
When Amdahl Meets Young/Daly
Aurélien Cavelan∗, Jiafan Li† Yves Robert∗‡, Hongyang Sun∗

∗Ecole Normale Supérieure de Lyon & Inria, France
†East China Normal University, China
‡University of Tennessee Knoxville, USA

Abstract—This paper investigates the optimal number of pro-
cessors to execute a parallel job, whose speedup profile obeys
Amdahl’s law, on a large-scale platform subject to fail-stop
and silent errors. We combine the traditional checkpointing and
rollback recovery strategies with verification mechanisms to cope
with both error sources. We provide an exact formula to express
the execution overhead incurred by a periodic checkpointing
pattern of length T and with P processors, and we give first-order
approximations for the optimal values T ∗ and P ∗ as a function
of the individual processor failure rate λind. A striking result is
that P ∗ is of the order λ

−1/4
ind if the checkpointing cost grows

linearly with the number of processors, and of the order λ−1/3
ind

if the checkpointing cost stays bounded for any P . We conduct
an extensive set of simulations to support the theoretical study.
The results confirm the accuracy of first-order approximation
under a wide range of parameter settings.

Index Terms—resilience, fail-stop errors, silent errors, optimal
checkpointing period, optimal processor allocation, Amdahl’s law

I. INTRODUCTION

Consider a typical HPC (High Performance Computing)
application that will run for days or even weeks on a parallel
platform, and whose sequential time is non-negligible. What
is the optimal number of processors to execute this application
so as to minimize its total execution time? Assume that the
application speedup profile obeys Amdahl’s law [1]: a fraction
α of the work is sequential, while the remaining 1−α fraction
is perfectly parallel. The speedup with P processors is then

S(P) =
1

α+ 1−α
P

. (1)

While S(P) is bounded above by 1/α, it is a strictly increasing
function of P , which means that one should enroll as many
processors as possible to minimize execution time.

However, this reasoning only holds for error-free execution.
With 100,000+ nodes in current petascale platforms, and
even more computing resources when entering the exascale
era, resilience becomes a challenge [5]. Even if each node
provides an individual MTBF (Mean Time Between Failures)
of, say, one century, a machine with 100,000 such nodes
will encounter a failure every 9 hours on average, which is
smaller than the execution time of many HPC applications.
Furthermore, a one-century MTBF per node is an optimistic
figure, given that each node may be composed of tens or
even hundreds of cores. Moreover, several types of errors
need to be considered when computing at scale. In addition
to the classical fail-stop errors (such as hardware failures),
silent errors (or SDC, for Silent Data Corruptions) constitute

another threat [17], [23], [16]. This phenomenon is not so
well understood, but has been recently identified as one of the
major challenges towards exascale [5].

While checkpoint/restart [7], [11], [13] is the de-facto
recovery technique for dealing with fail-stop errors, there is
no widely adopted general-purpose technique to cope with
silent errors. In contrast to a fail-stop error whose detection is
immediate, a silent error is identified only when the corrupted
data leads to an unusual application behavior. Such a detection
latency raises a new challenge: if the error struck before the
last checkpoint, and is detected after that checkpoint, then the
checkpoint is corrupted and cannot be used for rollback. In
order to avoid corrupted checkpoints, an effective approach
consists in employing some verification mechanism and com-
bining it with checkpointing. Such a verification mechanism
can be general-purpose (e.g., based on replication [12] or even
triplication [15]) or application-specific [4], [3], [8], [18].

We address both fail-stop and silent errors by using verified
checkpoints, which corresponds to performing a verification
just before taking each checkpoint. Note that this approach
is agnostic of the nature of the verification mechanism. If the
verification succeeds, then one can safely store the checkpoint.
Otherwise, it means that a silent error has struck since the
last checkpoint, which was duly verified, and one can safely
recover from that checkpoint to resume the execution of the
application. Of course, if a fail-stop error strikes, we can
also safely recover from the last checkpoint, just as in the
classical checkpoint and rollback recovery method. We refer
to this protocol as the VC protocol, and it basically amounts
to replacing the cost C of a checkpoint by the cost V +C of
a verification followed by a checkpoint. However, because we
deal with two sources of errors, one detected immediately and
the other only when we reach the verification, the analysis of
the optimal checkpointing strategy is more involved.

This paper shows that on failure-prone platforms, it is no
longer true that enrolling more processors will always decrease
the (expected) execution time of a parallel application. First,
more processors means more failures: if the failure rate of an
individual processor is λind (and its MTBF is µind = 1/λind),
then the failure rate for a platform with P processors is
Pλind (and its MTBF is µind/P) [13, Proposition 1.2]. Second,
the cost of checkpointing may well increase linearly with
P [10], [22], because of the synchronization needed among the
processors in order to take a coherent snapshot of the global
application state. The intuition is that at some point adding
more resources will be an overkill, for failures and resilience

operations to handle them will become too frequent for the
application to make any progress.

These considerations raise the following fundamental ques-
tion: What is the optimal number of processors to execute a
parallel application on a failure-prone platform? Surprisingly,
this question has never received a quantitative answer, al-
though some experimental study has been reported [14], [22].
The major contribution of this paper is to answer this question
by providing a detailed analysis on the performance of the VC
protocol in the presence of both fail-stop and silent errors.
In particular, we consider a periodic checkpointing pattern
PATTERN(T, P), which consists of a work chunk of duration
T and executed with P processors, followed by a verification
and then by a checkpoint (see Figure 1). We give first-order
approximations for the optimal values T ∗ and P ∗ as a function
of the individual processor failure rate λind. A striking result is
that, as long as the sequential fraction α of the application is a
non-negligible constant, P ∗ is of the order λ−1/4ind if the check-
pointing cost grows linearly with the number of processors,
and of the order λ−1/3ind if the checkpointing cost stays bounded
for any P . The corresponding values of T ∗ in these two cases
are of the orders λ−1/2ind and λ

−1/3
ind , respectively. The results

nicely extend the well-known Young/Daly formula [20], [9] by
characterizing the optimal number of resources to enroll. These
first-order bounds are well corroborated and validated by our
simulation study conducted using real platform parameters.

The main contributions of this paper are the following:
• The derivation of an exact analytical formula for the ex-
pected execution time of a pattern in the presence of both
fail-stop and silent errors, where fail-stop errors can strike at
any time (while silent errors only strike during computations);
• The determination of the optimal pattern length and proces-
sor count, up to the first-order term. Given error rates and
checkpoint/verification costs, we compute both the optimal
pattern length and optimal number of processors to enroll.
To the best of our knowledge, this is the first analytical char-
acterization of the optimal degree of parallelism for executing
a parallel application whose speedup obeys Amdahl’s law;
• An extensive set of simulations with data collected from real
platforms. The results confirm the accuracy of the performance
model and validity of first-order approximation under a wide
range of parameter settings and resilience scenarios.

