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Abstract—The proliferation of multi-core architectures has
led to explosive development of parallel applications using
programming models, such as OpenMP, TBB, and Cilk, etc.
With increasing number of cores, however, it becomes harder to
efficiently schedule parallel applications on these resources since
current multi-core runtime systems still lack efficient mecha-
nisms to support collaborative scheduling of these applications.
In this paper, we study feedback-driven adaptive scheduling
based on work stealing, which provides an efficient solution
for concurrently executing a set of applications on multi-core
systems. To dynamically estimate the number of cores desired
by each application, a stable feedback algorithm, called A-
Deque, is proposed using the length of active deques, which more
precisely captures the parallelism variation of the applications.
Furthermore, a prototype system is built by extending the
Cilk runtime system, and the experimental results show that
feedback-driven scheduling algorithms have more advantages
for scheduling parallel applications with dynamic changing
parallelism, and better overall performances are achieved with
more accurate and stable feedback mechanism. Compared with
existing algorithms, A-Deque improves the performances by up
to 19.13% and 28.96% with respect to average response time
and processor utilization respectively.

Keywords-Multi-core architectures; Multi-core runtime sys-
tems; Feedback-driven adaptive scheduling

I. INTRODUCTION

Recent developments in microprocessor design show a
clear trend towards multi-core and many-core architectures.
This radical shift in processor design results from diminishing
returns of increasing processor frequencies, ILP (Instruction
Level Parallelism) and deeper pipelines [1]. In the near future,
it will be very common to have a multi-core processor with
dozens or hundreds of cores on the chip. In the multi-core
era, however, exploiting all the advantages offered by these
processors will not be easy, and one of the great challenges
is how to efficiently utilize the available computing power.

To exploit the hardware resources of modern processors,
various programming models for multi-core systems have
been developed, such as OpenMP [2], TBB [3], Cilk [4]
which is recently extended to Intel Cilk Plus [5], etc. Com-
pared with other parallel programming models, such as MPI
and POSIX threads, these models, supported by their flexible
runtime systems, provide good programmability, portability,
and ability to manage dynamic parallelism for multi-core
systems. When using these programming models in practice,
however, there are still many issues that should be addressed
to efficiently utilize the increasing number of cores. Firstly,
many multi-core runtime systems will have poor scalability.
Currently, it is a typical requirement in many multi-core
runtime systems to explicitly or implicitly (via function calls)
specify the number of cores to use for the execution of an
application. As more cores are becoming available, many
applications will start to experience diminishing returns with

increased processor allocation. Without knowing the execu-
tion characteristic of the application on a particular hardware
platform, manually specifying the number of cores to use will
be a challenging task for the user. Secondly, competitions
for processor resources are unavoidable in current multi-core
runtime systems. Nowadays, it is very common for multiple
users or applications to share a high-performance computing
platform. However, many multi-core runtime systems have
been traditionally designed to use a fixed number of pro-
cessors (usually the maximal available processors) for each
individual parallel application. Since different applications
can have very different execution characteristics with re-
spect to speedups or processor utilizations as shown in Fig.
1(a), executing multiple applications simultaneously in the
traditional manner can easily lead to unnecessary resource
competition, thus reduces the overall system throughput.

As a result, using these solutions by themselves, the
performance does not scale well with increasing number
of cores, particularly in the presence of concurrent parallel
applications. To demonstrate this with an example, Fig. 1(b)
and Fig. 1(c) give the results of running multiple copies of
two Cilk applications on an Intel Xeon server1. As shown
in these figures, we can see that the overall running time
(makespan) of both applications under the default scheduler,
which runs each copy of the Cilk application on all available
cores, becomes much worse than that of the FCFS (First-
Come First-Serve) scheduler when increasing the number of
concurrently running copies.

Aiming at addressing this problem in the current multi-core
runtime systems, adaptive scheduling algorithms are studied
in this paper. Compared to scheduling all applications in a
time-sharing manner as described above, adaptive scheduling
based on space-sharing seems to provide a more efficient
solution for simultaneously executing a set of applications.
Since the parallelism of most applications often changes over
time, adaptive scheduling takes advantage of the application
malleability by dynamically allocating a variable number of
processors to each job during runtime, thus achieves better
utilization of the available computing resources. Fig. 1(b)
and Fig. 1(c) also show the results of running the same set
of applications as described previously, but with the simple
space-sharing scheduler EQUI (Equi-Partitioning) [6] that at
any time divides the total number of processors evenly among
all running jobs. The results demonstrate that EQUI has much
better performance in terms of makespan, especially when
the applications have sublinear speedups. While this simple
example shows the benefit of adaptive scheduling, in the rest
of this paper we will study more effective mechanisms than

1The detailed information related to this experiment can be found in
Section V.
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Figure 1. The speedup and performance comparison of different scheduling strategies using two Cilk applications.

