. We also
add FIFO-Partial which schedules requests in FIFO order
with credit for partial data. At quality 0.9, from FIFO-
Clairvoyant to FIFO-Partial, partial results increase the
number of supported videos from 3.6 to 4.6, representing
the contribution of using partial results. From FIFO-Partial
to Tians-Clairvoyant, the enhanced scheduling algorithm
further improves the number of supported videos from 4.6

to 6, representing the contribution of better scheduling.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1 2 3 4 5 6 7 8

V
a
r
i
a
n
c
e

o
f

v
i
d
e
o

q
u
a
l
i
t
y

Number of videos

FIFO-Clairvoyant
FIFO-Partial

Tians-Clairvoyant

Figure 3. Variance of video stream quality in a collaborative environment
with varying the number of supported clients. Its corresponding average
quality result is presented in Figure 2(c).

D. Variance Study
Tians reduces variance of response quality in addition
to improving the average quality. Small variance in a
distributed environment is desirable because it helps to
improve service quality which often uses a high-percentile
quality as a performance metric in addition to average
quality. Figure 3 shows that variance of video stream quality
at collaborative environment produced by Tians-Clairvoyant
is much smaller than that of FIFO-Clairovyant. Two factors

10

contribute to variance reduction of Tians. (1) Smooth quality
profile with partial results: if we model the quality of a
response using a random variable X ∈ [0, 1], at a traditional
server, X follows Bernoulli distribution and, at any given
mean E[X] = μ, it produces maximum possible variance
δ2 = μ−μ2; Tians uses smooth quality profile to reduce the
variance of the response quality. (2) Equal-partitioning at
scheduling: Tians tries to give each request an equal amount
of processing time whenever possible, which reduces the
processing time differences among requests and contributes
to reduced variance.

VII. Related Work
In real-time systems with deadlines, Earliest Deadline First
(EDF) algorithm gives an optimal solution under light
load, i.e., when the deadlines of all jobs can be satisfied.
Otherwise, EDF does not perform well. Hence, different
system and scheduling models have been proposed.

Strict scheduling (no partial evaluation): Many early
results [5], [15]–[19] use a strict scheduling model where
a job has work wi and a weight vi. If the job is completed
before its deadline, it gains a quality wivi; otherwise, it
does not gain any quality. The objective is to maximize the
overall quality gain. This model is similar to the traditional
system considered in this paper. In fact, its objective is
equivalent to minimizing the weighted number of late jobs,
where the weight of job Ji in this case is given by wivi.
The later problem has been shown to be NP-hard [12],
and Lawler [19] proposed a pseudo polynomial algorithm
based on dynamic programming. The online version of this
problem has also been studied extensively [5], [15]–[18],
[25]. In contrast to Tians scheduling, this model does not
consider partial results.

Partial evaluation: Application-level adaptation in web
services offers interesting insights on how to produce flex-
ible software that supports partial results [7], [11]. This
line of work focuses on adapting the service quality based
on the client capabilities. For example, a server may send
images of different quality to clients based on the available
bandwidth at each client. Different from our work, that work
does not take advantage of the quality profile of best-effort
applications to improve server capacity and they didn’t
consider scheduling.

Related to web search engines, Baek and Chilimbi [1]
proposed a framework with multiple implementations of the
search engine with various degrees of approximations based
on partial executions. They studied the tradeoff between
quality and performance and between quality and energy
consumption, while we focus on Tians scheduling which
should improve both metrics. They did not study scheduling.

Partial results with linear quality functions have been
studied by [6], [9], [10]. In particular, executing a job
with weight vi for pi amount of time, where pi ≤ wi,
gains quality pivi. Hence, quality is linear function of job
processing time, and each job has a weight. Chang and
Yap [6] first considered this problem in the context of
thinwire visualization and introduced two online algorithms,

which were later improved [8]–[10]. Chrobak et al. [10]
also proposed an offline optimal algorithm for this problem
based on bipartite matching and maximum flow with time
complexity O(n5). While these models consider quality
profiles that are linear functions for weighted jobs, Tians
targets different environment, namely large scale interactive
services, in which jobs have equal weight concave quality
profiles.

Other domains: Tians also shares some properties with
related work from a few other domains. For example, partial
execution has been used in anytime algorithms in AI [27].
Unlike most algorithms that run to completion, anytime
algorithms provide a single answer after performing some
fixed amount of computation. They are proposed to give
intelligent systems the ability to return results of better
quality in return longer response times.

A couple of other scheduling problems have also in-
fluenced Tians’ design. Firstly, some previous work [2],
[20], [26] considered scheduling jobs with deadlines on
a processor with dynamic speed scaling capability. Their
model assumes that the power consumption is a convex
function of the processor speed, and the objective is to
minimize the overall energy consumption. This energy mini-
mization problem on convex function shares some similarity
with our quality maximization problem on concave quality
profile. Although partial execution is not considered, an
offline algorithm [26] inspired us to apply divide-and-
conquer approach in Tians-Optimal. Secondly, Tians uses
SOEP to schedule jobs in a segment by allocating to
each job an equal amount of time unless the job demands
less. This shares similarities to dynamic equi-partitioning
(DEQ) [22], which is used to schedule parallel jobs on
multiprocessors where a job may get fewer processors than
its parallelism with the tradeoff of increased execution time.
DEQ considers neither deadline nor partial execution.

Related work on VOD systems: Some prior work [3],
[4], [13] focused on providing admission control to decide
whether or not to serve a streaming request to completion
upon the request’s arrival. While the objective is also to
maximize the overall service quality, fine-grained dynamic
decisions are not considered in trading off streaming quality
with the available resources, as in Tians scheduling.