Due to lack of space, we refer to the companion research
report [6] for a discussion of related work on checkpointing
protocols and silent error detection. Several authors have
investigated the optimal number of processors to enroll when
running a parallel application on a failure-prone platform.
Zheng et al. [22] address this problem for fail-stop errors and
provide a formula to compute the speedup of an application
obeying Amdhal’s law and running with P processors. Also
for fail-stop errors, Jin et al. [14] use an iterative relaxation
procedure to compute the optimal number of resources for a
perfectly parallel job. These two important works are the most
closely related to ours. In comparison, the main differences
with our work are: (i) we account for both fail-stop and silent

errors (instead of only fail-stop errors); (ii) we consider several
relevant scenarios for checkpointing costs (instead of only
linearly growing costs); (iii) we analytically characterize both
the optimal number of processors and optimal checkpointing
period as a function of the individual processor failure rate, the
speedup profile and the checkpoint/verification cost (instead of
using numerical procedures); and (iv) our formulas are exact
up to first-order term and account for errors in checkpointing.

The rest of the paper is organized as follows. Section II
introduces the models and notations. Section III presents all
our analytical results, followed by the presentation of the
simulation results in Section IV. Finally, Section V provides
concluding remarks and hints for future directions.

II. MODELS AND NOTATIONS

This section presents the analytical models for evaluating
the performance of resilience algorithms. Table I summarizes
the list of main notations used in the paper.

Table I. List of Notations.

Application parameters
PATTERN(T, P) Periodic checkpointing pattern
T Length (or period) of pattern
P Number of allocated processors
S(P) Speedup function w/o failure
H(P) = 1/S(P) Execution overhead w/o failure
E(PATTERN) or E(T, P) Expected exec. time of a pattern
S(PATTERN) or S(T, P) Expected speedup of a pattern
H(PATTERN) or H(T, P) Expected exec. overhead of a pattern

Resilience parameters
λind = 1/µind Error rate of an individual processor
λf
P = fλindP Fail-stop error rate on P processors
λs
P = sλindP Silent error rate on P processors
CP = a+ b/P + cP Checkpointing cost on P processors
RP = a+ b/P + cP Recovery cost on P processors
VP = v + u/P Verification cost on P processors
D Downtime after a fail-stop error

Failure model. We incorporate both hardware faults and silent
data corruptions, which are also known as fail-stop errors
and silent errors in the literature. Since the two types of
errors are caused by different sources on realistic systems,
we assume that they are independent and that both arrivals
follow exponential distributions. Let λind = 1/µind denote the
reciprocal of the MTBF µind of each individual processor by
accounting for both types of errors, and suppose f fraction
of the total number of errors are fail-stop and the remaining
s = 1 − f fraction are silent. Then, the arrival rates of fail-
stop and silent errors when using P processors are given by
λfP = fλindP and λsP = sλindP , respectively [13]. Thus,
the probability of encountering at least one fail-stop error
during a computation of time T is qfP (T) = 1 − e−λ

f
PT and

that of encountering at least one silent error during the same
computation is qsP (T) = 1− e−λsPT .
Application model. We consider HPC applications that are
long-lasting even when executed on a large number of proces-
sors. Suppose an application has a total amount of computation
(or work) Wtotal and a speedup function S(P) when executed

on P processors without considering failures. In this paper, we
consider the speedup function obeying Amdahl’s law as given
in Equation (1). For convenience, we define H(P) = 1

S(P) =

α+ 1−α
P to be the execution overhead of the application, where

α denotes the fraction of the application that is inherently
sequential and cannot be parallelized. The makespan (total
execution time) Wfinal of the application in an error-free
execution is therefore given by Wfinal = Wtotal

S(P) = H(P)Wtotal.

Time

VPCP T VPCP T VPCP (Without error)

Time

VPCP DRP T VPCP T VPCP

Fail-stop error

(With a fail-stop error)

Time

VPCP T VPRP T VPCP T VPCP

Silent error Detection

(With a silent error)

Figure 1. Illustration of a resilience protocol using periodic checkpointing
patterns (highlighted in red). The first figure shows the execution of a pattern
without any error. The second figure shows that the execution is stopped
immediately when a fail-stop error strikes, in which case the pattern is re-
executed after a downtime and a recovery. The third figure shows that the
execution continues when a silent error strikes, till the error is detected by
the verification at the end. The pattern is then re-executed after a recovery.

Resilience model. To enforce resilience, a standard protocol
is by checkpointing the status of the application periodically,
thus creating periodic checkpointing patterns as illustrated
in Figure 1. To cope with silent errors, an additional error
detection (or verification) mechanism is performed just before
taking each checkpoint [19], [2]. If a fail-stop error strikes
inside a pattern, the computation is interrupted immediately,
while a silent error, if strikes, is only detected at the end of the
pattern by the verification. In both cases, we roll back to the
beginning of the pattern and recover from the last checkpoint,
thus avoiding restarting the application from scratch. Note that
a fail-stop error could strike after a silent error within the same
pattern but before the verification is reached. In this case, the
silent error is masked by the fail-stop error and need not be
detected, since a recovery is nevertheless required.

Formally, we characterize a periodic checkpointing pattern,
denoted as PATTERN(T, P), by the following two parameters.
• T : length (or period) of the pattern, i.e., amount of time

to do useful computation before taking each checkpoint;
• P : number of processors allocated to the application.
The cost of checkpointing clearly depends upon the protocol

and storage type, hence we adopt a quite general formula to
account for the checkpointing time in this paper. Specifically,
we use CP = a + b/P + cP to model the time to save a
checkpoint on P processors. Here, a+ b/P represents the I/O
overhead to write the application’s memory footprint M to the
storage system. For in-memory checkpointing [21], a+b/P is
a communication time with latency a and b/P = M/(τnetP),
where τnet is the network bandwidth (each processor stores

M/P data items). For coordinated checkpointing to stable
storage, there are two cases: if the storage system’s bandwidth
is the I/O bottleneck, a = β + M/τio and b = 0, where β is
a start-up time and τio is the I/O bandwidth; otherwise, if the
network is the I/O bottleneck, we retrieve the same formula
as for in-memory checkpointing. Finally, cP represents the
message passing overhead that grows linearly with the number
of processors, in order for all processors to reach a global
consistent state [10], [22].

The recovery cost is assumed to be the same as the
checkpointing cost, i.e., RP = CP , because it involves the
same I/O operations. To perform a verification, we assume
the use of error detectors. Since a verification is only done in
memory, its cost can be modeled as VP = v + u/P . Here,
v is a start-up latency, and u/P is the time needed to verify
the application data distributed across P processors. Finally, a
constant downtime D is required after each fail-stop error in
order to replace or repair a failed processor.

In our analysis, fail-stop errors can strike at any time
during the execution of an application, including verifications,
checkpointing and recoveries. However, silent errors can only
strike the computations, since otherwise they cannot be de-
tected. Hence, we assume that I/O operations and verifications
are protected from silent errors (e.g., by using expensive
redundancy or replication techniques). Finally, no error of any
kind can strike during downtime.