EQUI that can better capture and explore the parallelism
variations of the jobs.

Although some existing work have studied adaptive
scheduling, most results are based on theoretical analysis
and simulation approaches [7], [8], [9], [10], [11]. Unlike
these results, in this paper we study the benefits of adaptive
scheduling based on solid experiments conducted on practical
systems and actual workloads. The adaptive runtime system
we build is based on the well-known work-stealing strategy,
which has been shown to have provably-good performances
in terms of both theory and practice [4], [12], [13]. The main
contributions of the paper are the following:

• An adaptive runtime system is implemented based on
the work-stealing load balancing strategy. The runtime
system has the ability to dynamically change the number
of cores allocated to each job so that it can effectively
exploit the runtime characteristics of jobs and eliminate
the need of manually specifying the number of cores
required by most existing multi-core runtime systems.

• To dynamically estimate the number of cores desired by
each job, a stable feedback algorithm, called A-Deque,
is proposed using the utilization of active workers and
the length of active deques. Compared to existing al-
gorithms, A-Deque tends to capture more precisely the
parallelism of the jobs, and more importantly it solves
the desire instability problem of existing algorithms.

• A prototype system is built by heavily modifying the o-
riginal Cilk runtime system, and the experimental results
show that feedback-driven scheduling algorithms have
more advantages for scheduling parallel applications
with dynamic changing parallelism, and better overall
performance will be achieved with more accurate and
stable feedback mechanism.

The rest of this paper is organized as follows: Section
2 briefly introduces adaptive scheduling based on work
stealing. Section 3 describes how to obtain stable paral-
lelism feedback using the length of active deques. Section
4 gives the detailed implementation of adaptive scheduling
framework ACilk. Our experimental results are presented in
Section 5 and Section 6 concludes the paper.

II. ADAPTIVE SCHEDULING BASED ON WORK STEALING

In order to present our adaptive runtime system and
feedback-driven algorithm, it is necessary to review the basic
concepts in adaptive scheduling and work stealing. In this
section, we will first describe work stealing and adaptive
scheduling separately, and then we combine the two and
discuss challenges in adaptive work stealing.

A. Work Stealing

Work stealing [13] is a popular thread-level scheduling
mechanism to schedule parallel computations with dynamic
parallelism. Because of the good performance and ease of
implementation, it has been successfully applied to runtime
systems in Cilk [4], Cilk Plus [5], TBB [3] and OpenMP
[14].

In traditional work stealing, an application is given a fixed
set of processors throughout execution. Each processor (or
worker) maintains a double-ended queue, called deque, which
contains the ready threads of the job. A processor treats
its own deque as a stack and treats the deque of another
processor as a queue. At any time, each processor works as
follows: (1) when the thread it is currently running spawns a
new thread, the processor pushes the parent onto the bottom
of its deque and starts working on the child thread; (2) when
the running thread completes or blocks, the processor checks
its own deque. If the deque is not empty, it pops the thread
from the bottom of the deque and starts working on it. In
case the deque is empty, the processor becomes a “thief”
and starts work stealing. In this process, the thief randomly
chooses another processor, called “victim”, and removes the
thread from the top of victim’s deque if it is not empty. If the
victim’s deque is empty, the thief restarts the stealing process
by randomly choosing another victim until its finds a thread
to work on. Clearly, when an application first starts to run,
all of its allocated processors have empty deques except one
processor that works on the root thread of the job.

Work stealing has been shown to have provably-efficient
performances in terms of both time and space bounds [12],
[13]. Moreover, unlike centralized schedulers based on work
sharing such as the Greedy scheduler [15], [16], a work
stealing scheduler operates in a decentralized manner without
knowing all the available threads of a job at any time.
Therefore, due to ease of implementation, it has also been
shown to be an effective thread scheduling mechanism in
practice.

B. Adaptive Scheduling

Adaptive scheduling provides an efficient solution to better
utilize the available processor resources for simultaneously
executing a set of applications, thus has gained popularity
recently [7], [8], [9], [10], [11], [17], [18], [19], [20]. Since
the parallelism of most applications often changes over
time, adaptive scheduling takes advantage of the application
malleability and gives a variable processor allocations to the
jobs.