VIII. Conclusion Remarks
Large scale interactive services require good and predictable
response quality. This is usually achieved by keeping servers
lightly loaded. In this paper, we point out that in best-effort
services, the response of a request has a quality profile.
We introduce the Tians scheduling model to formalize
this observation. In Tians scheduling, server software can
produce partial results, and a scheduler assigns processing
times to maximize response quality for interactive appli-
cations. We propose three scheduling algorithms: offline,
online clairvoyant, and online nonclairvoyant. We prove the
optimality of the offline scheduling algorithm and evaluate
the two online scheduling algorithms using a simulation
study. We simulate allocating CPU processing times in a

11

web search engine and allocating upstream bandwidth in
a video-on-demand environment. Simulation results show a
significant improvement of Tians scheduling over traditional
server models without partial results: average response
quality improves and the variance of responses decreases.

Acknowledgement
We thank Jim Larus, Burton Smith, Trishul Chilimbi, Albert
Greenberg for helpful discussions and feedback.

References
[1] W. Baek and T. M. Chilimbi. Green: A framework

for supporting energy-conscious programming using
controlled approximation. In PLDI, 2010.

[2] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed
scaling to manage energy and temperature. In FOCS,
2004.

[3] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and
B. Schieber. Bandwidth allocation with preemption.
In STOC, 1995.

[4] A. Bar-Noy, J. A. Garay, and A. Herzberg. Sharing
video on demand. Discrete Applied Mathematics,
129:3–30, 2003.

[5] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghu-
nathan, L. Rosier, D. Shasha, and F. Wang. On the
competitiveness of on-line real-time task scheduling.
Real-Time Systems, 4:125–144, May 1992.

[6] E.-C. Chang and C.-K. Yap. Competitive online
scheduling with level of service. In Computing and
Combinatorics, 2001.

[7] Y. Chen. Detecting web page structure for adaptive
viewing on small form factor devices. In WWW, pages
225–233, 2003.

[8] F. Y. L. Chin and S. P. Y. Fung. Improved competi-
tive algorithms for online scheduling with partial job
values. In Computing and Combinatorics, 2003.

[9] F. Y. L. Chin and S. P. Y. Fung. Online scheduling with
partial job values: Does timesharing or randomization
help? Algorithmica, 37:149–164, 2003.

[10] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee,
T. Tichý, and N. Vakhania. Preemptive scheduling in
overloaded systems. Journal of Computer and System
Sciences, 67:183–197, 2003.

[11] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer.
Mobility. chapter Adapting to network and client
variation using infrastructural process proxies: lessons
and perspectives, pages 431–446. 1999.

[12] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. 1979.

[13] M. Garofalakis, Y. Ioannidis, B. Ozden, and A. Silber-
schatz. Competitive on-line scheduling of continuous-
media streams. Journal of Computer and System
Sciences, 64:219–248, 2002.

[14] C. Huang, P. A. Chou, and A. Klemets. Optimal
control of multiple bit rates for streaming media. In
Picture Coding Symposium, 2004.

[15] B. Kalyanasundaram and K. Pruhs. Speed is as pow-
erful as clairvoyance. Journal of the ACM, 47(4):617–
643, 2000.

[16] C.-Y. Koo, T. W. Lam, T.-W. Ngan, and K.-K. To. On-
line scheduling with tight deadlines. In Mathematical
Foundations of Computer Science, 2001.

[17] G. Koren and D. Shasha. Dover: An optimal on-line
scheduling algorithm for overloaded uniprocessor real-
time systems. SIAM Journal on Computing, 24:318–
339, 1995.

[18] T. W. Lam and K. K. To. Trade-offs between speed
and processor in hard-deadline scheduling. In SODA,
1999.

[19] E. L. Lawler. A dynamic programming algorithm for
preemptive scheduling of a single machine to mini-
mize the number of late jobs. Annals of Operations
Research, 26:125–133, 1991.

[20] M. Li, A. C. Yao, and F. F. Yao. Discrete and
continuous min-energy schedules for variable voltage
processors. National Academy of Sciences, 103:3983–
3987, 2006.

[21] J. Liu, R. S.G., B. Li, and H. Zhang. Opportunities and
challenges of peer-to-peer internet video broadcast.
Proceedings of the IEEE, 96:11–24, 2008.

[22] C. McCann, R. Vaswani, and J. Zahorjan. A
dynamic processor allocation policy for multipro-
grammed shared-memory multiprocessors. ACM
Transactions on Computer Systems, 11(2):146–178,
1993.

[23] R. Rejaie, M. Handley, and D. Estrin. Quality adap-
tation for congestion controlled video playback over
the internet. SIGCOMM Computer Communication
Review, 29:189–200, 1999.

[24] K. Sripanidkulchai, A. Ganjam, B. Maggs, and
H. Zhang. The feasibility of supporting large-scale live
streaming applications with dynamic application end-
points. SIGCOMM Comput. Commun. Rev., 34:107–
120, 2004.

[25] J. Stankovic, M. Spuri, K. Ramamritham, and G. C.
Buttazzo. Deadline Scheduling for Real-Time systems
- EDF and related algorithms. Academic Publishers,
1998.

[26] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced CPU energy. In FOCS, 1995.

[27] S. Zilberstein. Using anytime algorithms in intelligent
systems. AI Magazine, 17(3):73–83, 1996.

12