Optimization objective. The objective is to minimize the
expected total execution time (or makespan) of an application.
Since the application is divided into periodic checkpointing
patterns defined by PATTERN(T, P), the amount of work
done in a pattern is Wpattern = T · S(P). For long-lasting
applications, the total number of patterns in the application
can be approximated as Wtotal

Wpattern
= Wtotal

T ·S(P) . Let E(PATTERN)
denote the expected execution time of the pattern. The ex-
pected makespan E(Wfinal) of the application is then given by
E(Wfinal) ≈ E(PATTERN) Wtotal

T ·S(P) . Now, define S(PATTERN) =
T ·S(P)

E(PATTERN) to be the expected speedup of the pattern, and

define H(PATTERN) = 1
S(PATTERN) = E(PATTERN)

T H(P) to be
the expected execution overhead of the pattern. The expected
makespan of the application can therefore be written as
E(Wfinal) ≈ Wtotal

S(PATTERN) = H(PATTERN)Wtotal. We observe that
the optimal expected makespan is obtained by maximizing
the expected speedup or minimizing the expected execution
overhead of a periodic checkpointing pattern. In the next
section, we will focus on such a pattern PATTERN(T, P), and
find its optimal length T and processor count P .

III. OPTIMAL PERIODIC CHECKPOINTING PATTERN

In this section, we analytically determine the optimal pe-
riodic checkpointing pattern using first-order approximation,
and derive explicit formulas for the checkpointing period T
and processor allocation P . We validate the first-order solution
in Section IV by showing its close proximity to the optimal
numerical solution.

A. Expected execution time of a pattern

We start by computing the expected execution time of a
pattern when the parameters T and P are given.

Proposition 1. The expected execution time of a given pattern
PATTERN(T, P) is

E(PATTERN) =
(1

λfP
+D

)(
eλ

f
PCP

(
1− eλ

s
PT
)

+ eλ
f
PRP

(
eλ

f
P (CP+T+VP)+λsPT − 1

))
. (2)

Proof. To successfully execute a pattern PATTERN(T, P), we
need to complete the pattern length T , the verification VP
and the checkpoint CP . Hence, according to the linearity of
expectation, we have

E(PATTERN) = E(T+VP+CP) = E(T+VP)+E(CP) . (3)

We first compute E(CP), the expected time to successfully
store a checkpoint subject to fail-stop errors. During check-
pointing, there is a probability qfP (CP) that a fail-stop error
strikes. If that happens, we need to perform a recovery from
the last checkpoint after a downtime, and then re-execute both
T and VP before re-executing CP again. If there is no error,
we just need to pay the checkpointing cost CP . Therefore, we
can express E(CP) as

E(CP) = qfP (CP)
(
Elost(CP) +D + E(RP)

+E(T + VP) + E(CP)) +
(
1− qfP (CP)

)
CP , (4)

where E(RP) denotes the expected time to perform a recovery,
and Elost(CP) denotes the expected time lost executing CP if a
fail-stop error strikes. More generally, we can define Elost(W)
to be the expected time lost for any execution of length W ,
and it can be computed as follows:

Elost(W)=

∫ ∞
0

tP(X = t|X<W)dt =

∫W
0
tλfP e

−λfP tdt

P(X<W)
,

where P(X = t) denotes the probability that a fail-stop error
strikes exactly at time t. By definition, we have P(X < W) =

qfP (W) = 1−e−λ
f
PW . Integrating by parts, we get Elost(W) =

1

λfP
− W

eλ
f
P
W−1

. Now, substituting qfP (CP) and Elost(CP) into

Equation (4), we can get

E(CP) =
(
eλ

f
PCP − 1

)(1

λfP
+D + E(RP) + E(T + VP)

)
.

Now, we compute E(RP), the expected time to success-
fully perform a recovery subject to fail-stop errors. Unlike
checkpointing, a recovery is always done at the beginning of
a pattern. With probability qfP (RP), it fails due to a fail-stop
error and we have to try again after a downtime. Otherwise,
we just need to pay the recovery cost RP . Therefore, we
have E(RP) = qfP (RP)

(
Elost (RP) +D + E (RP)

)
+
(
1 −

qfP (RP)
)
RP , which leads to E(RP) =

(
1

λfP
+D

)(
eλ

f
PRP −1

)
.

In order to compute E(PATTERN), and according to Equa-
tion (3), we need to compute E(T + VP). Recall that fail-
stop errors can strike at any time during the execution, while

silent errors only strike during computations. When a fail-stop
error strikes, which happens with probability qfP (T +VP), we
do not need to account for silent errors, since the application
is stopped immediately and we need to re-execute T + VP
anyway, following a downtime and a recovery. Otherwise, with
probability 1−qfP (T+VP), there is no fail-stop error, and only
in this case, we check for silent errors. With probability qsP (T),
a silent error strikes (and is detected by the verification),
and we need to perform a recovery and re-execute T + VP .
Otherwise, the execution is complete. Overall, we have

E(T+VP)=qfP (T+VP)
(
Elost(T+VP)+D+E(RP)+E(T+VP)

)
+
(

1−qfP (T+VP)
)(
T+VP +qsP (T)

(
E(RP) + E(T+VP)

))
.

Plugging qfP (T+VP), qsP (T) and Elost(T+VP) into the above
equation, and solving for E(T + VP), we get

E(T + VP) = eλ
s
PT
(
eλ

f
P (T+VP) − 1

)(1

λfP
+D

)
+ eλ

s
P (T+VP)

(
T + VP

)
+
(
eλ

f
P (T+VP)+λsP (T) − 1

)
E(RP).

Finally, plugging E(T + VP), E(CP) and E(RP) back into
Equation (3), we find that

E(PATTERN) =
(1

λfP
+D

)(
eλ

f
PCP+λsPT

(
eλ

f
P (T+VP) − 1

)
+ eλ

f
PCP − 1 +

(
eλ

f
PRP − 1

)(
eλ

f
P (T+VP+CP)+λsP (T) − 1

))
,

which simplifies to the expression shown in Equation (2).

To find the optimal pattern, one needs to search for values
of T and P that minimize the expected execution overhead
H(PATTERN) of a pattern based on the expected execution
time E(PATTERN) computed above. However, due to the com-
plex expression given by Equation (2), an analytical solution
is difficult to find, and one has to rely on numerical methods
to approximate the optimal solution. In the following, we will
use first-order approximation to derive explicit formulas for
the optimal checkpointing period and processor allocation. The
simulation results in Section IV show that first-order approx-
imation offers very close estimates to the optimal solution.