One common approach used in adaptive scheduling is the
two-level scheduling framework [7]. In this framework, the



executions of the jobs are divided into scheduling quantum,
and the processors are reallocated based on the interaction
between the job-level thread scheduler and the global-level
resource allocator or processor controller. Specifically, at the
beginning of each scheduling quantum q, a thread scheduler
for each job calculates its processor desire d(q), that is,
how many processors the job needs, in this quantum. The
processor controller at the global level then based on the
processor desires of all jobs and its scheduling policy decides
a processor allocation a(q) for the job in quantum q. This
process, called request-allocation protocol [9], will repeat
after each scheduling quantum until the completion of the
job.

One important aspect of two-level adaptive scheduling is
how to calculate processor desires from the thread scheduler.
Since the future parallelism of the job is usually unknown, the
desire calculation is usually based on the execution history
of the job in the previous quantum, such as measurements
about the job’s processor utilizations or average parallelism
[7], [10]. Another aspect is for the processor controller to
decide the processor allocation of each job. In this paper, we
use the well-known dynamic equi-partitioning (DEQ) policy
[21], which we will describe in detail in Section IV.

C. Adaptive Work Stealing

Compared with conventional thread schedulers that use
only a fixed set of processors at any time, adaptive schedul-
ing has the additional challenge of dealing with variable
processor allocations at different times. When the thread
scheduler uses distributed work stealing, this task becomes
even more challenging, since the scheduler does not possess
global information on the deques of the processors.

To handle processor changes, therefore, we adopt the
concept of mugging [17]. In particular, when the processor
allocation decreases from quantum q to q + 1, the job loses
a(q)−a(q+1) processors, who may have non-empty deques.
These deques are not attached to any processor at this time,
therefore becomes muggable. When any processor of the
job runs out of work during quantum q + 1, instead of
immediately stealing work from another processor, it will first
look for muggable deques. If there are indeed deques waiting
to be mugged, it will claim any such deque as its own and
starts working on its bottom-most thread. Otherwise, if there
is no muggable deque, it will start stealing as normal. On
the other hand, when the processor allocation increases from
quantum q to q+1, the job gains a(q+1)− a(q) additional
processors with empty deque. Again, each of these processors
will first look for a muggable deque, which may be available
from previous quantum, before stealing work as described
before.

Moreover, besides dealing with processor changes, another
very important challenge in adaptive work stealing is how
to calculate processor desires for a job in each scheduling
quantum. In the next section, we will design a novel desire
calculation strategy that directly utilizes the lengths of the
active deques, which solves the desire instability problem of
an existing scheduler.

III. STABLE DESIRE CALCULATION USING LENGTH OF
ACTIVE DEQUES

In this section, we propose an novel desire calculation
algorithm, called A-Deque, based on the utilization of the

active workers and the length of active deques. We show that
the processor desires calculated by A-Deque well reflects the
parallelism of the job, and more importantly, it solves the
desire instability problem of an existing scheduler.

A. A Novel Algorithm: A-Deque

A-Deque works based on both processor utilization and
length of active deques in the quantum. Intuitively, the status
of the processors in terms of whether they are busy or
idle indicates the utilization of the allocated resources to
a job, thus it should be used to determine the number of
processors in the next quantum. Moreover, the total length
of the active deques of the job at any time gives the number
of ready threads that can be stolen when the job is provided
with enough processors to execute, thus it indicates the
unexploited parallelism of the job. A-Deque explores both
of these indicators and computes the processor desire for the
job in the following way.

Suppose a quantum q starts at time tq and lasts L units
of time. Recall that a(q) denotes the processor allocation for
the job in quantum q. Since an allocated processor is either
working, mugging, or stealing at any time t ∈ [tq, tq+L], let
Xj(t) denote the status of the jth processor at time t, where
1 ≤ j ≤ a(q). Specifically, if processor j is either working
or mugging at t, we have Xj(t) = 1. Otherwise, if processor
j is stealing at t, we have Xj(t) = 0. As mugging is a result
of reduced processor allocation, the time spent on mugging
is considered as not wasted [8].

Let e(t) denote the number of active deques of the job at
time t ∈ [tq, tq +L], including the ones that are not attached
to any processor thus are waiting to be mugged. Hence, we
have e(t) ≥ a(q). For the jth active deque, let Qj(t) denote
its length, or the number of ready threads on the top of the
deque waiting to be stolen at time t. The processor desire
for the job in next quantum q + 1 is then calculated based
on both Xj(t) and Qj(t) as follows:

d(q + 1) =
1

L

∫ tq+L

tq

a(q)∑
j=1

Xj(t) + β

e(t)∑
j=1

Qj(t)

 dt, (1)

where β ≥ 1 is the exploration parameter that controls how
aggressive the scheduler exploits the job’s parallelism.

For instance, suppose a processor j is busy working at
time t and has one more ready thread on its deque, that
is, Xj(t) = Qj(t) = 1. From this deque’s perspective,
an extra processor would be able to steal its ready thread,
thus explores the available parallelism of the job. Setting
β = 1 will satisfy this requirement. However, since the ready
thread is in higher level of the job’s structure, it is more
likely to spawn more threads in the future. Thus, having
a larger value for β, such as setting β = 2, will further
explore the unexposed parallelism of the job. To explore the
entire parallelism of the job and to smooth out the value of
processor desire, this calculation is taken from all processors
and deques, and is averaged over the entire quantum as shown
in Eq (1). In case that no more thread is spawned for the extra
processors, the processor desire will then be quickly reduced
to the number of busy processors in the following quantum.

B. An Existing Algorithm: A-Steal

We now describe an existing adaptive work stealing al-
gorithm, called A-Steal [17], which calculates the processor



desire for a job in each quantum based on only the utiliza-
tion of the job’s allocated processors in the previous quan-
tum. The calculation uses a simple multiplicative-increase
multiplicative-decrease strategy first introduced in [7].

Recall that Xj(t) denotes the status of the jth processor
at time t, where 1 ≤ j ≤ a(q). The usage of the allo-
cated processors in quantum q is then given by w(q) =∫ tq+L

tq

∑a(q)
j=1 Xj(t)dt. Since maximum possible usage of

the quantum is a(q)L, the utilization of the processors is
u(q) = w(q)/(a(q)L). The quantum is said to be “efficient”
if the utilization satisfies u(q) ≥ δ, where δ is a threshold
that is usually set in the range of 80% to 95%. Otherwise, the
quantum is said to be “inefficient”. In addition, the quantum
is said to be “satisfied” if we have a(q) ≥ d(q). Otherwise,
the quantum is “deprived”. The processor desire for the job
in next quantum q + 1 is calculated depending on whether
quantum q is efficient or inefficient and whether it is satisfied
or deprived as follows:

d(q + 1) =

 d(q) · ρ if q is efficient and satisfied,
d(q)/ρ if q is inefficient,
d(q) if q is efficient and deprived,

where ρ is a responsiveness parameter that can be set in the
range of 1 to 3. In both A-Deque and A-Steal, the processor
desire for the first quantum is fixed to be 1, since the job
usually starts with a single thread.

Note that A-Steal also actively explores the potential
parallelism of the job by increasing its processor desire by
a multiplicative factor ρ each time. Since such calculation
is blind to the actual parallelism of the job, it can result in
desire instability as we will show in the next subsection. A-
Deque, on the other hand, performs such exploration with
more precision and stability, as it directly makes use of the
information about the length of active deques, which is a
strong indicator on job’s actual parallelism.

C. Desire Stability of A-Deque and A-Steal

It was shown in [19], [10] that another adaptive scheduler
based on centralized work sharing, called A-Greedy [7],
exhibits desire instability problem, even when the parallelism
of the job is constant. Since both A-Steal and A-Greedy
use multiplicative-increase multiplicative-decrease strategy to
calculate processor desires, such instability problem can also
be observed in A-Steal. In this section, we use a simple data-
parallel program to show the desire instability of A-Steal, and
to compare it with A-Deque. The result can clearly be applied
to other data-parallel applications with constant parallelism
over a period of time.

Suppose that we have a data-parallel application written
in Cilk [4] as shown in Fig. 2, where N children threads
are spawned by the parent thread at almost the same time2,
and each child contains a large amount of work to be done
in the Work() function. The graph at the right of Fig. 2
shows the DAG (Directed Acyclic Graph) that represents the
structure of the program. The parallelism of this application
is therefore constant at N for a long period of time.

To schedule this application with A-Deque or A-Steal, we
make the following two assumptions. First, we assume that
the desires of the job can be satisfied by the global-level

2The N threads are spawned with a small delay after each iteration of the
for loop. Compared to the large amount of time to complete the function
Work(), however, such delay can be negligible.