B. Limitation of First-Order Approximation

Before deriving the optimal pattern parameters, we first
investigate the limitation of first-order approximation by
bounding the maximum orders of T and P that can be
approximated by the approach. Suppose P and T satisfy
P = Θ(λ−xind) and T = Θ(λ−yind), where x, y > 0. Since
λPCP = λindP (a+ b/P +cP) and λPVP = λindP (v+u/P),
let λP (CP +VP) = λindP (d+h/P + cP) with d = a+v and
h = b+u. Hence λP (CP +VP) = Θ (λεind), where ε = 1−2x
if c 6= 0, ε = 1 − x if c = 0 and d 6= 0, and ε = 1 if
c = d = 0. Also, λPT = Θ(λ1−x−yind). Therefore, in order
to accurately estimate eλPCP , eλPVP and eλPT using Taylor
series expansion (as shown in the next section), we need ε > 0
and 1− x− y > 0, which translates to

x < δ, where δ =

{
1/2 if c 6= 0

1 if c = 0
, (5)

y < 1− x . (6)

Inequalities (5) and (6) specify, respectively, the maximum
order on the number of processors and, for a fixed processor
count, the maximum order on the checkpointing period. The
first-order results obtained within these bounds offer valid
approximation to the optimal solution as long as the MTBF
µind = 1/λind of an individual processor is sufficiently large
(e.g., in the order of years, which is true for modern pro-
cessors). Beyond these bounds, unfortunately, the first-order
analysis will no longer be applicable.

C. Optimal Checkpointing Period for Fixed Processor Count

In this section, we derive the optimal checkpointing period
when the application is run with a fixed number of processors.
The result extends the classical formula given by Young [20]
and Daly [9] for fail-stop errors only.

Theorem 1. Given a processor allocation P = Θ(λ−xind) with
x < δ as shown in Inequality (5), the optimal checkpointing
period of a pattern is

T ∗P =

√√√√VP + CP
λfP
2 + λsP

. (7)

The expected execution overhead (ignoring lower-order terms)
in this case is given by

H (T ∗P , P) = H(P)

(
1 + 2

√(λfP
2

+ λsP

)
(VP + CP)

)
. (8)

Proof. For a fixed P = Θ(λ−xind) with x < δ, we can consider
CP , RP , VP as constants, which are smaller in magnitude
compared to the platform MTBFs 1/λfP and 1/λsP . Applying
Taylor series to expand ez = 1+z+ z2

2 up to the second-order
term, we rewrite the expected execution time E(PATTERN) of a
pattern (Equation (2)) as follows (ignoring lower-order terms):

E(PATTERN) = T + VP + CP +
(λfP

2
+ λsP

)
T 2

+ λfPT (VP + CP +RP +D) + λsPT (VP +RP)

+ λfPCP

(CP
2

+RP + VP +D
)

+ λfPVP (VP +RP +D) .

The expected execution overhead of the pattern is computed

as H(T, P) = H(P)
(

(VP+CP)(1+O(λε
′

ind))
T +

(λfP
2 + λsP

)
T +

1 + O(λε
′

ind)
)

, where ε′ = 1 − 2x if c 6= 0 and ε′ = 1 − x
otherwise. Since P = Θ(λ−xind) is fixed and x < δ, we have
ε′ > 0 and hence the term O(λε

′

ind) becomes negligible (in front
of 1) when λind is sufficiently small (e.g., tends to 0). Given a
processor count P , the optimal expected overhead is achieved
by setting ∂H(T,P)

∂T = H(P)
(
− VP+CP

T 2 +
λfP
2 +λsP

)
= 0, which

gives rise to the optimal checkpointing period T ∗P as shown in
Equation (7). Now, substituting T ∗P back in H(T, P) leads to
the expected execution overhead shown in Equation (8).

Theorem 1 shows that, for a given processor count P =
Θ(λ−xind) with x < δ as specified by Inequality (5), the optimal
checkpointing period satisfies T ∗P = O(λ−yind), where

y =


1/2 if c 6= 0

(1− x)/2 if c = 0 and d 6= 0

1/2− x if c = 0 and d = 0

.

In all cases, we get y < 1− x as specified by Inequality (6),
thus validating the accuracy of the first-order approximation.
Note that, in the case of c = 0 and d = 0, we also need x <
1/2 in order to have y > 0. This additional constraint on the
order of P is required to derive the first-order approximation
for the optimal checkpointing period as given in Equation (7).

D. Optimal Processor Allocation and Pattern Parameters

We now optimize the number of allocated processors to an
application. We discuss different cases based on the charac-
teristic of the error-free overhead H(P), as well as on the
scalability of checkpointing and verification costs, which have
the general form CP = a + b/P + cP and VP = v + u/P .
In the following analysis, we assume that all the parameters
a, b, c, v, u and the sequential fraction α are constants and
independent of the error rate λind.

1) H(P) = α + 1−α
P and CP = cP + o(P), α, c 6= 0:

This case corresponds to the application having a constant
sequential fraction and a checkpointing cost that grows linearly
with the number of processors (the verification cost has no
impact in this scenario):

Theorem 2. Suppose the application has a constant sequential
fraction α > 0, and a checkpointing cost CP = cP+o(P). The
optimal number of processors and the corresponding optimal
checkpointing period of a pattern are

P ∗ =

(
1

c
(
f
2 + s

)
λind

)1/4(
1− α

2α

)1/2

, (9)

T ∗ =

(
c(

f
2 + s

)
λind

)1/2

. (10)

The expected execution overhead (ignoring lower-order terms)
in this case is

H(T ∗, P ∗) = α+ 2

(
4α2(1− α)2c

(f
2

+ s
)
λind

)1/4

. (11)

Proof. Substituting H(P) = α + 1−α
P into Equation (8)

and applying CP + VP = cP + o(P), the expected exe-

cution overhead is H (T ∗P , P) = α + 2αP
√
c
(
f
2 + s

)
λind +

1−α
P + o(λ

1/2
ind P). It is minimized by setting ∂H(T∗P ,P)

∂P =

2α
√
c
(
f
2 + s

)
λind − 1−α

P 2 + o(λ
1/2
ind) = 0. Keeping only the

dominating term, the equation above leads to the optimal
processor allocation P ∗ as shown in Equation (9). Now,
substituting P ∗ back into T ∗P and H (T ∗P , P) and simplifying,
we obtain the optimal checkpointing period T ∗ and optimal

expected execution overhead H(T ∗, P ∗) as shown in Equa-
tions (10) and (11), respectively.

2) H(P) = α+ 1−α
P and CP + VP = d+ o(1), α, d 6= 0:

This case corresponds to the application having a constant
sequential fraction, and a constant checkpointing (and verifi-
cation) cost.

Theorem 3. Suppose the application has a constant sequential
fraction α > 0, and a checkpointing and verification cost CP+
VP = d + o(1). The optimal number of processors and the
corresponding optimal checkpointing period of a pattern are

P ∗ =

(
1

d
(
f
2 + s

)
λind

)1/3(
1− α
α

)2/3

, (12)

T ∗ =

(
d2(

f
2 + s

)
λind

)1/3(
α

1− α

)1/3

. (13)

The expected execution overhead (ignoring lower-order terms)
in this case is

H(T ∗, P ∗) = α+ 3

(
α2(1− α)d

(f
2

+ s
)
λind

)1/3

. (14)

Proof. When H(P) = α + 1−α
P and CP + VP = d + o(1),

we get from Equation (8) the expected execution overhead
H (T ∗P , P) = α+ 2α

√
d
(
f
2 + s

)
λindP + 1−α

P + o(λ
1/2
ind P

1/2).