…
... …

...

for (i = 0; i < N; i++){
    spawn Work(i);
}
sync;

Figure 2. A simple data-parallel section of a program written in Cilk and
its DAG representation.

processor controller as much as possible. This corresponds
to light to medium workloads, in which two-level adaptive
schedulers tend to work better compared to non-adaptive
schemes [20], [10]. Second, we assume that the ready threads
of a deque can be stolen as quickly as possible by steal
attempts from other processors. Since the victims are chosen
uniformly at random, this is usually true for a reasonable
number of processors and when the quantum is set to be
sufficiently long. Given these two assumptions, the processor
desire and hence the processor allocation of the job can be
shown to exhibit unstable behavior as shown in Fig. 3(a),
where the responsiveness parameter of A-Steal is set to be
ρ = 2, the utilization threshold is set to δ = 0.8, and the
parallelism of the job is at N = 10.

Although Fig. 2 only gives a simple example, it is not
hard to see that such desire instability problem of A-Steal
will remain in many other data-parallel programs like this.
Varying parameters ρ and δ can alleviate the problem for
a specific parallelism value. However, it will inevitably
affect the responsiveness of the desires or the utilization of
the processors for other sections of the job with different
parallelism.

Fig. 3(b), on the other hand, shows the processor desires
calculated by A-Deque for the same application when its
exploration parameter is set to be β = 2. Compared to A-
Steal, which catches up with the job’s parallelism in about
logρ N steps, but never converges to N , A-Deque converges
to the target parallelism in about N/β steps, and exhibits
no desire oscillation afterwards. For comparable parameter
values in ρ and β, A-Steal tends to have better convergence
for large N initially, but its desire instability will delay the
execution of the job and cause waste of the processors for the
majority of time steps in the steady state. A-Deque, on the
other hand, is more conservative in estimating the processor
desires, but guarantees stability, no steady-state error and as
shown in Fig. 3(b) a small amount of transient overshoot3.
These properties not only ensure more efficient job execution
and resource utilization, but also help to reduce scheduling
overheads in practice caused by context switching and cache
reloading when adjusting processor allocations for a job [19],
[10].

IV. IMPLEMENTATIONS

To implement the feedback-driven scheduling algorithms,
we build an adaptive scheduling framework called ACilk
(Adaptive Cilk), as shown in Fig. 4, which is an exten-
sion to the Cilk runtime system [4]. Cilk is a language
for multithreaded parallel programming based on ANSI C

3The desire overshoot is because of the parent thread that continues after
the for loop, but immediately blocks when executing the sync statement.
Since A-Deque does not have advanced information about the program
structure, it requests for more processors to explore the potential parallelism
from the parent thread. The extra processor is immediately released in the
next quantum when the parent blocks and no longer spawns more threads.



Quantum

Processor 

Desire

1

4

2

8

N = 10

(a)

Quantum

Processor 

Desire

N = 10

1

5

3

7

9

11

(b)

Figure 3. Processor desires calculated by (a) A-Steal and (b) A-Deque, when the parallelism of the job is constant at N = 10.

Figure 4. The adaptive scheduling framework of ACilk.

and it employs the work-stealing scheduler in its runtime
system. Since the original Cilk does not support dynami-
cally readjusting the jobs’ processor allocations at runtime,
based on POSIX threads libraries on Linux, ACilk modifies
the Cilk runtime system to provide the ability to collect
and feedback the processor desires and to handle dynamic
processor allocations of jobs. To coordinate the reallocation
of processors among jobs, a global processor controller is
also implemented in ACilk, which takes the specified system
configure information as its input, such as quantum length,
feedback algorithms, and available cores, etc. Obviously, with
all the information about the desire of each job in the runtime
system, the global processor controller is able to provide fair
and efficient processor allocations. The processor controller
is implemented as a daemon process on Linux, which incurs
little system overhead.

A. Processor Reallocation

To support dynamic processor reallocations for the jobs
during runtime, ACilk introduces four different states, namely
working, stealing, mugging, and sleeping to each processor
or a worker in Cilk runtime system. ACilk ensures that the
number of active workers used by a job always matches the
number of physical processors assigned to it by controlling
the state of the workers. The detailed process is described
as follows. At the initialization stage, ACilk creates as many
workers as the total number of physical processors for each
job. After getting its first processor allocation (which is usu-
ally 1), ACilk puts the extra workers into the sleeping state.
After each scheduling quantum, whenever the allocation of
the job increases, some workers of the job are waken up.
When the allotment decreases, the corresponding number
of workers are put into sleeping state. Note that unlike the
original work-stealing mechanism, whenever a worker runs
out work, that is, its local deque becomes empty, it first enters

Figure 5. State diagram of a worker’s execution in adaptive work stealing.

the mugging state to look for muggable deques instead of
immediately stealing work from another worker. Fig. 5 shows
the state diagram of a worker’s execution in adaptive work
stealing.