Again, the overhead is minimized by setting ∂H(T∗P ,P)
∂P = 0,

which gives α
√
d
(
f
2 + s

)
λind
P −

1−α
P 2 + o(λ

1/2
ind P

−1/2) = 0.
Solving the equation above while focusing on the dominating
term gives the optimal P ∗ as shown in Equation (12). Sub-
stituting P ∗ back into T ∗P and H (T ∗P , P), we get the optimal
T ∗ and H(T ∗, P ∗) as shown in Equations (13) and (14).

3) H(P) = α + 1−α
P and CP + VP = h

P , α, h 6= 0:
This case corresponds to the application having a constant
sequential fraction, and a checkpointing (and verification) cost
that decreases linearly with the number of processors.

Recall in this case that the number of processors satisfies
P = Θ(λ−xind) with x < 1/2 for the first-order approximation
to be valid. Subject to this bound, the expected execution
overhead as shown in Equation (8) becomes H(T ∗P , P) =(
α+ 1−α

P

) (
1 + 2

√
h
(
f
2 + s

)
λind

)
, which decreases mono-

tonically as the number of allocated processors P increases up
to the order of λ−1/2ind . Asymptotically, the overhead satisfies
H(T ∗P , P) = α+ Θ (λxind) for x < 1/2.

Hence, it is better to enroll as many processors as possible
in this case, as long as P is within the approximation bound
of O(λ

−1/2
ind). Intuitively, the costs of both checkpointing and

verification reduce with the processor count, which enables to
place both resilience operators more frequently with smaller
checkpointing period to compensate for the increased error
rate. Numerical simulations conducted in Section IV show that
the optimal number of processors P ∗ is nevertheless bounded
in this case with a value beyond O(λ

−1/2
ind).

4) H(P) = 1
P : In this case, the application has a per-

fectly linear speedup function. Again, the expected execution
overhead decreases monotonically with the number of allo-
cated processors, and the following gives the expression of
H(T ∗P , P) in different cases (with lower-order terms ignored):

H(T ∗P , P)=


1
P + 2

√
c
(
f
2 + s

)
λind if c 6= 0

1
P + 2

√
d
(
f
2 + s

)
λind
P if c = 0, d 6= 0

1
P

(
1 + 2

√
h
(
f
2 + s

)
λind

)
if c = 0, d = 0

.

In all the cases above, the overhead is asymptotically
bounded by Θ (λxind) for x < 1/2, except in the second case
(i.e., c = 0, d 6= 0) where x < 1. Numerical simulations
conducted in Section IV show that the optimal processor count
P ∗ happens around x = 1/2 and x = 1 for case 1 and case
2, respectively, whereas it is unbounded for the last case, due
to the combination of diminishing resilience cost and perfect
application speedup.

E. Discussions

Consider a (standard) application that is not perfectly par-
allel (i.e., α 6= 0). Theorems 2 and 3 show the impact of
the checkpointing cost on the optimal degree of parallelism.
When this cost grows linearly with P (e.g., with coordinated
checkpointing on stable storage [7]), Theorem 2 states that
the optimal number of processors is P ∗ = Θ(λ

−1/4
ind). In

that case, the optimal period has length T ∗ = Θ(λ
−1/2
ind).

But when this cost remains bounded (e.g., with in-memory
checkpointing [21]), then Theorem 3 shows that the optimal
solution has both increased parallelism P ∗ = Θ(λ

−1/3
ind) and

smaller period T ∗ = Θ(λ
−1/3
ind). These two cases represent

most practical checkpointing protocols implemented in today’s
fault-tolerant systems. To the best of our knowledge, the results
are the first to analytically establish the relationship between
P ∗ and T ∗ as a function of the resource MTBF µind = 1/λind.

Finally, we point out that when both checkpointing and
verification costs reduce with P (which is rarely the case
in practice), first-order approximation has its limitation and
can no longer be used to derive the optimal number of
processors and optimal checkpointing period. In this case,
one can resort to higher-order approximations or numerical
methods to compute the optimal pattern parameters, which
are still bounded due to the sequential fraction.

IV. EXPERIMENTS

In this section, we conduct simulations to support the
analytical study and to demonstrate the accuracy of first-
order approximation under different parameter settings and
resilience scenarios. The simulation code is publicly available
at http://perso.ens-lyon.fr/aurelien.cavelan/simu.zip.

A. Simulation Settings

We consider four real platforms that were used to evaluate
the Scalable Checkpoint/Restart (SCR) library [16]. Measure-
ments of the platform parameters are provided, including error

Table II. Platform parameters.

Platform Hera Atlas Coastal Coastal SSD
λind 1.69e-8 1.62e-8 2.34e-9 2.34e-9
f 0.2188 0.0625 0.1667 0.1667
s 0.7812 0.9375 0.8333 0.8333
P 512 1024 2048 2048
CP 300s 439s 1051s 2500s
VP 15.4s 9.1s 4.5s 180s

Table III. Different resilience scenarios.

Scenario 1 2 3 4 5 6
CP , RP cP cP a a b/P b/P
VP v u/P v u/P v u/P

rates of different sources and various checkpointing costs on
a specified number of processors (where each processor has a
dual quad-core chip). Following [2], the verification cost is set
to be the same as that of an in-memory checkpoint, assuming
the entire memory footprint needs to be inspected in order
to accurately detect silent errors. Table II presents the main
parameters of the four platforms. The downtime is set to one
hour, i.e., D = 3600s (a repair-based restoration value, see the
discussion in Section IV-B5), and the sequential fraction of the
application is set to be α = 0.1. These values as well as the
individual error rate λind will be varied in the simulations to
assess their impacts on the performance of the optimal pattern.

We envision six resilience scenarios, as shown in Table
III, depending on the scalability of the checkpointing and
verification overheads discussed in Section II. Altogether,
these scenarios cover a wide range of resilience protocols,
represented by different checkpointing mechanisms and error
detection algorithms. For each scenario, we can compute the
resilience parameters (i.e., a, b, c, v, u) based on the values
of CP and VP as well as the number of processors given
in Table II, and then project the corresponding overheads on
any number of processors. The optimal pattern under each
scenario can be derived using the first-order analysis presented
in Section III. Specifically, for a constant α > 0, scenarios 1
and 2 correspond to case 1

(
CP = cP + o(P)

)
, scenarios

3, 4 and 5 correspond to case 2
(
CP + VP = d + o(1)

)
,

and scenario 6 corresponds to case 3
(
CP + VP = h/P

)
. To

assess the accuracy of the first-order approximation, we also
compare the performance of the first-order solution with that
of the optimal solution obtained using numerical methods such
as the one considered in [14].

Once the pattern parameters are determined, fail-stop and
silent errors are injected into the simulator as two independent
Poisson processes according to the error rates shown in Table
II. The result of each experiment is obtained by averaging over
500 simulation runs, each of which lasts at least 500 patterns.
The expected execution overhead of the pattern is computed
as the average ratio of the application’s execution time with
faults and its fault-free execution time.

B. Simulation Results

1) Performance of optimal patterns in different scenarios:
Figure 2 shows the performance of the optimal patterns in
different resilience scenarios when the sequential fraction of

the application is fixed at α = 0.1. We can see that, on all
the four platforms, the first-order solution provides a very
good approximation to the optimal solution in terms of both
checkpointing period and processor allocation, under the first
four scenarios (the most realistic ones in practical systems).
The execution overheads (≈ 0.11) predicted by the first-
order formulas (Theorems 2 and 3) are almost identical to
the optimal overheads and the ones obtained by simulations.
The results confirm the validity of first-order approximations
in these scenarios.

In scenario 5, the resilience cost is dominated by the
verification overhead, which although is a constant has a
relatively small value. This significantly increases the optimal
processor count and hence the corresponding error rates, thus
compromising the accuracy of the first-order approximation
(up to 5% in execution overhead), since the lower-order terms
start to become non-negligible. In fact, due to the small
constant overhead, scenario 5 closely resembles scenario 6,
in which case first-order analysis can no longer predict the
optimal pattern parameters (thus only the results of numerical
methods are shown). Figure 2 shows that the optimal pattern
parameters in scenario 6 are indeed in the same orders as those
of scenario 5 but with higher processor counts and smaller
checkpointing periods.

2) Impact of processor allocation: We study how the num-
ber of allocated processors impacts the optimal checkpointing
period and the resulting execution overhead under different
resilience scenarios. Figure 3 shows the simulation results
for the Hera platform (the results are similar for the other
platforms). Since the resilience overhead is dominated by the
checkpointing cost, the pattern behaviors are mainly influenced
by the form of CP , as demonstrated by the almost overlapping
curves between the scenarios that share the same CP values.
In all scenarios, the checkpointing period decreases with the
number of processors (Figure 3(a)), which is needed to com-
pensate for the increased error rates. The execution overhead,
on the other hand, first improves with the number of processors
due to increased parallelism and then degrades due to more
errors striking (Figure 3(b)). The optimal processor counts, as
we have seen in Figure 2, tend to be higher for scenarios
in which the checkpointing cost CP does not increase (or
even decreases) with P . Figure 3(c) shows the difference in
execution overhead between the first-order solution and the
optimal numerical solution. The difference, for the concerned
range of processors, is always within 0.2%, validating once
again the accuracy of first-order approximation.

3) Impact of sequential fraction α: Figure 4 shows the
impact of the sequential fraction α on the performance of
the optimal patterns in scenarios 1, 3 and 5 (from now on,
scenarios 2, 4 and 6 are ignored because they have similar
performance as scenarios 1, 3 and 5, respectively). We can see
that, as α decreases, more processors are enrolled so that the
application can benefit from Amdahl’s law to achieve lower
execution overheads (or equivalently higher speedups). The
checkpointing periods, on the other hand, decrease with α due
to increased processor count, except in scenario 1 where the

1 2 3 4 5 6
Scenarios

0

100

200

300

400

500

600

700

800

900

O
p
ti
m
a
l
n
u
m
b
e
r
o
f
p
ro
ce

ss
o
rs
 P

∗

Hera

First-order

Optimal

1 2 3 4 5 6
Scenarios

0

2000

4000

6000

8000

10000

O
p
ti
m
a
l
ch

e
ck
p
o
in
ti
n
g
 p
e
ri
o
d
 T

∗

Hera

First-order

Optimal

1 2 3 4 5 6
Scenarios

0.00

0.05

0.10

0.15

0.20

0.25

E
x
e
cu

ti
o
n
 o
v
e
rh
e
a
d

Hera

First-order simulation

Optimal simulation

First-order prediction

Optimal prediction

1 2 3 4 5 6
Scenarios

0

200

400

600

800

1000

1200

1400

1600

O
p
ti
m
a
l
n
u
m
b
e
r
o
f
p
ro
ce

ss
o
rs
 P

∗

Atlas

First-order

Optimal

1 2 3 4 5 6
Scenarios

0

2000

4000

6000

8000

10000

12000

O
p
ti
m
a
l
ch

e
ck
p
o
in
ti
n
g
 p
e
ri
o
d
 T

∗

Atlas

First-order

Optimal

1 2 3 4 5 6
Scenarios

0.00

0.05

0.10

0.15

0.20

0.25

E
x
e
cu

ti
o
n
 o
v
e
rh
e
a
d

Atlas

First-order simulation

Optimal simulation

First-order prediction

Optimal prediction

1 2 3 4 5 6
Scenarios

0

500

1000

1500

2000

2500

3000

O
p
ti
m
a
l
n
u
m
b
e
r
o
f
p
ro
ce

ss
o
rs
 P

∗

Coastal

First-order

Optimal

1 2 3 4 5 6
Scenarios

0

5000

10000

15000

20000

25000

30000

35000

40000

O
p
ti
m
a
l
ch

e
ck
p
o
in
ti
n
g
 p
e
ri
o
d
 T

∗

Coastal

First-order

Optimal

1 2 3 4 5 6
Scenarios

0.00

0.05

0.10

0.15

0.20

0.25

E
x
e
cu

ti
o
n
 o
v
e
rh
e
a
d

Coastal

First-order simulation

Optimal simulation

First-order prediction

Optimal prediction

1 2 3 4 5 6
Scenarios

0

500

1000

1500

2000

2500

3000

O
p
ti
m
a
l
n
u
m
b
e
r
o
f
p
ro
ce

ss
o
rs
 P

∗

Coastal SSD

First-order

Optimal

1 2 3 4 5 6
Scenarios

0

10000

20000

30000

40000

50000

60000

70000

80000

O
p
ti
m
a
l
ch

e
ck
p
o
in
ti
n
g
 p
e
ri
o
d
 T

∗

Coastal SSD

First-order

Optimal

1 2 3 4 5 6
Scenarios

0.00

0.05

0.10

0.15

0.20

0.25

E
x
e
cu
ti
o
n
 o
v
e
rh
e
a
d

Coastal SSD

First-order simulation

Optimal simulation

First-order prediction

Optimal prediction

Figure 2. Performance of the optimal patterns in different resilience scenarios on four platforms when the sequential fraction is fixed at α = 0.1.

optimal period barely changes with the number of processors
(see Theorem 1 and Figure 3(a)). As more processors are
used, the first-order approximation of P ∗ starts to deviate
from the optimal value, but the first-order overhead H∗, as
shown in Figure 4(c), remains in close proximity to the optimal
overhead up to α = 0.0001. Also, compared to the other
scenarios, scenario 5 starts to show a better overhead as α
becomes smaller, because of its smaller checkpointing cost.
However, even when α = 0, the optimal processor allocation is
upper bounded by 106 in all three scenarios with an overhead
strictly above 10−5. This is in clear contrast to the error-free
execution, where an infinity number of processors can be used
to achieve (nearly) null overhead.

4) Impact of error rate λind: This experiment assesses the
impact of the individual error rate λind on the performance of
the optimal pattern, in particular on the asymptotic behaviors
of the processor allocations and checkpointing periods under
different scenarios. Figure 5 shows that, as the processors

become more reliable (i.e., as λind decreases), the optimal
pattern is able to both accommodate more processors and
use larger checkpointing periods. The results confirm our
analytical study that P ∗ and T ∗ are in the orders of λ−1/4ind
and λ−1/2ind , respectively, under scenario 1, and are both in the
order of λ−1/3ind under scenarios 3 and 5. Moreover, the first-
order approximation becomes more accurate with decreased
λind, and the execution overheads tend to the theoretical lower
bound of 0.1 for all three scenarios.