To take advantage of the parallelism feedbacks, DEQ
algorithm is implemented in the processor controller to
dynamically allocate all the available processors among jobs.
DEQ [21] is a variant of EQUI (Equi-partitioning) [6] that
divides the total number of processors equally among all
active jobs. Compared with EQUI, DEQ never allocates more
processors to a job than the job’s processor desire, hence it
is better known for its efficiency and fairness in processor
allocation [18]. Let J (q) denote the set of active jobs when
a new quantum q begins. Based on the processor desires
of all jobs collected by ACilk runtime, DEQ allocates the
processors as shown in Algorithm 1, where ai(q) and di(q)
denote the processor allocation and the processor desire of
job Ji in quantum q respectively, and P denotes the total
number of available processors in the system.

Algorithm 1 DEQ(J (q), P )

1: if J (q) = ∅ then
2: return
3: S = {Ji ∈ J (q) : di(q) ≤ P/|J (q)|}
4: if S = ∅ then
5: for each Ji ∈ J (q) do
6: ai(q) = P/|J (q)|
7: return
8: else
9: for each Ji ∈ S do

10: ai(q) = di(q)
11: DEQ(J (q)− S, P −

∑
Ji∈S ai(q))



B. Sampling Methods for A-Deque and A-Steal

As described in Section III, the desire calculation algo-
rithms in A-Deque and A-Steal require utilization informa-
tion of the allocated processors in a quantum, and A-Deque
also needs the length of its active deques at any time during a
quantum. Gathering these information can be very expensive
in practice, which will incur a large amount of overhead in the
implementation. In this subsection, we will present a more
efficient implementation of the algorithms based on sampling
methods that approximate the required statistics.

1) Approximating Processor Utilization: Firstly, to ap-
proximate the processor utilization in a quantum, we adopt
the technique used in [22], which takes the ratio between the
total number of purely unsuccessful steal attempts and the
total number of all steal attempts. Specifically, for each job in
quantum q, let total stealj denote the total number of steal
attempts by the jth allocated processor, where 1 ≤ j ≤ a(q).
Among all steal attempts, let purely unsucc stealj denote
the total number of purely unsuccessful steal attempts. A steal
attempt is called purely unsuccessful if the victim itself is
attempting to steal work from other processors. The processor
utilization u(q) of the job in quantum q is then approximated
by

u(q) = 1−
∑a(q)

j=1 purely unsucc stealj∑a(q)
j=1 total stealj

,

and therefore we have
∫ tq+L

tq

∑a(q)
j=1 Xj(t)dt = u(q)a(q)L.

Since a processor at any time is either working, mugging
or stealing, the above ratio between the total number of
purely unsuccessful steal attempts and the total number of
all steal attempts gives a reasonable approximation for the
inefficiency, that is 1−u(q), of the processors in quantum q.
Apparently, the approximation will be more accurate with
more steal attempts. Furthermore, since the work-stealing
scheduler of Cilk runtime already has built-in counters
to measure the steal attempts, collecting these information
would incur very little extra overhead.

2) Approximating Active Deques Length: To approximate
the length of active deques in a quantum, we again use
the technique for approximating processor utilization, but
combine it with the length of the deques sampled at the end
of the quantum for better accuracy.

We introduce a new counter in Cilk runtime to accumulate
the length of the victims’ deques at every steal attempt or
successful mugging for each processor j, and denote the
accumulated length at the end of the quantum q by lengthj .
The approximated length of all active deques is then given
by

Q(q) = e(tq + L)

∑a(q)
j=1 lengthj∑a(q)

j=1 total stealj
,

where e(tq + L) denotes the number of active deques when
quantum q ends at time tq +L. Intuitively, the ratio between
total accumulated deque length and total steal attempts indi-
cates the average length of a single deque in the quantum.
Again, we expect better accuracy when there are more steal
attempts. In addition, we also use the lengths of the deques
sampled at the end of the quantum as another approximation,
and it is given by Q′(q) =

∑e(tq+L)
j=1 Qj(tq + L), where

Qj(tq+L) denotes the length of the jth deque at time tq +L
when quantum q ends.