Figure 6 further shows the behaviors of the optimal patterns
when the application is perfectly parallel (i.e., α = 0).
Recall that this case does not admit a solution under first-
order approximation. Numerical analysis suggests that, under
scenario 1, the optimal solution satisfies P ∗ ≈ Θ(λ

−1/2
ind),

T ∗ ≈ Θ(λ
−1/2
ind), and H∗ ≈ Θ(λ

1/2
ind), and under scenarios 3

and 5, we have P ∗ ≈ Θ(λ−1ind), T ∗ ≈ O(1), and H∗ ≈ Θ(λind).
5) Impact of downtime D: Finally, we evaluate the impact

of downtime D on the pattern performance. Depending on

200 400 600 800 1000 1200 1400
Number of processors P

0

10000

20000

30000

40000

50000

60000

70000

80000

O
p
ti
m
a
l
ch

e
ck
p
o
in
ti
n
g
 p
e
ri
o
d
 T

∗ P

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

(a)

200 400 600 800 1000 1200 1400
Number of processors P

0.10

0.11

0.12

0.13

0.14

0.15

0.16

S
im

u
la
te
d
 e
x
e
cu

ti
o
n
 o
v
e
rh
e
a
d

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

(b)

200 400 600 800 1000 1200 1400
Number of processors P

0

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0.14%

0.16%

0.18%

O
v
e
rh
e
a
d
 d
if
fe
re
n
ce
 f
ro
m
 o
p
ti
m
a
l
so
lu
ti
o
n

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

(c)
Figure 3. Optimal checkpointing period T ∗

P (from Theorem 1) and simulated execution overhead for different number of processors P on platform Hera.

0 0.0001 0.001 0.01 0.1
Sequential fraction α

102

103

104

105

106

O
p
ti
m
a
l
n
u
m
b
e
r
o
f
p
ro
ce

ss
o
rs
 P

∗

Scenario 1 (first-order)

Scenario 1 (optimal)

Scenario 3 (first-order)

Scenario 3 (optimal)

Scenario 5 (first-order)

Scenario 5 (optimal)

(a)

0 0.0001 0.001 0.01 0.1
Sequential fraction α

101

102

103

104

105

O
p
ti
m
a
l
ch

e
ck

p
o
in
ti
n
g
 p
e
ri
o
d
 T

∗

Scenario 1 (first-order)

Scenario 1 (optimal)

Scenario 3 (first-order)

Scenario 3 (optimal)

Scenario 5 (first-order)

Scenario 5 (optimal)

(b)

0 0.0001 0.001 0.01 0.1
Sequential fraction α

10-5

10-4

10-3

10-2

10-1

100

S
im

u
la
te
d
 e
x
e
cu

ti
o
n
 o
v
e
rh
e
a
d

Scenario 1 (first-order)

Scenario 1 (optimal)

Scenario 3 (first-order)

Scenario 3 (optimal)

Scenario 5 (first-order)

Scenario 5 (optimal)

(c)
Figure 4. Optimal checkpointing period T ∗ and number of processors P ∗ (from Theorems 2 and 3, and from numerical solution), as well as the simulated
execution overhead under different sequential fraction α on platform Hera.

whether repair-based or replacement-based (migration to a
spare processor) restoration is used, downtime can range from
a few minutes to several hours [14]. In this experiment, we
vary the downtime from 0 to 3 hours. Figures 7 shows the
simulation results when α = 0.1 (the companion research
report [6] also contains results for smaller values of α with
similar observations). Since D does not appear in the formulas
of P ∗ and T ∗ (given in Theorems 2 and 3) due to the use of
first-order approximation, the optimal pattern obtained by the
first-order analysis does not vary with D, while the optimal
processor count obtained by the numerical solution decreases
with increased downtime. This shows that the optimal pattern
parameters are indeed influenced by the downtime. However,
the simulated execution overheads in both cases stay close for
the first-order solution and the optimal solution, because even
a 3-hour downtime is nevertheless much smaller compared to
the platform MTBF (in the order of days).

V. CONCLUSION

In this paper, we considered the optimal processor allocation
problem for executing a parallel job on a large-scale platform
subject to fail-stop and silent errors. We have provided the
exact expression for the expected execution time of a pat-
tern, and closed-form first-order approximation formulas to
compute the optimal checkpointing period T ∗ and optimal
number of processors P ∗. These formulas are functions of
several parameters: the individual processor failure rate λind,
the sequential fraction of the application α, as well as the
checkpointing and verification costs CP and VP . For the latter
costs, we have envisioned a comprehensive set of scenarios
that are representative of the most important fault-tolerant

protocols. To the best of our knowledge, these results are the
first that analytically establish the relationship between P ∗ and
T ∗ as a function of the resource MTBF µind = 1/λind, and they
offer new insights into the relationships of Amdhal’s law and
the Young/Daly approximation formula. Also, they provide the
first (and direct) characterization of the optimal number of
resources to enroll, with given error rates, resilience costs and
application speedup profile. We have conducted an extensive
set of simulations to support the theoretical study, whose
outcome confirms the accuracy of first-order approximation
under a wide range of parameter settings.

Further work will be devoted to exploring jobs with dif-
ferent speedup profiles, weak vs. strong scalability issues,
and multi-level resilience protocols. All these questions raise
important but challenging optimization problems. On a global
perspective, we strongly believe that going beyond simulations
and providing analytical solutions to these problems would
be a major step to understanding the potential and limits of
parallelism at extreme scale and in failure-prone environments.

REFERENCES

[1] G. Amdahl. The validity of the single processor approach to achieving
large scale computing capabilities. In AFIPS Conference Proceedings,
volume 30, pages 483–485. AFIPS Press, 1967.

[2] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Optimal resilience
patterns to cope with fail-stop and silent errors. In IPDPS, 2016.

[3] A. R. Benson, S. Schmit, and R. Schreiber. Silent error detection in
numerical time-stepping schemes. Int. J. High Performance Computing
Applications, 2014.

[4] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based
fault tolerance applied to high performance computing. J. Parallel
Distrib. Comput., 69(4):410–416, 2009.

[5] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir.
Toward exascale resilience: 2014 update. Supercomputing frontiers and
innovations, 1(1), 2014.