The final approximation of the active deques length then
takes a linear combination of the two approximations and is
given by 1

L

∫ tq+L

tq

∑e(t)
j=1 Qj(t)dt = αQ(q) + (1 − α)Q′(q).

Intuitively, the first approximation is more accurate when
there are more samples in steal attempts, thus should have
higher weight. In our implementation, we set α to be the
ratio between the total number of steal attempts in the
quantum and the maximum possible steal attempts. Hence,
the second approximation is always used in the calculation,
and when there is no steal attempt in the quantum, the first
approximation is simply ignored.

V. EXPERIMENTS

As pointed out in previous sections, the WS (Work Steal-
ing) algorithm implemented by original Cilk runtime system
does not support dynamically readjusting the jobs’ processor
allocations at runtime. Therefore, manually specifying a
fixed number of processors may easily lead to degraded
performance when concurrently running multiple Cilk jobs,
as shown in Fig. 1. In our experiments, we improve WS by
applying the well-known algorithm EQUI [6] to equally share
the total number of processors among all running jobs in the
system. We name the new algorithm WS-EQUI and use it as a
reference to evaluate the performances of different feedback-
driven scheduling algorithms in the following experiments.

The experiments are all carried out on a server equipped
with two Intel Xeon (E5620) quad-core processors, each with
2.4GHz clock speed and hyper-threading enabled, and the
server has 8GB RAM. The operating system is Red Hat
Enterprise Linux 5.2 (Linux kernel 2.6.18), and the compiler
is GCC 4.1.2, with the compiling option “-g -O2”. Six
benchmarks are selected from the official released Cilk-5.4.6
for the experiments. The brief description and input sets of
these benchmarks are listed in Table I.

Table I
THE DESCRIPTION AND INPUT SETS OF THE BENCHMARKS

Benchmark Description Input sets
CK Rudimentary checkers -b 10 -w 13
Fib Fibonacci numbers 46
FFT Fast Fourier transform -n 230

LU LU decomposition -n 4096
Queens The N queens problem 26

Strassen Multiplies two randomly
generated n x n matrices -n 4096

To compare the performances of different scheduling al-
gorithms, we use the following metrics: makespan, mean
response time, and processor utilization. The makespan is
defined as the completion time of the last completed job in
the job set. The response time of a single job is the time
elapsed from when the job arrives to when it completes,
and the mean response time of the job set is used in our
experiments. The utilization of the job’s allocated processors
is collected by counting the time of each processor during
a quantum when the processor is doing useful work. Note
that the time a processor spent on stealing is considered as
wasted, because although the processor is also not idle during
stealing, it is not contributing towards the work of the job.

A. Scheduling Quantum and Overhead

In adaptive scheduling, the length of the scheduling quan-
tum is an important system parameter, which may signif-
icantly affect the performance of a scheduling algorithm.
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Figure 6. Impact of scheduling quantum and corresponding overhead on the performances of different scheduling algorithms.
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Figure 7. Performance Comparison of different algorithms with respect to makespan, mean response time and utilization.

Intuitively, smaller quantum length may lead to more ef-
ficiency for capturing changes in a job’s parallelism, but
inevitably incurs more scheduling overhead, including the
cost of processor reallocation. In this subsection, we conduct
a set of experiments to examine the impact of scheduling
quantum and corresponding overhead on the performances
of different scheduling algorithms. Specifically, only one job
from the benchmark table I is used in each experiment. The
quantum length is varied from 1ms to 50ms, the responsive-
ness parameter ρ and the utilization threshold δ of A-Steal
is set to be 2 and 80% respectively, and the exploration
parameter β of A-Deque is set to be 2. The experimental
results for CK, LU and Strassen are shown in Fig. 6 while
the other benchmarks have similar results and are not shown.

The experimental results demonstrate that, compared with
A-Steal and A-Deque, the makespan of WS-EQUI is better
and more stable with respect to varying scheduling quantum.
The reason is that WS-EQUI is oblivious to the job’s paral-
lelism variations and always allocates all available processors
to such single job, which leads to smaller running time with
little scheduling overhead. The results also confirm that the
original Cilk is more effective when only running one job in
the system.

On the other hand, the makespans of A-Steal and A-Deque
are impacted by varying scheduling quantum, especially that
of A-Steal due to its unstable parallelism feedbacks. As can
be seen from Fig. 6, the makespans of A-Steal and A-Deque
increase rapidly when the quantum length is set to be 1ms,
as the overhead incurred by the feedback-driven algorithms
cannot be ignored in this case. With increasing quantum
length, however, the makespans of A-Steal and A-Deque
become smaller and gradually converge to that of WS-EQUI
since the scheduling overhead is now better amortized over
the entire scheduling quantum.

The experimental results indicate that the performance of
feedback-driven algorithms are more sensitive to the schedul-
ing quantum than WS-EQUI. Longer scheduling interval may

lead to less scheduling overhead, but it may also result in s-
lower response to the changes in parallelism of the job. Based
on the experimental results, the length of the scheduling
quantum is set to be 10ms in all following experiments, which
seems to provide a good tradeoff between the responsiveness
to the parallelism variations and the amount of scheduling
overheads incurred.

B. Performance Comparison of Different algorithms

In this subsection, we evaluate and compare the per-
formances of different scheduling algorithms using mixed
workload, where jobs are released into the system according
to the Poisson process and the inter-arrival time follows
exponential distribution. The number of jobs is fixed to be
16 in this case, and the system load is proportional to the
arrival rate λ of the jobs, which is varied from 1/16 to 1.
Therefore, heavier system load corresponds to larger number
of concurrently running jobs in the system. The scheduling
quantum length is set to be 10ms and the parameters used in
A-Steal and A-Deque are the same as in Section V-A.

The results, as shown in Fig. 7, indicate that the feedback-
driven adaptive scheduling algorithms A-Steal and A-Deque
generally achieve better performance than WS-EQUI with
respect to all metrics. Only when the system has light load,
A-Steal and A-Deque are slightly worse than WS-EQUI.
The reason is that feedback-driven scheduling strategies take
advantage of the parallelism feedback based on the informa-
tion of execution history while WS-EQUI is oblivious to the
job’s parallelism and thus wastes many processor resources,
especially when the system load is light. Furthermore, as
shown in Fig. 7, the performances of A-Steal and A-Deque
tend to gradually converge to that of WS-EQUI with heavy
system load because in this case each job can only receive
very few processors most of the time, and thus frequent
processor reallocations have no obvious benefits.

The experimental results further demonstrate that A-Deque
has better performance than both of the other algorithms for
all system loads with respect to makespan, mean response



Table II
AVERAGE PERFORMANCE IMPROVEMENTS OF A-DEQUE OVER A-STEAL

AND WS-EQUI.

Makespan Response time Utilization
A-Deque / A-Steal 3.14% 13.57% 14.46%

A-Deque / WS-EQUI 4.61% 19.13% 28.96%

time, and utilization. As shown in Table II, the average
makespan improvements of A-Deque over A-Steal and WS-
EQUI are 3.14% and 4.61% respectively. While the makespan
improvements seem small as it could be easily dominated
by one large job in the job set with long executing time,
the performances improvements of A-Deque with respect
to mean response time and utilization are more significant.
Specifically, the average performance improvements of A-
Deque over A-Steal and WS-EQUI reach up to 19.13% and
28.96% with respect to mean response time and processor
utilization respectively. These correspond to much improved
performance for each individual user or application as well as
better utilization of the system resources. In summary, these
experimental results indicate that A-Deque directly benefits
from its more accurate and stable parallelism feedbacks, as
shown in Section III-C, and shows the best of its performance
under light to medium system loads. In general, feedback-
driven scheduling algorithms have been demonstrated to be
beneficial for scheduling parallel applications with dynamic
changing parallelism, and better overall performance will be
achieved with more effective feedback mechanism.

VI. CONCLUSION

In this paper, we study feedback-driven adaptive schedul-
ing based on work stealing load balancing strategy, which
provides an efficient solution to better utilize the available
processor resources and improve efficiency in concurrently
executing parallel applications on multi-core platforms. The
benefit of adaptive scheduling is that it not only eliminates the
need of manually specifying the number of cores required by
most existing multi-core runtime systems, but also enhances
the overall system performance by exploiting the runtime
characteristics of parallel applications. The experimental
results demonstrate that feedback-driven adaptive schedul-
ing algorithms achieve better performance with respect to
makespan, mean response time and processor utilization, es-
pecially when more accurate and stable feedback mechanism
is applied. For our future work, we plan to integrate our
adaptive scheduling algorithm to the Linux kernel, which will
provide more benefits to efficiently control and collaborate
with multi-core runtime systems.
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