1e-12 1e-11 1e-10 1e-09 1e-08
Individual error rate λind

102

103

104

105

O
p
ti
m
a
l
n
u
m
b
e
r
o
f
p
ro
ce

ss
o
rs
 P

∗

Scenario 1 (first-order)

Scenario 1 (optimal)

Scenario 3 (first-order)

Scenario 3 (optimal)

Scenario 5 (first-order)

Scenario 5 (optimal)

P=λ−1/4

P=λ−1/3

(a)

1e-12 1e-11 1e-10 1e-09 1e-08
Individual error rate λind

103

104

105

106

107

O
p
ti
m
a
l
ch

e
ck

p
o
in
ti
n
g
 p
e
ri
o
d
 T

∗

Scenario 1 (first-order)

Scenario 1 (optimal)

Scenario 3 (first-order)

Scenario 3 (optimal)

Scenario 5 (first-order)

Scenario 5 (optimal)

T=λ−1/2

T=λ−1/3

(b)

1e-12 1e-11 1e-10 1e-09 1e-08
Individual error rate λind

0.100

0.105

0.110

0.115

0.120

S
im

u
la
te
d
 e
x
e
cu

ti
o
n
 o
v
e
rh
e
a
d

Scenario 1 (first-order)

Scenario 1 (optimal)

Scenario 3 (first-order)

Scenario 3 (optimal)

Scenario 5 (first-order)

Scenario 5 (optimal)

(c)
Figure 5. Optimal checkpointing period T ∗ and number of processors P ∗ (from Theorems 2 and 3, and from numerical solution), as well as the simulated
execution overhead under different values of λind and when α = 0.1 on platform Hera.

1e-12 1e-11 1e-10 1e-09 1e-08
Individual error rate λind

103

104

105

106

107

108

109

1010

1011

1012

1013

O
p
ti
m

a
l
n
u
m

b
e
r
o
f
p
ro

ce
ss

o
r
P
∗

Scenario 1 (optimal, α=0)

Scenario 3 (optimal, α=0)

Scenario 5 (optimal, α=0)

P=λ−1/2

P=λ−1

(a)

1e-12 1e-11 1e-10 1e-09 1e-08
Individual error rate λind

101

102

103

104

105

106

107

O
p
ti
m

a
l
ch

e
ck

p
o
in

ti
n
g
 p

e
ri
o
d
 T

∗

Scenario 1 (optimal, α=0)

Scenario 3 (optimal, α=0)

Scenario 5 (optimal, α=0)

T=λ−1/2

(b)

1e-12 1e-11 1e-10 1e-09 1e-08
Individual error rate λind

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

S
im

u
la
te
d
 e
x
e
cu
ti
o
n
 o
v
e
rh
e
a
d

Scenario 1 (optimal, α=0)

Scenario 3 (optimal, α=0)

Scenario 5 (optimal, α=0)

H=λ 1/2

H=λ

(c)
Figure 6. Optimal checkpointing period T ∗ and number of processors P ∗ (from numerical solution), as well as the simulated execution overhead under
different values of λind and when α = 0 on platform Hera.

0 0.5 1 1.5 2 2.5 3
Downtime D (in hour)

102

103

104

O
p
ti
m
a
l
n
u
m
b
e
r
o
f
p
ro
ce

ss
o
r
P

∗

Scenario 1 (first-order)

Scenario 1 (optimal)

Scenario 3 (first-order)

Scenario 3 (optimal)

Scenario 5 (first-order)

Scenario 5 (optimal)

(a)

0 0.5 1 1.5 2 2.5 3
Downtime D (in hour)

103

104

105

O
p
ti
m
a
l
ch
e
ck
p
o
in
ti
n
g
 p
e
ri
o
d
 T

∗

Scenario 1 (first-order)

Scenario 1 (optimal)

Scenario 3 (first-order)

Scenario 3 (optimal)

Scenario 5 (first-order)

Scenario 5 (optimal)

(b)

0 0.5 1 1.5 2 2.5 3
Downtime D (in hour)

0.10

0.11

0.12

0.13

0.14

0.15

S
im

u
la
te
d
 e
x
e
cu

ti
o
n
 o
v
e
rh
e
a
d

Scenario 1 (first-order)

Scenario 1 (optimal)

Scenario 3 (first-order)

Scenario 3 (optimal)

Scenario 5 (first-order)

Scenario 5 (optimal)

(c)
Figure 7. Optimal checkpointing period T ∗ and number of processors P ∗ (from Theorems 2 and 3, and from numerical solution), as well as the simulated
execution overhead under different downtime D and when α = 0.1 on platform Hera.

[6] A. Cavelan, J. Li, Y. Robert, and H. Sun. When Amdahl meets
Young/Daly. Research report RR-8871, INRIA, 2016. Available at
graal.ens-lyon.fr/∼yrobert/rr8871.pdf.

[7] K. M. Chandy and L. Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer
Systems, 3(1):63–75, 1985.

[8] Z. Chen. Online-ABFT: An online algorithm based fault tolerance
scheme for soft error detection in iterative methods. In PPoPP, 2013.

[9] J. T. Daly. A higher order estimate of the optimum checkpoint interval
for restart dumps. Future Generation Comp. Syst., 22(3):303–312, 2006.

[10] E. Elnozahy and J. Plank. Checkpointing for peta-scale systems: a look
into the future of practical rollback-recovery. IEEE Trans. Dependable
and Secure Computing, 1(2):97–108, 2004.

[11] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM
Computing Survey, 34:375–408, 2002.

[12] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and
R. Brightwell. Detection and correction of silent data corruption for
large-scale high-performance computing. In Proc. SC’12, page 78, 2012.

[13] T. Hérault and Y. Robert, editors. Fault-Tolerance Techniques for High-
Performance Computing, Computer Communications and Networks.
Springer Verlag, 2015.

[14] H. Jin, Y. Chen, H. Zhu, and X.-H. Sun. Optimizing HPC fault-tolerant
environment: An analytical approach. In Proc. ICPP’10, 2010.

[15] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy
to improve computer reliability. IBM J. Res. Dev., 6(2):200–209, 1962.

[16] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design,
modeling, and evaluation of a scalable multi-level checkpointing system.
In Proc. SC’10, pages 1–11, 2010.

[17] T. O’Gorman. The effect of cosmic rays on the soft error rate of a
DRAM at ground level. IEEE Trans. Electron Devices, 41(4):553–557,
1994.

[18] P. Sao and R. Vuduc. Self-stabilizing iterative solvers. In ScalA, 2013.
[19] P. M. Widener, K. B. Ferreira, S. Levy, and N. Fabian. Canaries in a coal

mine: Using application-level checkpoints to detect memory failures.
In Euro-Par’15: Parallel Processing Workshops. Springer LNCS 9523,
2015.

[20] J. W. Young. A first order approximation to the optimum checkpoint
interval. Comm. of the ACM, 17(9):530–531, 1974.

[21] G. Zheng, L. Shi, and L. V. Kale. FTC-Charm++: an in-memory
checkpoint-based fault tolerant runtime for Charm++ and MPI. In Proc.
CLUSTER’04, pages 93–103, 2004.

[22] Z. Zheng, L. Yu, and Z. Lan. Reliability-aware speedup models for
parallel applications with coordinated checkpointing/restart. IEEE Trans.
Computers, 64(5):1402–1415, 2015.

[23] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos, H. Muhlfeld,
and C. Montrose. Cosmic ray soft error rates of 16-Mb DRAM memory
chips. IEEE Journal of Solid-State Circuits, 33(2):246–252, 1998.

